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STREAM TRANSPORT OF PARTICLES IN FULL SUSPENSION. THE ENERGY
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SUMMARY
The friction factor (or the Chezy coefficient) of a stream carrying a

fully suspended load of particles is analysed.

Friction factors (or Chezy coefficients} of the suspension coincide with
those of the pure liquid, if referred to the actual fluid velocity, but
are less than those relative to the cumulative velocity, i.e. less than
the friction factors pertinent to a volumetrically equivalent stream

of pure liquid.

In the case of small particles the stated difference between the two

values of the friction factor becomes negligible.
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SCOPE OF THE INVESTIGATION

Streams carrying suspended particles are commcn phencmena of our physi-

cal world.

In the very small range of particle sizes and settling velocities, the
stream can suspend particles almost ideally, i.e. the different phases

in flow behave as an almost homogeneous fluid.

To this group of suspensions belong emulsions, fogs, smoke, turbid water,

etc.

For greater particle sizes the settling velocity increases, although

still remaining inside the laminar regime.

Particles of this kind are easily transported by streams, but settle if

not continucusly supported by the fluid turbulence.

To this group of suspensions belong slurries, sand storms, natural

streams when carrying sand, etc.

A further increase in particle diameter produces settling velocities

lying inside the region of the turbulent regine.

This kind of particles become fully suspended only at high transport

velocities.

High velocity streams with suspended particles often find industrial

application in solid transport either by air or by water.
It is the purpose of this report to investigate the aspect of energy-
dissipation of these solid liquid systems, having particles fully sus-

pended.

Anticipating a rather surprising result, such systems dissipate the

same energy as the fluid above would do, if streaming without particles.
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3.

In other words the conveyance of particles is done at no extra energy

cost.

However, this fres transport condition is only apparently favourable,
because suspending velocities may be so high as to make the energy
dissipated excessive, i.e. unbearable from an economical point of

view.

It is the purpose of this report to discuss certain aspects of the
mechanics of these streams and to produce results which agree with the
experimental evidence, as provided by the technical literature on the

subject.
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INTRODUCTION

In this paper some hydraulic phenomena are discussed which ars
relevant toc the hydraulic transport of particles in a fully sus-

pended state.

If a liguid, e.g. water, flows in a horizontal pipe with a suffi-
cisntly high velocity, the s01id particles are conveyed as fully

suspended.

A case of particular interest is that of particles of a density
close to that of the liquid.

In such systems the effects of the force due to gravity are practi-
cally removed and the hydraulic phenamena of interest become more

accessible to investigation.

Experiments using such almost neutral particles have been described
by C Elata and T Ippen (ref. 1) for open channel flow by J W Daily
and T K Chou (ref. 2), by C P Roberts and J F Kennedy (ref. 3) and
by G K Batchelor, A M Binnie and O M Phillips (ref. 4) for pipes

respectively.

In the present work some of their results are reported and used to

explain the hydraulic phenomena of interest.

Using capital letters to express average quantities relative to the

stream, let us denote with:

Q, the total flow rate {(scolid plus liquid)
V, the mean velocity of the mixture
Q , the flow rate of the liquid phase (water)

£

V , the mean velocity of the liquid phase (water)

W
Qp. the flow rate of the solid phase (particles)
Vp. the mean velocity of the solid phase (particles)

5/..'-..‘



5.
Moreover introducing a friction factor

' is relative to the mean velocity of the mixture V (solid plus
liquid),

fw is relative to the mean velocity of the liquid phase Vw (water),

expressing with g the acceleration due to gravity, with d and D the
particle and pipe diameters., one can write the Darcy Weissbach equa-

tion and express the hydraulic gradient i in two equivalent forms:

2

i=+ %Eﬁ~relative to the flow of the mixture (1)
Vv 2
=, -2-2-5 relative to the flow of the liquid phase. (2)

Consequently for the same hydraulic gradient i measured, two diffe-
rent friction factors can be defined in function of the selected

stream velocities V and Vw respectively as per equs (1) and (2).

In Figures 1, 2, 3 and 4 are represented the experimental results

obtained by the above-mentioned authors in a plot Fw' REw. where

VWD .
REw T — (3)

Y
is the Reynolds number of the pipe, referred to the mean velocity
of the ligquid phase (water) and v is the kinematic viscosity of

the pure liquid (water), at the temperature of the experiment.
In Figures 1 and 2 the reduction of the experimental results to
REw has been carried ocut by the author, while Figures 3 and 4 are

reproductions of the original graphs of Robert and Kennedy.

In Figure 1 the friction factor of the channel is given as a Chezy
1
coefficient (Cw/g’J. i.e. referred to the velocity of the liquid.

The main parameters of interest of the various experiments reported

have been grouped in Table 1.

B/.C.llll'
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From Figurss 1, 2, 3 and 4 it appears that the experimental points
fall according to the representation adopted along the clear liquid
line (water), i.e. the friction factor fw (or Cw/g%J relative to a
clear liquid velocity Vw’ is the same as the experimental friction

factor represented by the points.

This statement is valid for the results of Figure 1 only in a first

degree aepproximation.

Let us alsc emphasize that the stated coincidence is not affected
{in the regions of the graph where it exists) either by changes in
volumetric concentration x or by variation in the particle/pipe
diameter ratio gu i.e. experimental points fall along the clear

D
liquid locus irrespective of variations of these two quantities.

7/-..'lll
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7.

THE EQUATION OF CONTINUITY FOR THE FLOW OF A SOLID SUSPENSION

With the notation already established one can express the flow rate

as the sum of the two partiael flow rates i.e.

g = QW + Qp (1)

Introducing the discharge concentration x, defined as the volume

of particles present in a certain volume of mixture collected, let

us write:
Dp = xB (2}
Qw = (1-x)8 (3)

Further, if we express the total pipe area as A and the areas occu-

pied by the liquid and by the particles with Aw and Ap respectively,

we get:
o
A v (4)
8]
e
AW-V (5]
w
Q
3]
A = — (6)
\Y
P P
with
A=A, Ap (7)
hence one gets:
e Q
.,
p w

The elimination of Qp and Qw from (2), (3) in (8) yields:

B/llll'll
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vw
Vw =\ [v; X+ 1 -~x) =V (1-ox) (8)

where one has put:

- .2
y =g | (10)
W
and
s Lty VU o (1)
y y

y is related to the "linear concentration” Xy inside the pipe, by

the following

X sy (12)
y
where for y = 1, i.e. for V. =V : Xg = X

w P

For a prefixed value of Xg s the distribution of the solid phase may
vary, for instance particles may proceed uniformly distributed or in
a more or less centered pattern and still satisfy the condition of

continuity.

Considering now a mixture, which for a prefixed volumetric concen-
tration x collected at the discharge and a total flow rate Q, is
such that

V = %-= constant (13)

one gets from equ (9)

V
\—,‘-":-=1-ax=K (14)
r

being Kr a parameter.

g/l.ll!ll



Equs (12) and (13) state that for certain prefixed flow rates @,
1 collected at

the discharge) many velocity profiles are possible, all satisfying

QW» Up, (i.e. for a prefixed solid concentration x

the equation of continuity and correspending to the values:

1 C K n’ this for x = x

1 "M 1

The same argument can be repeated for other values of solid concen-

tration Xps Xgs wee xn. so that the following ordered sets of ve-

locity ratios vy can be formed:

for x

it
X

1 y1(x1], y2(x1) - yn{x1l
= 1
for x X5 y1[x2), y2(x21 S yn[le (15}

for x = X y1{an, yz(xn) B yn[xn]

Considering now the hydraulic gradient of the stream in its ex-
pressions (1.1) and (1.2) one can write, on account of (13):
‘Fl

fw T - ox)? (16)

where now the quantities f' and o are unknown.

Moreover with reference tc the set of values (15) one can choose
from the first row set, i.e. for x = x1 a velocity configuration
ym1(x1) such that the energy dissipated by the stream is a minimum

relative to all the other y values.
Analogously from the second row one may select a velocity configu-

ration ymz(xz] producing minimum energy dissipation for the concen-

tration x2 and so on down to the n row.

1B/llllll
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By making the generic interval x T Xy of the concentration small

i+1
enough, one can define in principle from the sequency of values

Yam® y2m "',¥nm a continuous function y = ym(x} which renders ths

ey 20 gxtremum (mindimum).
(1 - ax)2z =N ex

function

The condition of extremum relative to equ (16) is equivalent to the

following:

£ .
1= ax)? - “Fw =0 (17)

Anticipating a later result an explicit relationship can be obtained

between o and x and between o and %-satisfying equ (17).

11/.II’|HI
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THE DISSIPATIVE FUNCTION ESTABLISHED AS AN ENERGY EQUATION

In the develobment that follows, streaming particles are treated as

if they were centres of energy dissipation.

The work done in conveying the suspension is the sum of the work
required to convey the pure liquid and the work required to convey

the particles.
The sum of the various powers (rate of work) can be expressed thus
W' =W + W (1)

where wp is the power dissipated by the liquid in the immediate
surrounding of the particle, because of the particles®' presence
and ww is the power dissipeated by the liquid due to its flow as

if the particles were absent.

W' is the power sum of the two powers just defined, i.e. the power

actually required to convey the mixture.
The power required to convey the liquid phase only is

ww =i ngwL = iwpg(1-xJQL (2)
where iw is the hydraulic gradient, p the density of the liquid
and L the length of the pipe.

Using the Darcy-Weissbach equation (1.2) one can redefine a friction
factor fw relative to the liquid phase and write i as iw’ i.e.

VZ

i = f =

w w 2gD (3)

wp can be expressed as the product of an average drag force multi-

plied by an average particle velocity Vp times the number of par-

ticles present inside a section of pipe of length L.

12/.--¢Il
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If n is the number of particles per unit length of pipe one can
write

Wo=F. v
p = FgVpnt (4)

For a drag force on a particle one can write:

md? 2

d 74" P Vray (33

where C'd is a still undefined particle drag coefficient, d the
particle diameter and Vg1 @ certain relative velocity between the
particle and the surrounding portion of liquid.

Let us assume that the average drag force Fd be also described by

the following expression (with non-accented symbols):

2 )
ki) 2 4 2
— ﬁu P (6)

In equ (B8] ve represents a small relative velocity between a par-
ticle having the behaviour of the average and the surrounding fluid

(i.e. with € acting as slip coefficient).

Since the solid flow rate is

_ md®
QD = " Vp (7)
one gets:
= 88
Vp n “_da (8)

By elimination of an from (4) and (8), the following is arrived
at:

- 2, 2
wp Z Cd Lpxe Vw Q (8)

13/."..'
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The work done in conveying the mixture can be expressed in terms

of the actually measurable hydraulic gradient i, as follows:

W=1ipghlLl (10)

where 1 is given by equ (1.1)

Substitution of (2], (3), (8) and (10) into (1) yields:

F* = (f (M-x) +be2x)(1-x+2% (1)
w y
where
.30
b=3a% (12)

With the position:

!’—5—1 - : (13)

the following is obtained:

T?—é-a;jn = fw (1-x) + b g2 x as (14)

object of discussion in the next chapter.

14/..“.'
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4. THE PARTICLE COEFFICIENT OF DRAG

The following physical situations are discussed:

a) Single particle transported in a stream;
b) particle in an assembly of particles naturally settling with a

settling velocity v'ce.

Let the hydraulic gradient of the stream be i, the density of the
liguid p, that of the solid Py

Equilibrium of the forces in the vertical direction in cases a)

and b) leads to the following expressions:

2
3 v 2
oy - PV BE 1 -, p 2L I (1a) (%)
v 2,
- ..__g‘llrd3 = ' ...E.E. lfg_
(ps pl = Cdse P 3 7 (2b)
Division of (1) by (2) yields
C v 2
i= C,d ( erl ) (3)
dse se
Consider now the ratio
Cl
Cdse-= o (4)
dse

between drag coefficients relative to a particle settling in a

crowded condition (accented) and as a solitary particle (non-accented).

For a solitary particle one can rewrite the condition of equilibrium
in the vertical direction:

15/.ll".
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XThe first member of equ (1a) expresses the gravitational component
along the slope of value i.



3 v 2

From (5) the (non-accented) drag coefficient cen be defined as
follows:

Gr

Cdse N

W

where the Reynolds and Grashof numbers of the particle are:

v ed

Re = 3 (71
p. - P

Gr = sp g% (8)

With reference to Figure 5 the locus ¢ = 1 plots Gr against Re for
a solitary particle in naturally settling conditions (cf. Ref. 5).

The actual construction of the locus & = 1 is obtained by calcula-
tion, from the experimentally determined well known function Cd =

f(Re), which for Re < 1 becomes Stokes law:

_ 24

Ca = e

The locus ¢ = 1, written as ratio between two different Reynolds

numbers, e.g. at points P1 and P2 acquires the form

n
Re1 _ ,6r1
Rez = ‘G2’ (a)

where n is an exponent such that

n = % in the fully turbulent region Re > 104
n =1 in the fully laminar region Re < 1
£ <n <1 in the transitional region 1 < Re < 10%

The inverse %-provides the slope of the locus & = 1 at the particu-
lar Re number considered.

16/'....-
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In the specific situation where particle size., density of the medium
of the particle and viscosity are constant, the Grashof number is

also constant.

Horizontal lines in Figure 5 (i.e. lines of constant Gr number) are
thus lines of constant body force and because of dynamic squili-
brium, elsc lines of constant superficial force, while vertical
lines (i.e. lines of a constant Re number) are also lines of con-

stant velocity.

In the case of an assembly of particles, experimental evidence has
shown that equilibrium in the assembly occurs at lower velocities

(or Reynolds numbers) than those applying to an identical solitary
particls.

In a fluidisation column one could rewerd this concept by saying
that the face velocity able to support the assembly is less than
the settling velocity of the solitary particle.

In other words equilibrium conditions in the case of an assembly
will be found in a zone to the left of the curve ¢ = 1.

As indicated earlier, in the case of equilibrium, horizontal 1lines

are lines of constant drag force on the individual particles under

various conditions of crowding, i.e. for various values of the void
fraction.

These considerations lead to the concept that the diagram may be ex~
tended to illustrate the more general case of equilibrium in an
assembly.

Referring to a fluidisation column, in which the mass of particles
is kept in suspension, although the actual fluid velocity v’ is un-
known, the apparent velocity (face velocity) v and the apparent
Reynolds number Re = %ﬁ are known.

17/.....'
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Let an isolate particle be in equilibrium at poilnt P1 with co-

ordinates Re1, Gr1.

If other identical particles are now introduced into the sysiem,
the point of eguilibrium shifts to lower velocities or Reynolds
numbers along the line Gr = Gr1 (as the body force or Gr remains

constant) say to the point P with co-ordinates Re2, Gri.

According to equ (8)

4 Gr1

’ — s
C dse = 3 Ris2 (particle in an assembly)
or as
R'e = Re2
c? =_4. __1"_1

dse 3 Re22

CD

with equ (4) the factor ¢ has been defined as the ratio =-080 at

C
identical face velocities. dse

Thus in this case, comparison must be made with the drag coefficients

at point P,, i.e. the coefficient of drag at P, is:

2 2
c, . =2 82
dseZ 3 Re2
and so
_ 6r
o = oro (9)

One may now plot in Figure 5 the ¢ = constant loci (e.g. for & = 4,
16, 64, etc.)

As the diagram is drawn on a logarithmic scale, all these curves

may be obtained by shifting the basic curve & = 1 vertically over

a distance corresponding to 1lg o.

16/.'.'!.
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Then one obtains for a known value of ¢

= CdseZ (10}

’ = '
c dse c dsel

From equ (8) written for points P1 and P2 respectively, from equs

(a) and (S) one gets

- Grz Rel.? _ .,n-1
CdseZ Cdse'l Gri {RQZJ = Cdeet (11)

Moreover writing equ (8) as under

C 1 substituted into (11) yields

dse
d.g
-4 2n-1
CdSBZ =3 d (12)
vsel

Returning now to equ (3) with the poesition

Vrel =€ Vw

one obtains with (3) and (10):

2

Viep G * =3iv'? ¢cr =i vy'? g' =i4iv'?2 B C (13)

2,2
E Vwc se dse sel1 “dse sef dse2

d

Expressing Cdsez by means of equ (12) and writing for the particle
in condition as at P (cf. Figure 5).

v d .
sel "1 . _
¥ Ret1 = Re2
v d
sefl
) Re1

19/!‘!!..
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With the position d = d1 in Re1 and further because of (a) and (9},

one gets:

i
R'81 _ Gr2 _ (Re2,'n
R2g1 Gr1 Re1

Finally from the expressions written above:

12

vz =2 Rel e pm2n (14)
sei setl R2g1 sel

By substituting (14) into (13) the following is obtained:

Cy=1 %- dg (15)
eszz

Then introducing for i the expression (1.2) one gets from (15) and
(3.13)

fw
b = — (16)
e?
Substitution of (16) into (3.14) yields
TN i (17)
T =a2 = fw (1 - x) + fwx 1

The term fwx expresses in equ (17) energy dissipation due to par-
ticles presence.

This term is equal and opposite to the amount by which the friction
factor has been reduced because of reduced turbulence inside the

stream (on account of the solid phase presencel.
Then let us write equ (17) in the following equivalent form

f' _
-axr ~fu 0 (e

20/!!..‘-
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Equ (18) is in agreement with the experimental results of Figures
1, 2, 3 and 4 so far the experimentally produced points fall along
the clear liquid line.

One should also notice in this respect that the ratio %‘has not
been brought into discussion yet, i.e. the results of these figures
are valid irrespective of the values acquired by %u at least within
the limits of the experiments (in Figure 3 the points plotted for
x = 0,30 are outside these limits, i.e. they do not fall along the

clear water linel.

21/..."'
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5. THE DISSIPATED ENERGY AS A FUNCTION INVARIANT OF THE CONCENTRATION

A discussion of equ (4.18) follows:

1)

2)

When only decrete particles are introduced into the system, i.e.

for x > 0 one is in a situation described by Figure 6 (cf. ref. 4).

The experimental points and the theoretical curves of this fi-

gure prove that a particle proceeds faster than the liquid, thus
the greater the ratio gn
In the case of a very small particle introduced, i.se. for %-* g,

the average particle velocity approaches that of the liquid i.e.

<

y = vg'* 1 or o+ 0
W

For particles of small diameter introduced in finite concentra-
tion (%-* 0, x # 0) experiments prove a uniform distribution of
the particles across the pipe section, i.e.

y * 1 or g =+ 0

Then the condition of invariance can be derived from equ (4.18)

as follows:

.F'

1]
-+

(1)
(-3—» 0 x £ 0)

il
o

ax (2)

Equs (1) states that the friction factor relative to the mixture,
i.e. referred to the mixture velocity V is equal to that of the

pure liquid proceeding with velocity Vw'

Equ (2) expresses the condition of invariance for (4.18): this
implies V = Vw.

22/."..‘
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3) For particles of finite size (g-# 0), introduced in finite con-

centration (x # 0) equ (4.18) can be written as follows:
’ 2
f' = (1 -oax)" f (3)
W

Then ong gets:

1= g (1-m)? (4)
tg-;e 0, x + 0)

h = ax (5)

The friction factor is now reduced by the ratioc (1 - h)2 in re-
spect of fw.

In Figure 7, o has been plotted versus x for values g—= 0,067
and 0,028 respectively, using the experimental results of Roberts
and Kennedy (ref. 3).

The two loci intersect the a axis at two points which are close
to those determined from Figure 5.

Information of this kind was not available in the experimental
material of the remaining authors (ref. 1 and 2) and so Figure
7 contains only two g-= k loci.

Two hyperbolae of the family corresponding to equ (5) have also

been shown,

Figure 7 in a more complste representation, i.e. with many loci
ax = h and g-r k drawn, would praoduce a reticulate consisting
of the intersection of the two families of curves, with each
point of the plane characterized by four values o, x, hs ke

Of these only two are the independent ones, i.e. necessary for
the physical definition of the problem.

23/.."..
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The "minimizing” function ym(x] introduced in Chapter 2, which
fulfils either equ (2.17) or (4.18), can now be defined:

It is merely the experimental locus = k of Figure 6,

oja

The g-= kK loci can be substituted for smaill value of the con-

centration x by their geometrical tangent at the origin.

Taking as an example the locus §f= 0,067 the tangent equation
is

o N X_ . g__
85,0495 ~ 0,23 1 (D 0,067) (6)

Elimination of a and h from (4) and (5) by means of (6) produces
the friction factor f' in function of the variable x only i.e.

£ 2,,°
7 = (1 - (0,0875 x + 0,216 x“))
w

d
["’ = 050671
o (7

(0 < x < 0,10)

which is the wanted expression.

24/......
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24.

CONCLUSIONS

Experimental results of Figures 1, 2, 3 and 4 prove that friction
factors relative to clear liquid and suspension (solid & liquid)
are esqual if referred to the same volume of streaming liquid.

Equality is unaffected by variations of particle concentration and
of particle pipe diameter ratio, this at least within the limits of

the mentioned experiments.

Considerations based on the equation of continuity support the hypo-
thesis that in a conveyance of particles the dissipation of energy
is an extremum function of the concentration, i.e. invariant against

a concentration change.

Assuming that particles in transport be centres of energy dissipa-
tion, an equation has been set up (3.14), in which the total energy
dissipated has been considersd to be the sum of the energy relative
to the particles and that relative to the clear liquid, respectively.

Congiderations about the drag coefficient relative to a particle,
when settling inside an assembly of particles and when transported
in suspension inside a stream has led to the following conclusions:

That the energy dissipated at the particle is equal to the amount
which would be dissipated inside the volumetrically equivalent
portion of liquid, available, if the particle were not present
[4-0 17 )-

Further the following cases have bsen discussed:
1) Particles conveyed in discrete number (x -+ 0, %-# 0).

2) Very small particles transported in finite concentration

(x # 0, -g-» 0)..

3) Particles transported in finite concentration (x # 0, %-f 0l.

25/...'...
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In case 1, one has simply reported results of previous research
work (ref. 4}, proving that isolated particles travel faster than

the average iiquid mass.

In case 2 one has re-obtained the well-known geometrical configura-
tion of even distribution of particles in the stream cross section.

The fricticn fester referred to the flow of the mixture has been
found in this case to coincide with that of the pure liqguid flow.

In case 3 one has obtained a particle velocity which is always
greater than the liquid velocity and a frictien ccefficient relative
to the flow of the mixture, which is always lower than that of the
stream when conveying an equivalent volume of pure liquid ((5.4)

and (5.5}).

Finally the minimizing function y = ym(x) introduced in Chapter 2
has been identified with the loci %-- k representsd in Figure 7.

Concluding, the condition of invariance of equ (4.18), i.e. of the

expression

.F’
(1 - oxJ° D

has been resolvad into the slementary condition
f' = fw (1 - ox)*
This has found physical and analytical justification in Figures 1,

2, 3 and 4 and in the development of Chapter 4 respectively.

A C BONAPACE
PRINCIPAL RESEARCH OFFICER

PRETORIA
3/11/77
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7.

NOMENCLATURE

{SI system of units)
A, A, A
w” D

c.,. C’

[9]

Gr

26,

total pipe area, arsa occupied by the liquid
(water) and by the solid (particles] respec-

tively

drag coefficient relative to a solitary particle

and to a particle in an assembly respectively
Chezy coefficient

particle diameter

pipe diameter

friction factor of pipe for the flow of a mix-
ture (solid & liquid)

friction factor of pipe for a pure liquid flow

(water)

average drag force, drag force on an individual

particle of an assembly, respectively
acceleration due to gravity

particle Grashof number: equ (8)

a parameter: equ (5.6)

)

aja

a parameter (k =

a parameter relative to certain pipe velocity

profile
hydraulic gradient

number of particles existing in a unitary length

of pipe
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Q. 0, Qo

Re

v, v!

v
rel

V'V,V
w' p

W,W,W
wop

X, X
* TR

Subscripts:

d means drag

2 means linear

p means particle
s means solid

w means water

27.

flow rate relative to the mixture (solid & liquid)
to the liguid (water) and to the solid (particles),

respectively
particle Reynolds number: egu (7)

face velocity and true veleocity in a fluidisation

column, respectively

relative velocity between particle and surroun-

ding liguid

average velocity of the mixture (solid & liquidl,
of the liquid (water) and of the solid (particles),

respectively

hydraulic power discsipated by the mixture (solid
& liquid), by the liguid (water), by the solid
(particles), respectively

volumetric concentration at the discharge and

linear concentration inside the pipe, respectively
ratio of expression (2.10)

ratio of expression (2.11)

kinematic viscosity of liguid (water)

densi£y of liquid and solid phase resspectively

velocity slip coefficient
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