
Migrating to a Real-Time Distributed Parallel Simulator
Architecture

An Update
∗

Bernardt Duvenhage
The Computer Science Department of the University of Pretoria

Pretoria, South Africa
bduvenhage@csir.co.za

Categories and Subject Descriptors
J.7 [Computers in Other Systems]: Command and Con-
trol ; J.7 [Computers in Other Systems]: Military

Keywords
discrete time, DTSS, discrete event, DEVS, distributed par-
allel simulation

ABSTRACT
A legacy non-distributed logical time simulator was previ-
ously migrated to a distributed architecture to parallelise
execution. The existing Discrete Time System Specification
(DTSS) modelling formalism was retained to simplify the
reuse of existing models. This decision, however means that
the high simulation frame rate of 100Hz used in the legacy
system has to be retained in the distributed one—a known
difficulty for existing distribution technologies due to inter-
process communication latency.

The specialised discrete time distributed peer-to-peer mes-
sage passing architecture that resulted to support the paral-
lelised simulator requirements is analysed and the questions
surrounding its performance and flexibility answered. The
architecture is shown to be a suitable and cost effective dis-
tributed simulator architecture for supporting a four to five
times parallelised implementation of a 100 Hz logical time
DTSS modelling formalism.

From the analysis results it is however clear that the dis-
crete time architecture poses a significant technical challenge
in supporting large scale distributed parallel simulations.
This is mainly due to sequential communication components
within the discrete time architecture and system specifica-
tion that cannot be parallelised. A hybrid DTSS/Discrete
Event System Specification (DEVS) modelling formalism

∗Progress of Masters dissertation following on original art-
icle[1] by the same name.

and simulator is proposed to lower the communication and
synchronisation overhead between models and improve on
the scalability of the discrete time simulator while still eco-
nomically reusing the existing models.

The proposed hybrid architecture is discussed. Ideas on
implementing and then analysing the new architecture to
complete the author’s masters dissertation are then touched
upon.

1. INTRODUCTION
The South-African National Defence Force’s (SANDF’s) need
for decision support and concurrent tactical doctrine devel-
opment within a Ground Based Air Defence System (GBADS)
acquisition program offered an ideal opportunity to estab-
lish an indigenous and credible modelling and simulation
capability within the South-African defence acquisition en-
vironment [2][3]. The broad requirement of the capability
is to simulate a GBADS battery of existing and still to be
acquired (possibly still under development) equipment and
their related human operators at a system of systems level
within a realistic Synthetic Environment (SE). A GBADS
deployment, shown in Figure 1, usually consists of a layered
air defence. The outer layer typically consists of eight very
short range missile systems, each having a virtual operator
and an accompanying buddy with a wide angle pair of bin-
oculars. The second layer has four gun systems, each consist-
ing of two guns, a tracking radar, a designation radar, a fire
control system and at least three operators to operate the
guns. The inner layer of defence usually has two short range
missile systems, each consisting of a ground based launcher,
a designation sensor, a fire control system and a couple of
virtual operators. The deployment would defend some asset
(vulnerable point) against an airborne threat scenario. A
typical threat scenario would consist of one to many incom-
ing attack aircraft which are the ’targets’ to be engaged by
the air defence system.

During the concept and definition phases of the acquisition
life cycle [4] the capability was successfully provided by a
non-distributed simulator and its architectural predecessors
[5] developed by the CSIR. A selection of the models were de-
rived from high fidelity engineering models, some by OEMs,
and developed within a 100Hz logical Discrete Time System
Specification (DTSS) [6] that simplified the time and caus-
ality management. The non-distributed simulator evolved
within this 100Hz logical time DTSS modelling formalism



Figure 1: A Typical GBADS Deployment

and was implemented to run As Fast As Possible (AFAP).

Real-time simulation execution became a prioritised require-
ment during the development phase of the acquisition life
cycle due to the realised impact of realistic human-simulation
interaction when doing tactical doctrine development. Hu-
man interaction would happen through an Operator In the
Loop (OIL) console with the possibility to record the op-
erator’s actions to be re-used in statistical simulation runs
when and as required. To support the real-time requirement
it was decided to parallelise the simulator across multiple
Commercial Off the Shelf (COTS) PC nodes connected with
Gigabit Ethernet. For economical reusability of all the ex-
isting models it was also decided to retain the 100Hz logical
time and DTSS modelling formalism.

Several case studies of value for embedding a discrete time
modelling approach within existing simulator distribution
technologies, presented by Duvenhage and Kourie [1], showed
that these reach a frame rate ceiling of 20 to 30Hz. A spe-
cialised 100Hz logical discrete time distributed simulator was
developed to bridge the gap from 30Hz to 100Hz and this
simulator is currently in use to provide the required simu-
lation capability. To achieve real-time execution the logical
time simulator’s execution is throttled to not exceed real-
time. Guaranteeing that at least real-time execution can
be reached does place severe real-time constraints on the
inter-node communication latency though, as each simula-
tion frame is a mere 10ms.

The distributed discrete time simulator design is briefly dis-
cussed in the next section followed by some performance ana-
lysis results. The results are discussed and shown to indicate
a technical difficulty in the future scalability of the discrete
time simulator. A hybrid DTSS/Discrete Event System Spe-
cification (DEVS) modelling approach and simulator is then
proposed to improve on the scalability of the discrete time
simulator. Ideas on implementing and then analysing the
new architecture to complete the author’s Masters disserta-
tion is finally presented.

Figure 2: Layered Peer-to-Peer Simulator Architec-
ture

2. THE DISTRIBUTED DISCRETE TIME SIM-
ULATOR

The discussion on the new publish-subscribe simulator ar-
chitecture is structured around the layered architecture of
the simulator (shown in Figure 2), which includes a publish
subscribe simulation layer, a message passing implementa-
tion of the simulation model and at the bottom layer a low
latency TCP messaging protocol for Gigabit Ethernet.

The attraction of the layered architecture was the separa-
tion of concerns, in terms of design, between the simulation
model and the distributed execution thereof. An additional
advantage is of course the ability to change the implement-
ation of the bottom layers without affecting the top layer
simulation application.

2.1 Publish-Subscribe Simulation Model
The top layer simulation model encompasses a couple of as-
pects, which include the simulation time management, the
system specification modelling formalism, the object com-
munication framework and the synthetic environment ser-
vices.

As mentioned, the pre-existing models have been implemen-
ted within a conservative logical time management scheme
and a DTSS modelling formalism. It was decided to keep
these aspects unchanged to simplify the reuse of the exist-
ing models. The object communication framework that is
under investigation for the simulation model is a specialised
publish-subscribe framework to be discussed next. Discus-
sions on the synthetic environment services will then follow.

2.1.1 The Object Communication Framework
The publish-subscribe paradigm is well known to anyone
that has ever needed to organise to get information, for ex-
ample a magazine, on his or her topic of interest on a reg-
ular basis. Each magazine within your topic (category) of
interest has a title and a regular interval at which the cat-
egorical information is made available (published). You, the
subscriber, may request that the information be delivered
to your doorstep in the form of, say, a weekly or a monthly
magazine issue.

The publish-subscribe simulation framework is a direct ana-
logy to the magazine example. An instance of a simulation
model (an object) may express its desire to receive inform-
ation within a certain category of interest, e.g. aircraft pos-



itions, by adding the category (and title name, if known) to
its Subscription Wish List. An object may also express its
willingness to share information within a certain category,
such as its own position, by adding a title (name and cat-
egory) to its Owned Title List.

At simulation run-time each object will go through regu-
lar increment, publish and gather cycles. Within the DTSS
modelling formalism an object is incremented every n’th dis-
crete time simulation frame where n is the object’s trigger
frame. Each wish list subscription, and thus each subscriber
in a title’s subscriber list, is also associated with a trigger
frame. During a simulation frame, each subscriber of each
owned title will be visited and an issue sent to the subscriber
if it is the subscription’s trigger frame.

An object has an issue pigeon hole for each of its wish list
subscriptions. When an issue is received (gather phase) it
is placed in the appropriate pigeon hole. A pigeon hole may
have subscription history turned off or on. If history is off
then a newer version of an issue replaces all old issues that
may remain in the pigeon hole. If history is turned on then
issues will be added to the pigeon hole in chronological order.
The object may then read issues and manually delete them
as required during increment cycles. Turning history on for
a specific wish list subscription is typically required when
a subscriber doesn’t want to miss any important updates
(events) for that subscription. Having history off allows the
subscriber to always have access to the current issue without
the overhead of always caching and processing a subscrip-
tion’s recent history.

2.1.2 The Synthetic Environment Services
The two types of simulation services supported are, firstly,
low level services that are built into the simulation model
and, secondly, high level services that run on top of the
simulation model as simulation objects. The only low level
service currently implemented is that of delayed issues. An
issue may be given a future delivery time by either the pub-
lisher, or the subscriber upon delivery. Such an issue would
be delivered to the subscriber immediately, but once there it
resides in a delayed issue list until the time of delivery arrives
at which point the issue is put into the appropriate pigeon
hole of the subscriber. Delayed issues are handy if transmis-
sion delays of messages within the SE are to be modelled.
In the current simulator the issue delays of tactical commu-
nication subscriptions are, when required, calculated by a
radio and cable network model.

High level synthetic environment services subscribe to the
objects’ state titles and then apply environmental tools such
as Line Of Sight (LOS) and terrain engines to give each
object individual feedback on its height, which objects it can
see, etc. To accomplish the personalised feedback a service
advertises what is called a differentiated title. Each time a
subscription is made to a differentiated title the simulator
automatically creates a personalised title and subscription
for the subscriber. The service may then use the created
titles to publish to individual objects.

A service need not always publish data back to the simula-
tion, though. Logging, for example, is a high level service
that accumulates object states and other information. The

Figure 3: Peer-to-Peer Message Passing and Simu-
lation Synchronisation

logging service may then apply user configured data analys-
ers to the accumulated data and log the results to disk.

2.2 Peer-to-Peer Message Passing and Node Syn-
chronisation

The publish-subscribe communication framework and the
simulator synchronisation is implemented with a peer-to-
peer message passing architecture. A peer-to-peer architec-
ture is specifically preferred above a client-server architec-
ture to avoid the double latency that exists when communic-
ating via a server to a third machine. The messaging imple-
mentation of the publish-subscribe communication frame-
work is presented, followed by the implementation of the
simulation synchronisation.

2.2.1 Messaging Implementation of Publish-Subscribe
The publish-subscribe framework naturally translates to a
messaging architecture containing only three message types.
A title may be advertised as a title message containing all
the title and publisher details. A wish list subscription may
similarly be a message containing the details of the wish list
subscription and the subscriber. The third message type is
an issue message that contains the subscriber’s node-number
delivery address, the targeted wish list subscription pigeon
hole and the actual issue payload. The messaging imple-
mentation has a local/global filter (see Figure 2) that will
loop a node’s self addressed messages back to be cached for
the next simulation frame without passing anything down
to the TCP layer.

2.2.2 Peer-to-Peer Node Synchronisation
The peer-to-peer synchronisation scheme is shown in Fig-
ure 3. Each simulation frame has three consecutive exe-



cution phases. Within the first phase, which is the incre-
ment phase, all the objects are put through their increment-
publish cycles. The published issues are not messaged dir-
ectly, but are grouped per destination node and cached until
the second, so called publish, phase. The cached issue groups
may now be sent to their respective destination nodes. The
publish phase must be followed by a time-stamped end-of-
frame message to each peer node to signify that all the issues
for the current simulation frame have been sent. The end-of-
frame messages perform a similar function as Chandy-Misra
null messages [7] for dead-lock avoidance and time manage-
ment in DEVS implementations. A simulator node will wait
in the gather phase until it has received and processed an
end-of-frame message from each of the other simulator nodes
after which it starts with the increment phase of the next
simulation frame.

2.3 TCP Message Passing Implementation
The TCP messaging implementation consists of two com-
ponents. The first of which is an address translation from
destination node number to destination IP and port before
any message can be sent via TCP. This translation is pre-
configured and fixed for each distribution configuration.

The second component is a two-tiered approach to lower-
ing TCP message latency. The first tier is to ensure that as
much as possible of the TCP send and receive overhead hap-
pens in parallel to the node execution. This is accomplished
by increasing TCP’s send and receive buffers to an adequate
size such that the buffers have enough space for two simula-
tion frames worth of data. This ensures that all TCP sends
are non-blocking. It also facilitates CPU time, from a second
CPU or hyper-thread or that’s not used by the simulation,
to be used to transport as much data as possible from the
nodes’ send buffers across TCP to their receive buffers for
quick retrieval when needed.

The second tier takes control of the TCP message send
times. TCP’s Nagle algorithm tries to optimise bandwidth
usage by conglomerating sent messages in the send buffer un-
til it is large enough to fill a TCP packet or until a certain
time-out is reached. The unfortunate side effect of the Nagle
algorithm is that control over message latencies is lost. To
give control over the message latency back to the simulator
the Nagle algorithm is disabled.

2.4 Analysis and Results
The proposed architecture’s real-time performance is ana-
lysed over distributions of one to six simulator nodes on
the target infrastructure. With each node configuration the
number of objects per node will be limited to achieve a real-
time frame-rate. Finally a simple predictive model for the
distributed performance behaviour is derived from the ana-
lysis data and used to do a first order estimate of the simu-
lator’s scalability to seven and more nodes. Accurate evalu-
ation over more nodes should however be part of the future
work section if such accuracy is required.

For the experimental setup the simulator nodes are similar
Pentium 4 3.2GHz machines with 2GB of dual-channel RAM
each and WindowsXP SP2. The network infrastructure is,
as mentioned, Gigabit Ethernet with a D-Link DGS-3324SR
managed switch. Each node has an Intel D945PAW mother

Figure 4: Total Object Performance of 100Hz Peer-
to-Peer Simulator

Figure 5: Real-Time Performance Speed-Up of
100Hz Peer-to-Peer Simulator

board with an on-board Intel Pro/1000 PM Gigabit Ether-
net network card. The simulator nodes will be populated
with instances of a “test” model. The test model has a fixed
processing requirement of 1ms per 10ms simulation frame
and an owned title with a fixed issue size of 512 bytes. Fur-
thermore each instance of the test model subscribes to every
other instance, creating the worst case communication scen-
ario of a fully connected communication graph.

The performance result that is recorded is the maximum
number of objects per node (see Figure 4) such that the
simulation can still reach real-time. If the total number
of objects are increased above the “Total Objects” graph,
the performance will drop below real-time. Conversely, if
the total number of objects are decreased below the “Total
Objects”graph, the performance will grow beyond real-time.
Both the total number of objects and the performance speed-
up graphs are derived from the measured objects-per-node
graph (Figure 4 and Figure 5).

Quantifying the measured communication overhead it seems
that each time a simulator node is added, the number of
model instances per node must be decreased by an average
of 0.5 to maintain real-time which is a 0.5% overhead of the
10ms simulation frame. Assuming for the purpose of first
order performance predictions, that the results do indeed in-
dicate a linear distribution overhead of 5% for each simulator



node added, such a linear overhead would most probably be
in the receive loop of each simulation frame. Amdahl’s Law
[www.wikipedia.org] states that the speed-up attainable by
parallel execution is limited by the sequential components
of the system which in this case is proposed to be the single
NIC, and thus single communication channel, per simulator
node.

A linear performance might seem counter intuitive to what
is expected of an n node and fully connected peer-to-peer
structure where the total number of connections grows by
n2. The linear nature does however make sense if one re-
members that the processing is done by n nodes resulting

in a processing time of n2

c.n
which is proportional to n and

therefore linear. In other words, each node must strictly re-
ceive data from each of the other nodes in turn, limiting the
potential parallelisation.

The first order objects-per-node performance for seven and
more nodes is estimated by linearly extrapolating the meas-
ured objects-per-node curve (Figure 4) under the previous
assumption. The spikiness of the performance graphs is due
to the granularity of the objects which, in general, leaves a
fragmented processing slot (idle time) on each node. The
linear extrapolation provides an estimate for the scalability
of the simulator, but as the number of nodes increases to
beyond 10 the total number of objects eventually start to
decrease which implies that the communication bandwidth
will also decrease again. Around this point it is expected
that the linear nature of the objects-per-node curve might
change which requires, as mentioned earlier, analysis over
more nodes to draw accurate scalability conclusions beyond
10 nodes.

From the analysis of the results it seems that the new 100Hz
logical time DTSS publish-subscribe peer-to-peer simulator
architecture achieves a measured speed increase, due to ex-
ecution parallelisation, of above 4.5 when distributed over
six simulator nodes, but not higher than approximately 6
even when distributed over ten and more nodes. This sim-
ulator is currently in use and working as expected, but the
DTSS modelling formalism does seem to pose a technical
difficulty in implementing still larger scale parallelisation of
high resolution logical time simulations due to the sequential
components of the architecture that cannot be parallelised.

3. A HYBRID DEVS/DTSS MODELLING AP-
PROACH

In hind sight it seems like a good idea to rather develop a
hybrid DTSS-DEVS modelling formalism, that has a DEVS
layer enveloping the DTSS layer, to further migrate this
specific simulation capability towards supporting large scale
parallelisation. The two layer approach allows the existing
DTSS models to be grouped and aggregated into systems
level models for example, which may then be better suited
to a DEVS modelling formalism. The DEVS layer then com-
municates only what is required and its parallelisation is
not constrained by the underlying DTSS layer’s logical time
resolution which would require strict high resolution time
synchronisation between nodes.

It is known that a DTSS may be embedded within a DEVS [6].

Figure 6: Double Structure Level of Discrete Time
Simulator

This alone, however, does not improve the scalability of the
simulator. The proposed aspects to improve the scalability
is Aggregating DTSS Models into DEVS Models and Using
Dead-Reckoning Techniques on the remaining high resolu-
tion data links. It is worth noting again here that reusing the
current discrete time models, their publish-subcribe commu-
nication framework and the peer-to-peer messaging on TCP
architecture is still of importance for economical reasons,
minimising duplication of effort.

3.1 Aggregating DTSS Models into DEVS Mod-
els

The typical layout of a GBADS battery was described in the
introduction. Most of the current GBADS models are at the
level of GBAD sub-systems of systems within the battery.
These models are typically modelled at a state transition
system specification level or higher. At the GBAD system
level the sub-system models are brought together to create
system level models at a coupled system specification level
as shown in Figure 6. The GBAD system models are then
coupled again to create a GBAD system of systems level
model also at the coupled component system specification
level.

The nature of the system of systems simulation experiments
requires objectives and outcome measures at the GBAD sys-
tem level. In such an experimental frame the output vari-
ables within the GBAD system level coupled component
models (the system structural knowledge) is hidden from
the simulation analyst and argued to therefore be superflu-
ous. The aim of aggregation of the DTSS models is the act of
explicitly hiding the double layer of intermediate GBAD sys-
tem structural information within a DEVS model. The new
GBAD system level DEVS model is then a state transition
system specification envelope which shields the model inter-
connect infrastructure from the communication overhead of
the internal structure.

3.2 Using Dead-Reckoning Techniques
Some models, such as the incoming aircraft, are already at
a GBAD system level. Nevertheless, these models still com-
municate at a high data rate to some of the other GBAD
systems. The current tracking radar models, for example,
require high time resolution target position input for their
tracking filters to operate properly. This is due to the track-
ing radar, a GBAD sub-system, internally also being mod-
elled at a coupled component level. This requires the cor-
rect external stimulation for all the components to operate
together within the experimental frame for which they were
originally developed.



The aim of the dead-reckoning technique is to trade accuracy
for communication bandwidth, but in a clever way. An air-
craft will, along with its position, make known to the radar
how to best predict its path of motion up to x seconds into
the future. The radar may then calculate for itself the air-
craft’s position as frequently as required. The aircraft will
however keep track of were the radar thinks the aircraft is as
the aircraft knows what prediction algorithm the radar is us-
ing. As soon as the aircraft’s actual and predicted positions
are outside a predefined error boundary of each other, the
aircraft refreshes its current position and prediction method
to the radar.

4. CONCLUSION
The analysis results of the discrete time simulator indicated
that sequential hardware communication components of the
infrastructure limit its scalability. A hybrid discrete time
and discrete event modelling approach is proposed that will
increase the scalability of the simulator by making more effi-
cient use of the communication infrastructure while reusing
the existing discrete time GBAD sub-system and system
level models.

The proposed modelling aspects that will implement the hy-
brid modelling approach is Aggregating DTSS Models into
DEVS Models and Using Dead-Reckoning. However, the
open issues to investigate further are:

• The effect of this modelling approach on the simulation
fidelity eg. the performance of the tracking filters once
dead-reckoning is included, and

• how to compare the scalability of the discrete event
simulator to that of the discrete time simulator.

Main advantage of this work is of course greater scalability
of the real-time simulation capability, but additional advant-
ages of the DEVS based simulator is:

• Improved scalability is the result of making more effi-
cient use of the distribution infrastructure which im-
plies that the simulator may now be distributed over
longer distance lower bandwidth connections, and

• easier migration to The High Level Architecture (HLA),
an IEEE standard for large scale distributed simu-
lation interoperability, which is based on DEVS and
popular within the military simulation domain.

5. REFERENCES
[1] Bernardt Duvenhage and Derrick G. Kourie. Migrating

to a real-time distributed parallel simulator
architecture. In Proceedings of the 2007 Summer
Computer Simulation Conference, 2007.

[2] Johannes Lodewikus Pretorius. Feasibility
considerations for a tailored simulation based
acquisition (SBA) approach. Master’s thesis, University
of Pretoria, 2003.

[3] Jacques Baird and Cobus Nel. The evolution of M&S as
part of smart acquisition using the SANDF GBADS
programme as an example. In Proceedings of the 12th

European Air Defence Symposium, volume 3694, pages
173–182, 2005.

[4] Shahen Naidoo and Cobus Nel. Modelling and
simulation of a ground based air defence system and
associated tactical doctrine as part of acquisition
support. In Proceedings of the 2006 Fall Simulation
Interoperability Workshop, 2006.

[5] Willem H. le Roux. Implementing a low cost
distributed architecture for real-time behavioural
modelling and simulation. In Proceedings of the 2006
European Simulation Interoperability Workshop, 2006.

[6] Bernard P. Zeigler, Tag Gon Kim, and Herbert
Praehofer. Theory of Modelling and Simulation, second
edition. Academic Press, 2000.

[7] K. Chandy and Jayadev Misra. Distrubuted simulation:
A case study in design and verification of distributed
programs. In IEEE Transactions on Software
Engineering, volume SE-5, 2003.

Biography
Bernardt Duvenhage obtained his B.Sc (Honours) degree in
Computer Science from the University of Pretoria in 2005
and is currently pursuing a Masters Degree. While part of
the Mathematical and Computational Modelling Research
Group of the Council for Scientific and Industrial Research
(CSIR) in South Africa, he played a key role in developing
the group’s distributed simulator architecture; the simula-
tion’s terrain and LOS services; and the 3D visualisation and
analysis tool of the synthetic environment. He is currently
employed in the Optronic Sensor Systems Competency Area
of a division within the CSIR. He intends further research
in virtual environment simulation and visualisation.


