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Preface
Humans impact the environment in numerous ways. Human civilization needs a 
healthy environment to ensure the survival of our planet. The balance between envi-
ronment and technology is the need of today’s world. Technology has made our life 
comfortable, but our environment is paying price. Nowadays, it has been realized 
that a healthy environment is the necessity of humans’ and this planet’s survival. 
Therefore, efforts are increasing toward adapting green and sustainable technology 
to reduce detrimental environmental impacts.

Sustainable machining and manufacturing processes are the need of today’s 
world. Among various manufacturing processes, machining is one of the widely 
used. Hence, it has to be made sustainable. The chapters in this book are categorized 
under two broad sections: (1) sustainable machining and (2) manufacturing pro-
cesses. Part I, includes the work of numerous researchers as a review of modeling 
and experimental work. Chapter 1 discusses challenges in machining advanced mate-
rials using conventional and nonconventional machining processes. Chapter 2 covers 
the challenges and probable opportunities during machining by advanced ceramic 
materials. Chapter 3 discusses various ways to characterize and evaluate eco-friendly 
cutting fluids. Chapter 4 covers dry machining using advanced textured cutting tools. 
Chapter 5 discusses advances in one of the important techniques of near-dry machin-
ing, namely, minimum quantity lubrication, its need, its significance, and economics 
and environmentally friendly ways for machining. Chapter 6 covers the application 
of nanofluids as cutting fluids during machining. Chapter 7 discusses using nanoflu-
ids for machining in the era of Industry 4.0 and its effect on environmental sustain-
ability. Chapter 8 explores the use of ionic liquids as a potential sustainable green 
lubricant for machining in the era of Industry 4.0. The structure of various ionic liq-
uids, their relative machining performance, and their overall environmentally sus-
tainable aspects are covered. Chapter 9 discusses sustainable electrical-discharge 
machining and using sustainable dielectric while maintaining similar accuracy and 
precision during the process. Chapter 10 covers the effects of water jet pressure, flow 
rate, standoff distance, and abrasive grit size on depth of penetration, cutting rate, 
surface roughness, taper cut ratio, and top kerf width during sustainable abrasive jet 
machining. Chapter 11 explores the use of artificial neural networks to successfully 
predict various responses, such as surface roughness, cutting force, and tool wear, 
during machining. Chapter 12 discusses the machining and vibration behavior of 
Ti-TiB composites processed through powder metallurgy techniques. In Chapter 13, 
the numerical analysis of machining forces and shear angle during dry hard turning 
of AISI 4640 steel using Al2O3-coated tungsten-based cemented carbide cutting 
inserts is conducted to predict cutting force and shear angle. Chapter 14 explores the 
machining performance evaluation of titanium biomaterial alloys in computer 
numerical control turning using a cubic boron nitride tool insert.

Part II of this book discusses sustainability aspects in various manufacturing pro-
cesses. Chapter 15 discusses the use of Industrial Internet of Things in manufactur-
ing, various communication protocols, data management techniques, and software 
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design models focusing on the Fourth Industrial Revolution. Chapter 16 explores the 
ways to improve forming characteristics in incremental sheet forming. The chapter 
aims to highlight and systematically review the recent strategies related to numerical 
techniques, such as finite element analyses, computer-aided design, tool path devel-
opment, experimental setups, and hybrid techniques that have been proved to increase 
the quality of the formed ISF parts. Chapter 17 covers the similarities and differences 
in deformation mechanisms of polymers, metals, and their composites in dieless 
forming operations. Chapter 18 discusses the sustainable polishing of directed energy 
deposition–based cladding using micro-transferred arc.

This book will work as a reference book for researchers, practicing machine shop 
engineers, and managers. This book can also be used as a textbook for the postgradu-
ate level and as an elective course book for the undergraduate level. Advances in 
Sustainable Machining and Manufacturing Processes provides a foundational link to 
more specialized research work in the domain of sustainable manufacturing.

Dr. Kishor Kumar Gajrani
Dr. Arbind Prasad

Dr. Ashwani Kumar
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Introduction
The ever-increasing trends of upcoming technology also lead to many concerns 
related to the environment, society, and economics in every field of engineering. 
Sustainability in any organization implies that something can be sustained indefi-
nitely. Recently, governments and world leaders have been advocating for green 
and sustainable manufacturing initiatives. To support and promote such initiatives, 
researchers, scientists, engineers, and academic institutions have a responsibility to 
introduce educational programs related to sustainable manufacturing to prepare the 
future generation. Sustainable machining and manufacturing processes are a need of 
today’s world. Sustainable machining is defined as the creation of products by cutting 
material that uses processes that are environmentally friendly, economically sound, 
and safe for employees, consumers, and communities, as well as can conserve energy.

To introduce these multidimensional machining and manufacturing processes into 
industries, as well as into the curriculum of future generations of researchers and 
engineers, is the ambition behind this book. This goal can be balanced by developing 
adequate economic, environmental, and social criteria, with analysis of their inde-
pendencies and application of that analysis for guiding technological innovation in 
respective economic, environmental, and societal frameworks.

This book provides a lucid way for readers to understand the advances in sustain-
able techniques for machining and manufacturing applications. The book consists of 
18 chapters dedicated to the advances in sustainable machining and manufacturing 
processes. The chapters discuss the challenges faced when machining advanced 
materials, the use of eco-friendly cutting fluids, and how they affect the machined 
component characteristics and our environment. This book also covers topics such as 
dry and near-dry machining, machining with advanced textured cutting tools, mini-
mum quantity lubrication, nanofluids and ionic fluids in the era of Industry 4.0, sus-
tainable electrical-discharge machining, abrasive jet machining, and artificial neural 
network–based machining. This book includes machining and vibration behavior of 
composites and finite element analysis during machining with advanced ceramic 
coated carbide tools. Furthermore, the use of the Industrial Internet of Things in 
manufacturing, sheet forming, and deformation mechanism, as well as sustainable 
polishing using micro-plasma transferred arc, is discussed.

This book addresses the challenges and solutions for sustainable machining and 
manufacturing processes. It discusses prevailing trends and suggests research find-
ings for industries to move toward sustainable development by improving economic 
and social perspectives, as well as reducing the detrimental effects to the environ-
ment. Overall, the aim of this book is to catalogue the latest achievements in the 
modern machining and manufacturing industry that can be helpful for future 
generations.

Dr. Kishor Kumar Gajrani
Dr. Arbind Prasad

Dr. Ashwani Kumar
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1.1 � INTRODUCTION

The fuel efficiency and performance improvement in the aerospace application has 
led to the development of advanced materials, namely, from steel to nickel to tita-
nium alloys; materials with lower density, for example, aluminum to carbon fiber 
composites; and ceramic and metal matrix composites (CMCs and MMCs, respec-
tively), which are restituting part of elevated temperature alloys subject to engine 
application en route to the end of the 20th century [1].

Advanced structural materials can be defined as complex shapes or materials 
combinations to attain properties linking to functionality, for example, smart materi-
als. These are materials designed for good mechanical, electrical, or thermal proper-
ties; high-efficiency energy conversion; materials with embedded sending systems 
for reliability and safety; and smart materials vehicles and large space structures are 
subject to a high-strength-per-mass ratio [2]. Researchers studied the design and 
fabrication of specific structures to enhance materials property three-dimensional 
(3D)  printed structures, such as curved [3], honeycomb [4], cell shapes [5] or 
hexachirales [6].

1
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The thermal, mechanical and electrical properties, which also enhance the perfor-
mance of polymer matrix composites, make carbon nanotubes (CNTs) attractive for 
industry use. However, identifying prospective applications for space use is a chal-
lenge for these materials [7]. On one hand, the chief challenges formed by today’s 
establishments involve comprehending and assimilating the rapidly advancing tech-
nological machining methods fabricated by industry. The integration and application 
of these advances prepare the industry for the next set of leading technical improve-
ments. The present work focuses on a vast area of machining techniques and their 
challenges faced by advanced materials.

1.2 � MACHINING PROCESS AND MATERIALS

1.2.1 � Cutting Tool

Advanced materials, such as superalloys, are a challenge for machining due to their 
inherent high hardness, low thermal conductivity, and great resistance to shearing. 
However, they require elevated cutting temperatures and high cutting forces to avoid 
severe tool wear [8].

The major tools employed in the fabrication of Ni-based superalloys are ceramic, 
carbide tools, and polycrystalline cubic boron nitride (PCBN). The latter is com-
monly used due to its superior machining capabilities for “difficult to cut” materials 
[9]. The PCBN is designed without a chip breaker, which is a flat rake, resulting in 
more resistance to breaking the chip during the cutting process. However, its short-
comings are that the surface of the workpiece is effortlessly damaged by the chip 
winding workpiece [9]. It was suggested that applying high-pressure cooling may 
overcome these drawbacks [10–11], while the importance of tool failure is attributed 
to analyzing the damage of tool material [12].

1.2.2 � Material Selection

Advanced ceramic materials, for example, are clustered into two groups, that is, (1) 
conductive—such as the typical zirconium diboride (ZrB2), metal nitrides (TiN/ZrN), 
boron carbide (B4C), titanium diboride (TiB2), and other similar materials—and (2) 
nonconductive silicon nitride (Si3N4), alumina (Al2O3), zirconia (ZrO2), and silicon 
carbide (SiC). However, adding advanced ceramic materials or conductive particles 
to the latter, such as B4C, TiC, Si, CaO, TiB2, Si3N4 + TiC, Si3N4 + TiN, ZrO2 + 
Cao, Al2O3 + TiC, ZrO2 + Y2O3 + TiN, and Al2O3 + TiN, makes them conductive 
advanced materials [13–14]. However, the conventional machining shortcomings of 
advanced ceramic materials are attributable to their elevated hardness and brittleness 
[13]. Additionally, their processing/manufacturing performance is not cost-effective, 
particularly the expense incurred during the polishing stage [13]. Therefore, the sur-
face of advanced materials may suffer damage during machining, resulting in stress 
concentration and cracks, thus affecting the mechanical strength of components [14].

Ceramic phases, that is, Al2O3/Al2O3 or SiC/SiC, in the same structure of CMCs 
mitigate the aggregate residual stresses emanating from the manufacturing process. 
Further, the coefficient of thermal expansion (CTE) mismatch and processing 
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temperature affects the residual stresses amid matrix and fibers, characterized by 
X-ray diffraction (XRD), Raman spectroscopy, or micro-hardness tests [15].

1.2.3 �T ypes of Machining Techniques

Many machining techniques effectuated unrelenting tool wear associated with longer 
cutting time, the high cutting force resulting in higher machining cost, thus bear-
ing machining challenges of advanced materials [12]. Furthermore, when processing 
advanced ceramics, for example, by abrasive machining and grinding, the product 
components experience plastic deformation and considerable residual stress, friable 
layers, and surface cracks [16, 17]. Table 1.1 outlines some machining techniques, 
both conventional and nonconventional.

The susceptible factors in the performance of electrical-discharge machining 
(EDM) are a low material removal rate (MRR) and high tool wear, which may be 
conquered by other advantages when compared with other nonconventional tech-
niques [18].

On one hand, dry machining is conducted without the facilitation of cutting fluids. 
This process has gained widespread over the past years and is increasingly used by 
manufacturers that fabricate products with metals [19]. However, the technique 
exhibits drawbacks, such as (1) equipped for materials workpiece and machining 
approaches, which do not yield favorable results; (2) elevated temperatures at the 
tool–workpiece interface on the cutting edge; (3) the tool heating up due to the ampli-
fied temperature and losing its hardness [19]; (4) the surface integrity and dimen-
sional accuracy of the workpiece are altered [20]; and (5) only materials that pose 
good machinability can be employed for dry machining [21].

1.3 � TOOL WEAR/LIFE SPAN AND COMMERCIAL METAL CUTTING

Some advanced materials, such as the 40CrNi2Si2MoVA (300 M) steel, employed 
in aerospace because of its good strength, fracture toughness, elevated transverse 
plasticity, good corrosion resistance, and fatigue performance have their inherent 
drawbacks. The 300 M steel suffers poor thermal conductivity, resulting in a large 
cutting force and an elevated temperature, difficult chip control, and easy tool wear 
during the cutting process [30]. However, Zhang et al. [31] used cryogenic minimum 
quantity of lubricant (CMQL) technology to analyze the varying tool wear lubricants 
and cutting force amid high-speed turning of 300 M steel. The results indicated that 
this method reduced tool wear and prolonged tool life by the reduction of cutting 
force, cutting temperature at the knifepoint and friction amid the tool and workpiece. 
Furthermore, the authors studied the genetic algorithm under CMQL conditions 
which optimized cutting parameters and presented theoretical attribution for tool 
wear control at high-speed cutting 300 M steel. The ultimate tool wear prediction is 
demonstrated in Equation 1.1:

	
VB v f ap= 0 0362 0 1054 0 0567 0 0119. ,. . .

	
(1.1)
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TABLE 1.1
Feature/Operation of Ceramic Metal Matrix Composites on the Machining Techniques

Machining 
Techniques Information Machined Challenges Concluding Remarks References
Conventional
Orthogonal cutting •	 Defined cutting edges

•	 Fiber-reinforced 
orientations, i.e. parallel, 
across, and transverse

Ductile and brittle behavior transpire due 
to ceramic machining at small uncut chip 
thickness leading to grain fracture and slip-plane 
mechanisms

Roughness/coarseness of machined surface is 
susceptible to microcracking mechanisms of the 
particles, leading to residual stress as the scratch 
load increases

[22]

Milling •	 Surface finish – 
roughness and 
morphology

Observed ductile to brittle transition in the matrix 
during machining.

Fiber removal due to pullout mechanism.

Concluded that surface roughness increased at a 
penetration depth of >4 μm, resulting in larger 
grooves due to brittle fracture

[23]

Drilling The tool rotates along its 
axis

Entry and exit delaminations are induced 
machining damage due to high thrust forces 
employed-conventional drilling (CD)

Rotary ultrasonic machining (RUM) had an 
average reduced thrust force (~10%–15%), 
resulting in less significant exit delamination than 
CD

[24]

Grinding Favored finishing operation 
for hard/brittle materials 
to achieve dimensional 
accuracies

Three grinding methods showed different results 
performed on C/Si materials CG provided a 
surface roughness (Ra) ~2–4 times lower than 
IG, while the UAG produced much higher values 
of Ra, as a result of the induced impact on the 
abrasive grains -caused cracks to propagate

Grinding holes >1-mm diameter are useful for 
successful machining of slots and surface finish 
employing the typical conventional mechanical 
techniques using cubic boron nitride and diamond 
tools

[25]

Nonconventional
Abrasive waterjet 
(AWJ)

Cut and shape hard metals Reduced surface quality at the jet exit because of 
kerf taper angle effect and brittle fracture removal 
due to loss of energy of the jet

The technique can be effective in machining slots, 
holes, and through cuts in Al2O3/Al2O3 and SiC/
SiC CMCs, provided the operating parameters are 
optimized

[26]

Pulsed laser 
ablating (PLA)

Hole making in ultra-hard 
materials

The main drawback is heat-affected zone (HAZ) Minimization of thermal damage, the PLA is 
recommended provided the pulse duration 
is enhanced, i.e., milli-, nano-, pico-, or 
femtosecond laser ablation.

[27, 28]

Electrical-discharge 
machining (EDM)

Cuts and holes in electrically 
conductive materials 
difficult to cut

Temperature built up due to process sparks, 
affecting the machined surface resulting in 
residual stress levels amid the fibers and matrix.

Debris removal is important to prevent damage to 
the workpiece. Additionally, deep flushing and 
tool vibration enhanced surface quality.

[29]
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where VB is the amount of flank wear and v, f, and ap are the cutting speed, feed, and 
depth of cutting, respectively. However, if the influence of a factor is not significant 
on the dependent variable, then the coefficient of the factor should be zero, that is, bi 
= 0, utilizing a t test as shown in Equation 1.2:

	

ti
bi cii

Q n m
i m�

� �� �
� ��/

/
, , , ., .

1
1 2

	

(1.2)

The tool wear coefficient level as determined by Zhang et al. [31] was 0.05(α = 
0.05), and t(α/2) (n − p − 1), and the ultimate results showed that t0.025(n − p − 1) = 
2.22814. This indicated the significant effect of the cutting speed on the forecast 
value, with subsequent feed, and the depth of cutting.

To achieve economic tool life with subsequent surface conditions, cutting param-
eters must be carefully chosen. For example, on powder metal Ni alloys [32], these 
are generally

	•	 Strain <0.01 mm,
	•	 Surface roughness <0.8 μm,
	•	 Nonparent material required,
	•	 No redeposited material or layer, and
	•	 No light contrast amorphous or recast layer.

For the cutting process completion, cutting strategies, namely, cutting parameters 
and tool geometries, must be properly analyzed. Wear evaluation is subject to an 
assessment conducted on cutting tools that are worn displaying wear features. In 
particular, flank wear and chipping of cutting edges cannot be utilized to measure 
tool wear according to ISO 3685 standard [32]. However, Abele et al. [33] employed 
statistical experiments/five-axis milling that involved a merger between the flank or 
tip and the cutting tool radius. Key process variables to consider using this method 
are axial depth of cut, cutting speed or feed rate, and to predict tool wear behavior.

A lot of research in the cutting process covers tool wear of tungsten carbide and 
carbide tools, but little has been covered on polycrystalline cubic boron nitride 
(PCBN) tool wear under high-pressure cooling. This was described by [34], that the 
workpiece deploys increased pressure on the tool flank, while its contact area is 
small, resulting in the flank being worn out. However, the flank face cutting area 
poses challenges because of insufficient coolant while the wear is escalating affect-
ing the machined surface integrity. A study by Wu et al. [34] demonstrated the wear 
morphology and profile of the PCBN tool. Conversely, the wear model from the 
study provided a source to cutting superalloys subjected to cooling at high pressures 
to minimize machining and tool wear. The model was also subsequently reciprocal to 
cutting parameters, cutting time, and cooling pressure.
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1.4 � MACHINABILITY

Machinability of materials is clearly expressed as the effortless practice of materials 
removal (chips) by cutting tool edge, employing conventional machining operations 
to yield a suitable cost-effective surface quality [35].

The machinability of NiTi shape memory alloy (SMA) is a challenge due to the 
existence of intermetallics, resulting in strain hardening effects and poor surface tex-
ture [36]. Two varying approaches to machine NiTi SMAs have been adopted by 
Kong et al. [37], the results indicated that abrasive water jet machining was superior 
to plain water jet machining regarding a more controlled depth and surface texture. 
Likewise, Frotscher et al. [38] outlined that abrasive water jet machining was an 
appropriate machining process compared to the micromachining process, which was 
able to decrease the thermal effect and cutting time of the machining process. Some 
other unconventional machining processes such as the wire-electrical-discharge 
machining (WEDM), laser beam and EDM could be utilized for machining the NiTi 
alloys but have drawbacks, such as heat-affected zone, microvoids, and recast layer. 
To overcome these drawbacks, Manjaiah et al. [39] consolidated the parameters of 
the water jet machining to improve surface roughness and the kerf angle of the com-
posites. It was concluded that the reinforcement of the composite in wt.% improved 
the integrity of the surface machined by clearing particles from the surface matrix 
[39]. Table 1.2 shows the conducted machinability studies of some of the advanced 
materials.

1.5 � MACHINING PROCESS SELECTION

Machining process selection and technologies have become demanding for advanced 
materials. The prerequisites to consider are precision machining and reduced surface 
roughness (quality), large material removal rate (productivity), decreased tool wear 
(tool cost). The study reported by Feucht et al. [45] indicated the ultrasonic technol-
ogy influence and the integrated machining of hard-to-machine advanced materials. 
Table 1.3 lists the summary of some of the simulated model approaches used for 
cutting mechanisms.

1.5.1 � Challenges Related to Machining

Prerequisites in the CMC structures affected by the machining process are elevated 
tensile or compressive residual stresses, processing temperature, and CTE mismatch 
[50]. On one hand, the machining of CMCs is challenging because of their (1) brittle 
behavior, (2) high hardness, (3) heterogeneous structure composed (matrix, fibers, 
porosities), and (4) orthotropic mechanical and thermal behavior [50].

1.5.2 �P ractical Aspects and Developments

Contemporarily, manufacturing industries are harnessing the utilization of limited 
quantity lubrication and dry machining, ascribed to their ecological and economic 
conveniences. The minimum quantity lubrication (MQL) assisted machining is used 
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TABLE 1.2
Machinability Studies on Some of the Advanced Materials

Approach Material Application
Type of Electrode/
Cutting Fluids Remarks Reference

Electric 
discharge 
machining 
(EDM)

Ti-6Al-4V Biomedical, 
automotive, and 
aerospace

Graphite, aluminum, 
copper, and brass

Discharge current elevated values cause coarser 
surface integrity. Unlike other electrodes, 
graphite resulted in high surface roughness, 
particularly at elevated discharge current values

[40]

High-pressure 
cooling (HPC)

Inconel 718 Nuclear reactors, 
pumps, spacecraft, 
gas turbines, and 
rocket motors

Vegetable oil–based The utility of cutting oils viz. their 
environmental, economic, and societal pillars 
combined with the surface texture of tools of 
the HPC method can enhance the high-speed 
machinability and productivity of superalloys.

[41]

Wire electrical 
discharge 
(WED)

AA2024/Al2O3/BN hybrid composite Automobile, 
structural and 
aerospace 
industries

Molybdenum From the optimization method, it was concluded 
that the pulse on-time makes a significant 
impact on the desired performance measures 
during machinability of the composite

[42]

Wire electrical 
discharge 
(WED)

Hybrid metal matrix composite 
(HMMC): Al LM6 as matrix, 
silicon carbide, and dunite added as 
reinforcements

Military 
components, 
automotive, and 
aerospace

Brass The machinability analysis on performance has 
shown that pulse ON duration is the prevalent 
variable for achieving the performance 
measures desired.

[43]

Wire electrical 
discharge 
(WED)

Al/AlCoCrFeNiMo0.5 MMC Engineering 
materials for 
automotive 
industry

0.25 mm diameter 
copper wire

The surface roughness, KW, and MRR were 
minimal. The lower effectiveness range because 
of reinforcement over the MMCs machinability 
is a positive indicator for the contemporary 
utilization of the novel material.

[44]

KW = kerf width, MRR = material removal rate.
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TABLE 1.3
Simulated Model Approaches Used for Cutting Mechanisms

Machining Approach Theoretical Model Type of Material Process Parameters Remarks Author

PCBN turning Adaptive genetic algorithm GH4169 
superalloy

Initial population size, 
i.e., m, Pc, Pm

Surface roughness during the turning process 
can be estimated, and the maximum error amid 
measured and predicted value is 0.107

[46]

Femtosecond laser 
processing

COMSOL software Diamond 
microgrooves

Inlet velocity and size 
cross-section shape 
with a depth of 1000 
microns

It was concluded that rectangular microgrooves 
have good heat dissipation compared to 
triangular and trapezoidal structures

[47]

PCBN tooling Chip breaking model GH4169 
superalloy

f = 0.15 mm/r, ap = 0.4 
mm, vc = 160 m/min

Bending moment increases, and the crimp radius 
decreases, leading to a reduction of feed rate 
and depth of cutting during the high-pressure 
cooling process. Ultimately, the breaking 
performance of the chip is improved

[8]

CNC machining Stereoscopic/spherical 
geometry method (SGM), and 
Projection method (PM)

For advanced 
materials

Position angle θ and 
orientation angle ϕ of 
drilling and milling 
modular fixture

The procedure and principle of solving spatial 
angle in the modular fixture by SGM, and PM 
was well executed

[48]

Intelligent machining 
combined with sensor-
based control systems

Interactive search method 
(ISM), multi-objective genetic 
algorithm (MOGA), and 
genetic algorithms (GA)

AISI 1064 steel Cutting speed, depth of 
cut, and feed rate

The results showed that ISM exhibited optimal 
outcomes in the field of manipulation of 
machining processes parameters

[49]

Abrasive water jet 
cutting

SPH algorithm and Lagrange 
model numerical simulation

Q235, X60, 
X80 and 304 
stainless steels

Pressure 40 Mpa, target 
distance 5 mm, and 80 
mesh garnet abrasive

The erosion effect was experienced during cutting 
due to stress and friction, impact deformation, 
resulting in the depth of cutting increasing with 
an increase in cutting pressure.

[18]

where f is the cutting force, ap is the cutting depth, and vc is the deflection.
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in auto parts, for example. It has been used in the crankshaft (drilling oil holes) and 
the block, which is typically a challenging approach as a result of diameter and large 
length [19].

A new novel concept of energy efficiency grade evaluation (EEGE) has been for-
mulated by Ma et al. [51]. This approach is developed in various stages: (1) the 
enlisting of the inherent energy efficiency (IEE), (2) the advancement of quantitative 
approach in machining systems, and (3) creation of IEE evaluating indicator system 
from both the inherent specific energy (ISE) and inherent energy utilization. The 
EEGE method is a new tool for analyzing the energy efficiency of the machining 
system. However, future works objectives should be on establishing fundamental 
databases and interval threshold standards and discovering the application of the 
EEGE method to configure high-energy-efficiency machining systems [51].

Nanomachining technology using electron beam processing was studied by [52]. 
The structure of the self-organized surface of the nanomaterials was etched by engag-
ing varying etching speeds, forces, depths, and probe cyclic times; however, the pro-
portionality amid the etching depth and force, while the self-organized nanomaterials 
are progressively raised. The author indicated that selection of suitable parameters is 
a possibility to produce a linear structure with a width of approximately 60 nm and a 
depth of approximately 8 nm on the self-organized surface of the nanomaterial and a 
dotlike structure with a point spacing and height of 70 nm and 4 nm, respectively.

One of the complex systems is intelligent manufacturing systems in whereby 
enhancement approaches are combined with sensor-based control systems. 
Researchers have ascertained the viability of sensors transmitting networks with 
each other during the cutting operation. However, the objective was to devise a pro-
cedure that qualifies a CNC lathe spindle and smart feed drive to react to variations 
in signals fed to them from a series of external sensors, able to detect disturbances 
throughout the cutting process. Regrettably, no prototype was developed for this pro-
posed system. Instead, this was achieved via a simulation of lathes created to sub-
stantiate logic and coding of the sensory communication network [53].

On the other hand, advanced engineering structures with embedded sensors form 
the basis of progressing attempts in structural health monitoring (SHM) systems 
[54]. However, there are certain dependencies not required for SHM designers which 
are treated as noises in the signals created by sensors. Some of these dependencies 
that affect sensing properties are (1) mechanical and thermal loading, (2) signal pro-
cessing method, (3) integration configuration between material and surface-bonded, 
(4) fabrication process utilized for integration, and (5) base metal properties [54]. 
Albeit, piezoelectric materials offer high durability, providing good sensing mecha-
nisms. Optical sensors, although costly, are efficient in quantifying strain and tem-
perature simultaneously, resulting in overall superior performance. Generally, sensor 
fabrication is a countless in situ quantification of SHM variables but attributed to 
laboratory applications, for example, characterization and identification of complex 
structures in terms of deformation and failure mechanisms. Additionally, the emer-
gence of multimaterial three-dimensional (3D) printing methods eases the integra-
tion of sensor materials into 3D printed composites. Consecutively, contributing 
greater understanding of the deformation interfacial mechanisms of composite mate-
rials used in the architecture industry [54].
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1.6 � CONCLUSION

Advanced materials for current and future aerospace applications, for example, 
are invented to withstand conditions such as environmental damage (oxidation and 
corrosion), creep strain, dwell crack growth, elevated temperature yield stress, and 
microstructure stability, exclusive of rises in cost and density. However, advanced 
materials, such as the advanced Ni alloys, solicit enhanced process of machining 
to acquire modified materials mechanical properties, including cost improvement 
outcome.

Tool failure mechanism research study as part of the challenges faced during 
machining is prevalent in the comprehension of tool structure and applications. 
Recently, tool failure exploration included both the macro problems of tool failure 
and microcrack propagation within the material before the appearance of tool surface 
crack defects. However, the intense cutting process outlining the damage mechanism 
of the carbide tool was explored, namely, (1) crack initiation, (2) crack propagation, 
(3) damage accumulation, and (4) tool breakage.
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