
 

A Cloud-Based Road Infrastructure Analysis 
System using Machine Learning 

Thegaran Naidoo*, Jaco Verster1, and Stephen Marais1 
1CSIR, Centre for Robotics and Future Production, 1 Meiring Naude Road, Pretoria, South Africa 
 

Abstract. A cloud-based road infrastructure analysis system was developed 
to assist as an information management system for detecting and managing 
information about road defects and road assets. The system uses computer 
vision and machine learning algorithms and is accessed through a web 
interface. The detection results are viewed through an online, account-based 
web interface. 

1 Introduction 

An efficient road network is vital to any economy [1]. To ensure the high availability of the 
road network, it is important to regularly inspect and maintain the road infrastructure. The 
Centre for Robotics and Future Production at the Council for Scientific and Industrial 
Research (CSIR) has developed a system which aims to assist road engineers and 
municipalities with the maintenance of road infrastructure.    
 
The system which is called the Road Infrastructure Analysis System (RIA) system is a cloud-
based information management system for keeping track of road defects and road assets. 
Examples of road defects are potholes, cracks, and edge breaks, and examples of road assets 
are road signs, road markings, and traffic lights.  
 
The system has a scalable cloud-based design [2] that would allow it to manage data from 
multiple sources and to allow for the detection and classification of multiple road defects and 
road assets. In the current iteration the data preparation and data analysis plugins were 
developed to detect potholes in video data.  
 
The system automatically analyses the videos that are uploaded by the user and produces 
geo-located detection results. The results are stored in a database and can be accessed through 
a web-based interface. The system also supports human-in-the-loop validation of the 
automated detections.  
Section 2 describes the design and methodology, covering the system overview, the sensor 
system, the processing pipeline, and dataset creation. Section 3 presents the results that were 
obtained, and conclusions are presented in Section 4. 
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2 Design and Methodology  

2.1 System Overview 

The system consists of mobile devices that are used to collect video or image data of the 
environment and a cloud-based analysis and reporting system. 

 
The typical flow of data during the operation of the RIA system is illustrated in Figure 1. 
Data in the form of video or still images are captured via cameras or mobile applications and 
uploaded into the RIA system using a web browser or the RIA API. The RIA system then 
processes the data, and the analysis results are stored in a database. The results can be viewed 
on a web-based dashboard which uses a map interface to indicate the location of the road 
defects.  

 
RIA was built as a scalable, distributed system of components. The component called the ria-
ui from Figure 1, is a server that handles all the interactions with the system – either via the 
web interface or the API. The ria-ui server was built using Node.JS and Express, while the 
ria-compute server was built using Python and Flask. In Figure 1, the ria-compute server 
carries out the computation and analysis that needs to be performed on the data. Results are 
stored in the databases and related images, or video outputs are stored in the object storage. 

 
 

 
Fig. 1 Operational flow of the RIA System  

 
 
During a typical use case, the user accesses the RIA system using a web browser. The user 
can create an account and log into the system. Once logged in, the user can create a project 
e.g., a project for each region that is to be surveyed. The user can then capture video data of 
roads in that region and upload them to the project. The videos can then be individually 
scheduled for processing. Using this workflow, the user does not need to wait online while 
the videos are being processed. The user can log off and return later to look at the results of 
the completed processing. The system can be configured to send notifications via email or 
WhatsApp to alert the user of the processing status. Figure 2 shows a part of the RIA user 
interface that is used to upload videos and schedule them for processing. 
 



 
Fig. 2. RIA web-based user interface 
 

 
Fig. 3. Map-based interface showing detected potholes 



The following sections describes the components of the RIA system in more detail. 

2.2 Sensors and System Inputs 

In an earlier iteration of the project a custom sensor mounted to an inspection vehicle was 
used to collect video and global positioning system (GPS) data. The latest iteration was 
modified to use a Garmin 67W which is a commercial off-the-shelf (COTS) dashcam with 
built in GPS. The Garmin 67W has a 180-degree field of view, 1440p resolution, and a frame 
rate of 60fps. The specifications of the Garmin 67W allow for inspections up to a speed of 
60km/h. 
 
Reports of road defects sourced from the public using either the call centre or mobile 
applications can be uploaded into the RIA system using the RIA API. Reports coming 
through the call centre may or may not have images, but the information can be added into 
the system and later reported on. 

2.3 Processing Pipeline 

The ria-compute engine was implemented using Python with a range of supporting libraries. 
The model uses YOLOv3 object detection as implemented in the OpenCV library [3]. 
Through transfer learning the YOLOv3 model, trained on the COCO 2017 dataset [10], was 
retrained to recognise potholes.  
There are three processing paths within the main ria-compute processing pipeline. These are 
the model training pipeline, the operational pipeline, and the model validation pipeline. The 
three paths are shown in Figure 4. 
 
The model training pipeline is used to train the model to recognise potholes. First, videos of 
the road were collected. The videos were manually processed to extract frames and hand label 
the potholes to create a starting dataset.  
 
This dataset was used to train and test a Convolutional Neural Network (CNN) model [4]. 
The model was then deployed into the operational pipeline.  
 
In the operational pipeline, uploaded videos are pre-processed. The pre-processed image is 
then passed to the model for analysis. The detections and annotations that mark the location 
of the potholes are stored in a database and can be reported via the user interface. During the 
pre-processing step the video metadata is first extracted. The Garmin 67W produces video 
such that the GPS coordinates of the are embedded into each frame, therefore the GPS co-
ordinates are extracted from the frame using Tesseract Optical Character Recognition (OCR) 
[5]. The output from the pre-processing is a timestamped frame with synchronised GPS 
information. 
 
The detections can also be passed back to the manual validation pipeline which allows a 
human expert to validate the detections. The further validated data can then be used to retrain 
the model. After multiple iterations of training and testing the new model can be deployed 
into the operational pipeline. The manual validation and retraining, allows for the 
improvement of the system accuracy over time. 
 



 
Fig. 4. Processing Pipelines 
 
A variable frame rate processing strategy was used in the operational pipeline to speed up the 
model inference time. Video capture was performed at a framerate of 60fps. At 60fps a 30 
second video contains 1800 frames. Running model inference on all 1800 frames took a 
significant amount of time. Even with GPU inference at around 50 milliseconds per frame it 
could take up to 90 seconds to process a 30 second video. With CPU-based inference 
significantly slower at around 830 milliseconds per frame, the same video could take up to 
25 minutes to process. 
 
To reduce the inference-time per video a speed-based approach was used to sample the road 
at a set distance interval. The vehicle GPS coordinates were extracted from the video and 
synced with the video frames. The GPS data was used to estimate the speed of the vehicle 
and extract frames every 10 to 20 meters. Using this method reduced the video processing 
time with 500% without a loss of road coverage. 

2.4 Dataset Creation 

Hand labelled pothole images were used to create a ground truth training dataset consisting 
of 317 images with 470 pothole instances. Images contained a combination of rural, urban 
and highway road types collected at different times of the day under varying weather and 
lighting conditions. Only daytime images with sufficient light were included. 
 
As part of the ongoing development to improve the algorithms performance the dataset was 
extended by collecting new videos. During the data collection process, a modified version of 
the detection algorithm was used. The modified version allowed many false positives 
through. In this way the weaker model was used as a first level detector. These detections, 
with false positives, were then manually validated and hand labelled. The Computer Vision 
Annotation Tool (CVAT) [6] was used for the annotations and FiftyOne [7] was used to 
manage and explore the dataset. The new dataset would then be used in one or more cycles 
through the training pipeline until it is ready for deployment into the operational pipeline. 

3 Results 

3.1 Model training and comparison 

Several modern object detection model architectures were considered for the application, 
these included YOLOv3 [8], Scaled-YOLOv4 [9], YOLOv5 [10], Faster R-CNN [11]. 

 



All the models were pre-trained on the COCO 2017 dataset and used for transfer learning on 
the pothole dataset. The pre-trained model performance on the COCO dataset is shown in 
Figure 5. 
 

 
Fig. 5. Pre-trained model performance 

 
Models were trained until convergence using the same test/train/validation data splits. 
Training was done using a two Nvidia GeForce RTX 2080 GPUs with colour images re-sized 
to 640x640 pixels and typically took around 2-3 hours with approximately 300 epochs. 
Various data augmentation techniques were applied as appropriate. Training results are 
shown in Table 1. below. 
 

Table 1. Model training results 

Model mAP:0.5 Precision Recall f1-score 
YOLOv3-416 0.75 0.85 0.80 0.83 
Scaled-YOLOv4-csp_640 0.72 0.70 0.78 0.74 
YOLOv5l_640  0.72 0.63 0.77 0.69 
Faster R-CNN ResNet50 V1 640x640 0.73 0.68 0.80 0.73 

 
YOLOv3 had the best performance with the highest mean average precision (mAP) at an 
intersection over union (IoU) ratio of 0.5. It also had the best precision, recall and f1-score. 
YOLOv3 is not the fastest model but was still selected due to its good overall performance. 
If inference speed were more important Scaled-YOLOv4 could be a good alternative at a 3% 
compromise in mAP:0.5. 
 
The intersection over union (IoU) is a measure of the overlap between the predicted bounding 
box and the ground truth bounding box. This is calculated for each bounding box. Each 
bounding box would be associated with a class determined by the highest probability over all 
classes for the bounding box. The confidence is then given by P(Object) * IoU, where 
P(Object) is the probability of the object within the predicted bounding box. 

3.2 Detection Results 

The retrained YOLOv3 model was first tested on images containing potholes that were 
sourced from an online dataset [13]. The results of these detections can be seen in Figure 6. 



Figure 6 shows each pothole surrounded by a bounding box with the confidence metric 
indicated in the upper left corner next to the label. 
 

 
Fig. 6. Detections using externally sourced images containing potholes 

 
The RIA system was then tested on images collected from urban, residential, inner-city roads, 
and highways on the Pretoria road network. The data was collected during regular day-time 
traffic conditions. The weather in all cases was clear and bright. The vehicle was driven at 
approximately 60-80km/h. Figure 7 shows some of the detection results that were achieved. 
 

 



  
Fig. 7. Detections of potholes using retrained YOLOv3 

4 Conclusion 

This research presented RIA which is a cloud-based system to collect and analyse road data 
to detect and keep track of road defects and assets. In this research the pothole detection 
module was presented. The analysis algorithm was implemented using the YOLOv3 CNN 
with a detection accuracy of 75% mAP:0.5. Going forward the team will attempt to improve 
the accuracy of the pothole detection algorithm further.  
 
The team has also experimented with a version of the algorithm that first performs a road 
segmentation to improve the detection accuracy and the detection speed. Next the algorithm 



detects the potholes within the area segmented as the road. Then the algorithm uses a 
calibrated camera matrix to estimate the area of the detected pothole. The estimated area is 
valuable because it is used to calculate the amount of material that would be required to repair 
the pothole. Figure 8 shows an output from the algorithm that performs road segmentation, 
pothole detection and pothole area estimation. In Figure 8 the estimated area is shown in the 
bottom right corner and is in metres squared. The team will continue to develop this algorithm 
to improve the accuracy of the detections and estimations. 
 

 
Fig. 8. Detection and size estimation of pothole 

 
The team has also experimented with an algorithm to detect road signs. Figure 9 shows an 
output from the road sign detection algorithm. The road sign detection algorithm would be 
used as an input into road maintenance and compliance plans to determine the condition of 
road signs as well as if any signs may be missing. 
 

 
Fig. 9. Output from the road sign detection algorithm 
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