A 3D Visual Analysis Tool in Support of the SANDF’s Growing Ground
Based Air Defence Simulation Capability

Bernardt Duvenhage*
South African Council for
Scientific and Industrial Research

Abstract

A 3D visual analysis tool has been developed to add value to
the SANDF’s growing Ground Based Air Defence (GBAD)
System of Systems simulation capability. A time based XML
interface between the simulation and analysis tool, via a
TCP connection or a log file, allows individual simulation ob-
jects to be wholly updated or partially modified. Live pause
and review of the simulation action is supported by employ-
ing data key frames and compressed XML for enhanced per-
formance. An innovative configurable filter tree allows visual
clutter to be reduced as required and an open source scene
graph (OpenSceneGraph) manages the 3D scene represent-
ation and rendering.

A visualisation capability is developed for the effective
presentation of the dynamic air defence system behaviour,
system state transitions and inter-system communication.
The visual analysis tool has successfully been applied in
support of system performance experiments, tactical doc-
trine development and simulation support during training
and live field exercises. The 3D visualisation resulted in im-
proved situational awareness during experiment analysis, in
increased involvement of the SANDF in experiment analysis
and in improved credibility of analysis results presented dur-
ing live or after action visual feedback sessions.

CR Categories: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual Reality; J.7
[Computers in Other Systems]—Command and Control J.7
[Computers in Other Systems|—Military

Keywords: Command and Control Visualisation, Battle-
field Visualisation, Analysis

1 Introduction

This paper describes the development of a 3D visualisation
capability driven by unique requirements and presents the
application of graphics technology within the African de-
fence domain. The introduction provides a brief overview
of Ground Based Air Defence (GBAD) and the system of
systems level simulation capability to be visualised. The
motivations behind doing 3D instead of a 2D visualisation
(for example a plan view) will also be presented.

The SANDF use their need for decision support during the
different phases of a GBAD System (GBADS) acquisition

*e-mail:bduvenhage@Qcsir.co.za
te-mail:jpdelport@csir.co.za.
fe-mail:alouis@csir.co.za

JP Delport!
South African Council for
Scientific and Industrial Research

Anita Louis?
South African Council for
Scientific and Industrial Research

program to grow an indigenous system of systems modelling
and simulation support capability within the acquisition en-
vironment[Pretorius 2003][Baird and Nel 2005]. The broad
requirement of the capability is to simulate a GBAD battery
of existing and still to be acquired (possibly still under de-
velopment) ground based gun, missile and sensor systems,
together with their related human operators, at a system of
systems level. A GBADS deployment, shown in Figure 1,
usually consists of a layered air defence. The outer layer
typically consists of eight very short range missile systems
(VSHORADS), each having a virtual operator and an ac-
companying buddy with a pair of wide angle binoculars. The
second layer has four gun systems (CIWS), each consisting
of two guns, a tracking radar, a designation radar, a fire con-
trol system and at least three operators to operate the guns.
The inner layer of defence usually has two short range mis-
sile systems (SHORADS), each consisting of a ground based
launcher, a designation sensor, a fire control system and a
few virtual operators. The deployment would defend some
vulnerable point (VP) against an airborne threat scenario.
A typical threat scenario consists of one to many incoming
attack aircraft which are the 'targets’ to be engaged by the
air defence system before they reach the Weapon Release
Line (WRL).

The operators follow standard operating procedures based
on the principles of warfare that capture the doctrinal pro-
cedures and instructions on troop and system deployment,
battle handling and roles and responsibilities. The modelling
of this Tactical Doctrine, sometimes referred to as the Air
Defence Control (ADC) Model, must include such aspects as
operator reaction delay and the effects of the tactical com-
munication network.

The modellers are interested in the emergent behaviour
of the interacting air defence systems and human operators
and possibly the current state of each system. The system
specification hierarchy, formalised by Zeigler et al. [2000]
and shown in Table 1, is often used to create a common un-
derstanding, among the parties involved, of the detail of the
modelling of a system required. The required detail level in
this case is at a state transition system specification level. At
this system specification level a system is still seen as a black
box in the sense that only the aggregated perceived system
state is known. It therefore makes no sense to attempt to
visualise such a system at the higher structure system spe-
cification level as the structural information is simply not
available or adds no value. The visualisation may however
be augmented with realness aspects such as high detail tex-
tured or animated 3D objects for demonstration value.

A number of techniques to visualise simulation results in a
2D fashion already exist, but from experience in using some
of these it was often found that not enough information is
presented to the user in order to form a clear idea of what
is happening in the simulation. Uncertainty seems to exist
because it is often difficult for a simulation analyst or a client
to construct a unique 3D mental model from multiple 2D

Figure 1: A Typical GBADS Deployment

projections and without this 3D interpretation of the scene
it becomes difficult to visualise the geometry of situations
such as:

e a radar designation and lock-on process or why radar
lock-on is lost,

e whether a target is within a sensor’s detection volume
(envelope) or a weapon’s launch envelope and

e locations of objects within an operator, sensor or
weapon field of view.

3D visualisation is particularly helpful for simulation ana-
lysts and clients that are new to the game, so to speak, and
not yet experienced in combining multiple 2D pictures and
other information into a higher dimensional mental picture.

The remainder of the paper is structured as follows.
The next section discusses the visualisation requirements
within the applicable visualisation domains: system per-
formance analysis, tactical doctrine development and then
finally training and live field exercises. The following sec-
tions then present the different aspects of the analysis tool’s
design and the resulting GBADS visualisation software to
satisfy the requirements. The paper concludes with remarks
on the added value of the visualisation capability and pos-
sible future work.

2 \Visualisation Requirements

The earlier phases of the acquisition life cycle and simu-
lation support capability established certain modelling and
simulation requirements. During the concept and definition
phases of the acquisition life cycle [Naidoo and Nel 2006] the
GBAD simulation was applied for as fast as possible system
performance analysis. Entering the development phase of
the acquisition life cycle however, the development of tac-
tical doctrine became a priority which required human op-
erators to replace selected virtual ones. Human operators
are included in the simulation through mock-up equipment
consoles which require real-time simulation execution for
realistic human-to-simulation interaction. The visual ana-
lysis tool therefore has to support both as fast as possible
and real-time simulation visualisation. It is also required to
visualise both live and recorded data for on-line and off-line
simulation analysis respectively. The general aspects to be
visualised are:

Table 1: System Specification Hierarchy

Level Specification What is known at this level

Name

4 Coupled com- | Components and how they are
ponent coupled together. The compon-
ents can be specified at lower
levels or can even be structure
systems themselves - leading to
hierarchical structure.

3 State transition How states are affected by inputs;
given a state and an input what
is the state after the input stim-
ulus is over; what output event is
generated by a state.

Knowledge of initial state; given
an initial state, every input stim-
ulus produces a unique output.

2 1/0O function

1 1/0 behaviour Time-indexed data collected from
a source system; consists of in-

put/output pairs.

0 Observation How to stimulate the system with
frame inputs; what variables to measure
and how to observe them over a

time base.

e the system and target physical positions and/or motion,
their orientations and other states,

e virtual spatial envelopes of the weapon and sensor sys-
tems,

e tactical messages and operator states,

e spatial and temporal relationships between the above
and

e the virtual environment.

As special cases of system performance analysis and tactical
doctrine development respectively, the simulation and visu-
alisation capability is also applied to training exercise and
live field exercise integration and support. The following
subsections introduce the three visualisation domains and
the visualisation requirements unique to each.

2.1 System Performance Analysis

The majority of experiments analyse the air defence time-
line with outcome measures such as number of threats suc-
cessfully engaged or percentage weapon misses. The object-
ive of the analysis being to come up with proposals on how to
optimise the system deployment within existing/simplified
tactical doctrine. The focus is therefore on visualising the
application of tactical doctrine within a specific instance or
multiple instances of an air defence system deployment and
threat, and finally visualising the resulting outcomes.

2.2 Tactical Doctrine Development

Tactical doctrine development requires the visualisation of
Air Defence Control events/messages and the states of the
air defence systems in order to capture the essence of the
doctrine as applied in the simulation. Tactical doctrine de-
velopment also requires realistic human-simulation interac-
tion which happens through mock-up Operator In the Loop
(OIL) interfaces that are being developed as part of the
simulation capability. The objective of this being the op-
timisation of tactical doctrine within a specific instance or

multiple instances of an air defence system deployment and
threat. Aspects to be visualised is much the same as in sys-
tem performance analysis, but usually focus on the threats
and equipment immediately related to the operator in front
of the OIL console.

2.3 Training and Live Field Exercise Support

As mentioned, training and live field exercises are special
cases of system performance analysis and tactical doctrine
development. Simulation and visualisation have been used
to aid in training exercises such as deployment planning.
During such a deployment planning exercise, students are
presented with a potential threat to defend an asset against
and each student must then plan their air defence deploy-
ment accordingly. Simulation is then used to evaluate the
effectiveness of each student’s deployment. The effective-
ness and reasons for failure may then be visualised /analysed
using the 3D analysis tool during student feedback sessions.

During live field exercises, real equipment is often replaced
with virtual versions to save cost (augmented /mixed reality).
The virtual versions still have a role to play in the exercise
though, and their virtual presence must be visualised in a
suitable fashion. The threat may even be virtual, making
3D visualisation of particular importance for partaking op-
erators.

3 Analysis Tool Design

The analysis tool has followed a design process of evolution-
ary increments which was driven by the simulation interface
requirements and the characteristics of the data to be visu-
alised. The design of the simulation interface, how the simu-
lation data is managed and the aspects surrounding the 3D
scene management, navigation and interaction are discussed.

3.1 Simulation Interface

The simulation interface (also referred to as a protocol) to
the Analysis Tool is XML based. Two versions of the pro-
tocol exist and both require initialisation information and
static object data to be transferred followed by time stamped
simulation updates. Each update contains uniquely identi-
fiable state descriptions of all simulation objects modified
within that simulation update frame. Only at this level can
the two versions of the protocol be differentiated.

Version 1.0 provides the complete state of each simulation
object while version 2.0 needs only to convey a partial object
state consisting of the object’s unique ID and its modified
attributes. The generation of the version 2.0 protocol is
however more complex as it attempts to view XML elements
as sets of sets and require the definition of XML unions and
differences. A partial update in protocol version 2.0 is a
three step process:

e First a union is built up from all the simulation frames
up to just before the current frame which is update,

e then the partial update is computed by the XML set
difference update; — union, and

e the updated union, up to time ¢, may now be computed
by, union+ = update.

Version 2.0 requires a significantly reduced interface band-
width (measured to be in the order of approximately 10
times smaller) and produces less XML text to parse and in-
ternalise by the viewer compared to the less efficient version
1.0.

3.2 Managing the Simulation Data

The simulation data received over the simulation interface
needs to be managed in a time and space efficient manner
for both quick data retrieval and judicious use of storage re-
sources. The components for managing the simulation data
are the GUI, live pause and review functionality, key frames
within the protocol and the filter tree.

3.2.1 The Application GUIs

The GUI has three separate floating parts, namely the Main
window, the filter tree GUI and the window containing the
3D view.

The main GUI provides access to file and TCP connection
management. It additionally has a Review and a Play/Pause
button along with a time slider that may be used to select a
simulation time to jump to or review from (additional info on
the review functionality is provided in the next subsection).

The Filter Tree GUI and the 3D View Window is dis-
cussed in subsection 3.2.4 and subsection 3.4 respectively.

3.2.2 Live Pause and Review of Simulation Data

The time indexed simulation data is cached to system
memory as it is read from TCP or when the log file is ini-
tially opened. This is done in support of an online review
capability, referred to as Live Pause. It allows the user to
jump to any simulation time and to optionally then start
playing from that location. This may happen independently
of the live data coming in on the TCP connection.

3.2.3 Adding Key Frames to the Protocol

As mentioned, the simulation protocol conveys updates to
the 3D analysis tool at an object level and additionally at
an object attribute level when Version 2.0 of the protocol is
used. Due to the possibility of partial updates the simulation
state updates must all be internalised by the analysis tool
and applied to keep the current simulation state up to date.
If the user jumps forward in time, assuming that there is
data up to that time in the cache, then the new simulation
state is built by quickly processing all updates between the
current time and the new time.

If, however, the user wants to rewind the process, un-
applying updates from the current time to the earlier time is
not straight forward and the alternative is to rebuild the sim-
ulation state from time 0. This is unfortunately extremely
inefficient when the simulation has been running for some
time. To alleviate this inefficiency the union element used
to generate protocol version 2.0 is added as a Key Frame
approximately every 100th simulation frame. Whenever the
simulation state has to be rebuilt, the analysis tool need only
rebuild the state from a key frame earlier than the required
time. The addition of key frames has a measured band-
width overhead of approximately 10% above that of version
2.0 without keyframes, but it improves the performance to
allow interactive random access even in very large log files.

3.2.4 The Filter Tree

The visual representation of a system of systems simulation
with many objects, events and visual aids can become very
cluttered and important aspects of a particular experiment
or exercise might not be visible as shown in Figure 2.

The use of filters enables the user to highlight certain
objects and events. A user can also quickly switch between
various filters according to the visualisation need. Because
the filters are applied within the viewer, they do not affect
the recording of the simulation data and allow a user to view
a recorded simulation multiple times and analyse different
aspects by configuring and using different filters.

Figure 2: Cluttered View of GBADS Deployment

A dynamic tree structure was chosen for management of
the filters as it enables hierarchical grouping of objects by
their attributes. The tree structure is also advantageous as
opposed to for example a linear structure, as it organises the
elements in a flexible manner and allows the user to easily
navigate the tree and locate particular elements and groups
of interest.

Figure 3 shows the list of available attributes in the list
to the left and the attributes chosen for categorisation in
the hierarchy list to the right. Attributes are moved across
from right to left and vice versa using the ({ and)) buttons
respectively. The order of the attributes in the hierarchy list
can be changed using the first, up, down and last buttons
on the right. The resulting tree created from the attributes
fulD and type shows each of the fire units at the topmost
level, with IDs: GFU1, GFU2, GFU3 and GFU4. GFU1 has
been expanded to show the elements that belong to GFU1
as categorised by their types. Visibility of each object, at
any level in the tree, can be switched on or off by changing
the status of the tick-box associated with it or its parents.
Standard functionality to Create new, Open, Save and re-
name filters is provided.

3.3 3D Scene Representation Library

The purpose of the 3D scene representation library is to
create a 3D view into the state of the simulation world. The
3D scene is updated as simulation data, possibly filtered, are
received.

The 3D visualisation was decoupled from the rest of the
GUI logic and placed into a separate library by defining a
clear interface between the two parts. The split allows the
Analysis Tool to focus on the domain specific simulation
state, while the 3D library only concerns itself with 3D rep-
resentation and drawing of generic objects. The Analysis
Tool communicates with the 3D library using standard C
library calls.

The library allows for limited user interaction with the
3D scene. The user can move around the 3D world using a
variety of camera manipulators, toggle the visibility of larger
groups of objects (for example all text objects), set some
view parameters (for example the camera field of view and

Time 00:01:19.90 (79.90sec)

Figure 3: Cluttered View of GBADS Deployment

the target frame rate) and perform simple distance and angle
measurements.

The following sections discuss some of the more interesting
design aspects of the the 3D library.

3.3.1 External Dependencies

As a first step, a choice had to be made between the two most
popular 3D graphics APIs, namely DirectX and OpenGL.
This choice also influenced further decisions regarding other
supporting libraries. A clear need for cross-platform® avail-
ability of the 3D library resulted in the decision to use the
OpenGL API.

A GUI toolkit library was needed for the user interface of
the library. The wxWidgets library was found to be suitable
as it supported the cross-platform creation of a variety of Ul
elements as well as an OpenGL rendering context.

Finally, the use of a higher level library that could assist
with interfacing to OpenGL was investigated. The following
requirements strongly influenced the decision:

e Support for OpenGL, especially newly added API ex-
tensions.

e Cross-platform availability.
e Loading of 3D models in a variety of formats.
e KEasy creation of text and labels.

e Built-in support for reading and rendering large sec-
tions of terrain.

e Rendering speed, for example support for culling.
e Source code availability.

e Large user base.

The OpenSceneGraph library [www.openscenegraph.com]
was found to satisfy the stated requirements and was sub-
sequently chosen. The library was also found to provide

IMainly Windows and Linux operating systems.

Group:
node root

Switch:
toggle node
visibility

Switch:
toggle icon
visibility from
GUI

Switch:
toggle text
visibility from
GUI

Switch:
toggle model
visibility from
client

Switch:
toggle icon
visibility from
client

Switch:
toggle text
visibility from
client

Group:
attach state
to model
geometry

Group:
attach state
to icon

Auto-
transform:
align icon
to screen

Transform:
position text

Transform:
position and
rotate model

Scale:
resize model
geometry

Scale:
resize icon

Model
geometry

Figure 4: Scene Graph Layout of a Single Object.

functions not envisioned at the start of the project, with
support for icons, overlays on terrain and coordinate trans-
formations the most notable.

3.3.2 Coordinate System Considerations

GBADS simulations are performed in a spherical earth en-
vironment. Object positions in the simulation are described
by latitude, longitude and altitude parameters, whereas ori-
entations are described using heading, pitch and roll values.
In order to accurately render the positions and orientations
of objects, these spherical coordinates had to be converted
to a local Cartesian coordinate system that could be used
by the OpenGL API.

A local coordinate system convention was defined as fol-
lows: For a specific reference position on the earth, let the
X-axis point in a northerly direction, the Y-Axis east and
the Z-axis into the earth?. For objects, let the X-axis point
forward of the object, the Y-axis to the right and the Z-axis
down. Using the convention, an object positioned and ori-

2This is sometimes referred to as a north-east-down or NED
coordinate system.

Figure 6: Virtual Environment with 1:50000 Contour Ter-
rain Map

ented using all zero values would end up at the reference
position on the earth looking in a northerly direction.

The origin of the local coordinate system is communicated
to the 3D library at the creation of a 3D scenario. The user
of the library can therefore pick an appropriate reference
point that would be used by the 3D library. The choice of
reference point has an impact on the accuracy in terms of ob-
ject placement that can be achieved by the 3D library. Most
OpenGL implementations, for instance, used 32-bit floating
point values to represent world coordinates. Accuracy can
therefore be improved if the reference position is picked as
close as possible to the objects in the scenario.

Conversions from the spherical earth coordinates to the
local coordinates are performed by partly using built-in
OpenSceneGraph functions (for position) and also using ad-
ditional custom rotations for object orientation. The 3D
library also support picking of objects in the scene and in
this case the local picked coordinates are converted back to
spherical earth coordinates for display to the user.

3.3.3 Concurrency

As mentioned in the overview of Section 3.3 a decision was
made to split the Visualisation and the 3D scene represent-
ation library. A consequence of the split is that the protocol
and visualisation logic, and 3D library executes in separate
threads. The 3D library contains its own message loop to al-
low the user to interact with the scene even when no updates
are received from the visualisation side.

We therefore have a situation where one thread is respons-
ible for updating data representing the scene and another
thread uses a snapshot of this data to create a 3D repres-

-

S

Figure 7: View of Some Simulation Objects Including Radar
Tracks

Time 00:01:28.40 (88 40sec)

Figure 8: View of Some Simulation Objects Including Radar
Domes and Munition Trails

entation. Some sort of synchronisation mechanism had to
be found to ensure that the 3D scene presents a consistent
view of the simulation state®.

Two options were considered for dealing with the syn-
chronisation problem, namely double buffering and mutual
exclusion (locking).

The idea with double buffering is much the same as that
of double buffer rendering to a front and back frame buffers.
The 3D library caches all data sent to it and on a single com-
mand selects all the cached data to be the new snapshot used
for the 3D scene representation. A problem, that increases
complexity, with the double buffering approach is that code
has to be added to the 3D library for every view related lib-
rary call* or 3D object in order to allow for buffering and
swapping. Memory consumption is another drawback as the
buffering causes complex objects to be stored using double
the amount of memory.

3Inconsistency and confusion can arise for example when a 3D
scene is constructed using one set of objects at a specific simula-
tion time instance and another set of objects at another simulation
time instance.

41t can be a call to change geometry of even a call to change
state, for example switch from filled to wire frame mode.

Figure 9: Visualisation of Virtual Cones and Domes on the
Battlefield

Figure 10: Visualisation of Virtual Intercept- and Launch
Envelopes

The second approach, the one being used for new devel-
opment, is that of mutual exclusion or locking. The 3D
library acquires a lock as soon as it starts to update the 3D
representation and the visualisation logic is not allowed to
send updates during this time. The same lock needs to be
acquired by the visualisation logic when it starts sending up-
dates® and then the 3D library is not allowed to redraw the
3D representation. The locking approach presents a simple
mental model and is easier to program than the buffering
approach, but it places more responsibility on the visual-
isation logic. The visualisation logic has to minimise time
spent between acquiring and releasing the lock as the 3D
representation is not interactive during this time.

3.3.4 3D Object Hierarchy

A single simulation object can be represented by the 3D lib-
rary using either a 3D model, an icon, text, or combinations
of these. The selection of what to view is made by the visu-
alisation logic, but effectively the filter which the user may
interact with.

Properties (state) of the 3D model can be changed (for
example colour or wire frame mode) and the 3D model can
be positioned, rotated and scaled. The icon representing the
object can be scaled®, but it is rotated so that it is aligned

5The lock is typically acquired before sending all updates for
a specific simulation time instance and released after all updates
are completed.

6The scale represents pixel dimensions and after the scale is set
it is kept constant in terms of pixels no matter what the distance

Figure 11: Visualisation of ADC Events and Messages

Time 00:02:23.30 (143.30sec)

Figure 12: Visualisation of ADC Events and Messages Dur-
ing VSHORADS Launch

towards to view position. The text attached to the object
can be positioned relative to the object and is, like the icon,
aligned to the screen and the character size is kept constant
in terms of screen coordinates.

OpenSceneGraph allows for the creation of a hierarchical
scene graph to represent these objects in code. Figure 4
shows the hierarchy of the 3D objects inside the 3D library.
The scene graph nodes allow for easily setting of the 3D
object properties mentioned earlier.

3.4 Scene Navigation and Interaction

The window that contains the 3D view is also the window
that is used for navigating the scene as mentioned. The user
accesses the list of available camera modes via the 'View’
drop-down menu. Whenever the window is active the user
may use mouse commands to manipulate the active camera.
A slider modifies the field of view of the camera.

The first camera to be discussed is the Orbit (Trackball)
camera. When this camera mode is chosen the user is promp-
ted to select an object that will be the centre of focus. The
camera is then positioned a distance away from the object
such that the object fills the view at the current field of view.

between the view position and the object.

Figure 13: Visualisation During a Presentation Session

Mouse actions allow the user to then zoom, pan and tilt. A
slight variation on this mode is the Orbit (Pitch, Yaw) mode
that constrain the camera motion to the object’s local co-
ordinate axis.

Another useful camera mode is the Attach to camera
mode. In this mode the camera’s view is aligned with the
object in focus’ orientation. This allows the user to in effect
see what a sensor is seeing.

The user may also pick a point in the 3D scene by holding
down shift while pointing the mouse at something in the
scene or a point on the terrain. While holding down shift
the distance and angles between the picked coordinate and
the coordinate that is the camera’s focus is measured and
displayed on screen. Additionally if the camera mode is in
Normal Trackball mode, then clicking while holding down
shift changes the focus to the picked coordinate allowing
general angle and distance measurements.

4 Results from Visualising GBADS

It has been shown what the visualisation requirements are
and how the analysis tool has been equipped for managing
the simulation data. What remains is to do the actual visu-
alisation. The visualisations were implemented in an incre-
mental fashion and evolved around useful representations
while changing or removing aspects of the visualisation that
were not useful. The rest of this section discusses the visu-
alisations along with screen shots where applicable.

The virtual environments, shown in Figure 5 and Fig-
ure 6, are realised by a 3D terrain and a sky dome. The user
is able to choose the terrain based on the location of the
deployment and the type of map required. It is important
to note that the actual simulation only uses the height pro-
file of the terrain and the visual aspects of the terrain and
sky-dome are to primarily aid in the analysis, for example
by addition of the geographical detail by contour or satellite
maps. Secondly, the terrain and sky aid in the photo-realism
of the visualisation if required for demonstration purposes.

The simulation objects are realised by loading in pre-built

Figure 14: Using the 3D Analysis Tool During Exercise Feed-
back

3D models and transforming their sizes, positions and ori-
entations to match what is current in the simulation. Some
special shapes such as radar tracks, small tetrahedral shapes
in Figure 7, flight paths and trails may be added to the
visualisation of objects (also shown in Figure 7). An ob-
ject has a trail flag that, when enabled, causes a line or
ribbon, depending on the object’s type, to be drawn behind
the object. A flightpath, on the other hand, is a static list
of timestamped positions that is usually added to the scene
at simulation start-up and is erased as the simulation time
progresses. The trails and flight paths were added to aid the
user in locating objects and at a glance see their past and
future position, as well as orientation, which is particularly
useful during analysis.

Object types such as sensors and weapons have Detection
Envelope Size, Intercept Envelope Size, and Field Of View
(FOV) attributes that in reality represent virtual domes and
cones, but may in simulation be visualised to aid analysis as
shown in Figure 9. These are useful for visualising when a
target is within a sensor’s detection range or within range
of a weapon system. There is a time delay between when a
launch command is given to a weapon system and when the
weapon intercepts the target due to weapon flight time and
system delays in processing the launch command. This delay
is critical to the simulation time line and spatially warps the
intercept envelope towards an approaching target into the
egg shaped envelope shown in Figure 10. This envelope is
referred to as the launch envelope. If a launch command
is given for a target while outside the launch envelope, the
intercept will be unsuccessful. Visualisation of the launch
envelope along with location of the target at the time of the
command is used to analyse the quality of the launch com-
mand. Notice that in the centre of the spherical intercept
envelope the missile has already been fired some seconds ago,
because the target is within the launch envelope although it
is still just outside the intercept envelope.

Figure 11 and Figure 12 show how ADC events and mes-
sages are currently visualised. Some events involve the tar-
get and the deployment as a whole, indicated by the pink
bubbles, and some events involve the target and a spe-
cific weapon system, indicated by the pink bubbles with
the dashed lines to the weapon system. The line visual-
ised between operator and target, seen in Figure 12, is the
VSHORADS dart trail. The spatial and temporal associ-
ation of the event to the target is indicated, as shown in the

figure, by drawing a static event on the target’s trail at the
time of the event. Doing it in this way compresses the four
association dimensions to a drawable three dimensions.
Figure 13 and Figure 14 show the 3D analysis tool being
used during presentation and exercise feedback sessions.

5 Conclusion

Previously a simulation analyst would start with an event
time line or 2D spatial view and then look at incrementally
more data dimensions until he or she is able to form a clear
mental picture of each event of interest. It does however take
time and practice to form an unambiguous mental image
from different layers of visual and textual information.
According to the GBADS system simulation analysts, the
3D visualisation resulted in improved situational awareness
during experiment analysis, in increased involvement of the
SANDF in experiment analysis and in improved credibility
of analysis results presented during live or after action visual
feedback sessions. The analysis tool has also successfully
been used in multiple field exercise integrations and training
exercises with positive feedback from the parties involved.

6 Future Work

The reported value of the analysis tool is based on the feed-
back of simulation analysts and the GBADS subject matter
experts. Future efforts should be aimed at quantifying the
advantage of using the third dimension and visual analysis.
This will aid in directing future developments and motivat-
ing for funding for the work.

The analysis tool is also finding application within in-
dustry (in different departments of Denel Aero Space and
within the Optronic Sensor Systems and also the Radar and
Electronic Warfare Competency areas of the CSIR) for a
large range of conceptual system visualisations. This growth
of interest now necessitates the establishment of structures
such as an architecture review board and an official user

group.
Acknowledgements

This work was supported by the Council for Scientific and
Industrial Research, Defence Peace Safety and Security
(CSIR DPSS) and the South African Armaments Corpor-
ation (ARMSCOR).

References

BAIRD, J., AND NEL, C. 2005. The evolution of M&S
as part of smart acquisition using the SANDF GBADS
programme as an example. In Proceedings of the 12th
European Air Defence Symposium, vol. 3694, 173-182.

NAIDOO, S., AND NEL, C. 2006. Modelling and simulation of
a ground based air defence system and associated tactical
doctrine as part of acquisition support. In Proceedings of
the 2006 Fall Simulation Interoperability Workshop.

PrETORIUS, J. L. 2003. Feasibility Considerations for A
Tailored Simulation Based Acquisition (SBA) Approach.
Master’s thesis, University of Pretoria.

ZEIGLER, B. P. 2000. Theory of Modelling and Simulation.
Academic Press.

