
Ground Robot Path Planning on 3D Mesh Surfaces
Using Bi-directional RRT based on Local Regions

Cebisile Mthabela
School of Mechanical, Industrial and

Aeronautical Engineering
University of the Witwatersrand

Johannesburg, South Africa
2035818@students.wits.ac.za

Daniel Withey
Centre for Robotics and Future Production

Council for Scientific and Industrial Research
Pretoria, South Africa
dwithey@csir.co.za

Chioniso Kuchwa-Dube
School of Mechanical, Industrial and

Aeronautical Engineering
University of the Witwatersrand

Johannesburg, South Africa
Chioniso.Kuchwa-Dube@wits.ac.za

Abstract—The increasing application of ground robots
requires efficient path planning algorithms in three-
dimensional (3D) environments containing non-spherical
topology. Path planning on surface meshes is possible, however,
expensive computation of geodesics is required. To reduce the
length and, hence, cost of the geodesics, a growing submesh
based on local regions is used. Rapidly-exploring Random
Trees (RRT) with local regions are computed and compared
with the bi-directional variant, based on RRT-Connect. Results
show that RRT-Connect with local regions reduces the
computational burden for mesh-based path planning.

Keywords—path planning, RRT, surface mesh, 3D
environment, local regions, geodesics, nonspherical topology

I. INTRODUCTION

With the advancement of technology and research, the
application of mobile robots has spanned into a wide range of
fields including computational biology, computer animation
and verification [1, 20]. As part of the navigation tasks, path
planning is one of the fundamental tasks that a robot has to
perform in order to move from one point to another and it is
essential for a robot to perform this task effectively.
Autonomous mobile robot path planning is not only a
fundamental problem in robotics, but it is also a highly
studied area because of its wide application in industries.
Given a map, a starting position and a goal position, the path
planning problem seeks to find an optimal collision-free path
from the starting position to the goal position in
configuration space.

A number of path planning algorithms have been
developed in the past decades and these algorithms are
usually categorised into groups based on how the
environment is represented and explored. The two most
known path planning categories are the grid-based algorithms
and sampling-based algorithms. A* [13] and Dijkstra's [10]
are both grid-based algorithms. These algorithms have been
successfully used to find the shortest path in fairly flat
environments, where the uncertainty associated with the
environment is normally not considered. However, with the
increasing application of robots in industries, robots share
space with humans in real life, operating in uneven and
unstructured environments. Thus, full 3D path planning is
needed.

Path planning for ground robots has been extensively
done in 2D environments and most 3D path planning studies
have focused on aerial and underwater robots which are not
constrained to the ground surface [29, 30]. Both aerial and
underwater robots do not operate on the ground surface,
hence there is no need to consider traversability on a surface.
However, ground robots operate in uneven 3D environments
with different running costs for the uphill, downhill and flat
surfaces. The discretization of the workspace to a simpler
version, such as a 2D environment, can result in the loss of

important aspects about the robot's workspace leading to the
robot's inability to successfully traverse complex cluttered
environments.

Another approach that has been used in an attempt to
solve 3D path planning for ground robots is adding elevation
to get 2.5D, but still 2.5D is not a fully 3D environment and
it is not sufficient for a robot to be able to operate in
environments containing nonspherical topology, such as
bridges or tunnels. Carsten et al. [5] solved path planning in
3D environments, by extending the Field D* algorithm to
operate in 3D occupancy grids. The approach of Carsten et
al. [5] was able to compute less costly and less jagged paths
in the 3D grid. However, Carsten et al. [5] method was
intended for aerial and underwater robots. Using D*, Colas et
al. [7] developed a 3D path planning system for ground
robots. Their method uses point cloud data for workspace
representation; however, it uses a 3D grid representation for
the environment, rather than a mesh.

As the dimensions of the workspace of the robot increase,
the computation of the path becomes more challenging.
Thus, using grid-based methods in high dimensional spaces
can become computationally expensive and will take long to
find a solution. These methods require grid-based
discretization of the workspace which could lead to loss of
important aspects about the environment leading to
unrealistic solutions. Meanwhile, Sampling-based
algorithms, such as RRT, have shown significant
improvements in providing solutions in high dimensional
spaces containing constraints, and can be faster than grid-
based methods, in high-dimensional contexts. Lavalle [20]
introduced RRT specifically for holonomic, nonholonomic
and kinodynamic constraints in path planning problems. RRT
discretely samples the configuration space [11] to find robot
configurations within the free space with no need for
workspace discretization. RRT was proven to work well in
high dimensional spaces [16]; however, RRT tends to take
much time to find a solution, if a solution exists, in heavily
cluttered environments [28]. To improve the performance of
RRT in cluttered environments, a bi-directional version of
RRT, namely RRT-Connect, was introduced by Kuffner and
LaValle [18]. RRT-Connect grows two RRT trees, one from
the start and the other from the goal using the connect
heuristic approach. RRT-Connect showed improvement in
running time in uncluttered environments [18]. Both RRT
and RRT-Connect do not pay any attention to the quality of
the path produced. The path produced by them is sub-
optimal. As an attempt to improve the path produced by
RRT, Karaman and Frazzoli [16] introduced the first
asymptotically-optimal sampling-based algorithm, RRT*,
which produces less jagged and shorter paths when compared
to RRT [23]. RRT* guarantees to return an asymptotically
optimal path, if one exists, and it is one of the most used
algorithms when dealing with optimal path planning

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

mailto:2035818@students.wits.ac.za
mailto:Chioniso.Kuchwa-Dube@wits.ac.za
mailto:dwithey@csir.co.za

problems [23]. However, with its unique operations, tree
rewiring and best neighbour search, RRT* takes more
execution time than RRT.

3D surface meshes have become useful in the
representation of large and cluttered environments that are
not easy to represent using simple grids [15]. Surface meshes
are popular in gaming, as they aid pathfinding in complex
and cluttered environments. However, in computer gaming,
2D meshes with polygonal obstacles are mostly used [15].
Triangle meshes enable efficient computation for several
navigation procedures [14]. A 3D mesh surface allows
navigating through nonspherical topology such as tunnels.
Moreover, 3D spaces can be directly represented on a mesh
and that makes it easy to identify obstacles and the
traversable spaces. Breitenmoser and Siegwart [3] presented
a mesh construction approach for path planning for a
climbing robot. The work of [3] uses only the triangle strips
to implement a graph-based planner limiting the robot to only
traverse through the edges of the triangle.

In this paper we will be using a 3D surface mesh for
ground robot planning. These robots are known to be
operating on the surface and, for a mesh, this requires the
computation of discrete geodesic paths which can be
computationally expensive in large meshes. A discrete
geodesic path can be seen as a straight line connecting the set
of points on the unfolded mesh. Finding the shortest paths in
3D surfaces is a well-known problem in computational
geometry and arises naturally in applications such as robotics
and geographic information systems.

RRT was implemented on a mesh in [22]. This method
explores the entire mesh to find nodes that are leading to the
goal configuration and, since it is computing geodesic paths,
this becomes computationally demanding. Mthabela et al.
[22] also introduced the local region method for mesh-based
planning, which limits new nodes for tree expansion to
within the local regions. This reduces the length of geodesic
paths to be computed, leading to reduced computational time
to find the desired path. This method is referred to as, RRT
on a mesh with local regions (RRT-ML). To further improve
the speed of RRT on a mesh, this paper adapts the bi-
directional RRT method, RRT-Connect [19], for use on a
mesh, and then compares it with RRT-ML, the best
performing method from [22]. The RRT-Connect version is
referred to as, RRT-CML. RRT-CML is based on the RRT-
Connect of [18] and uses local regions to limit new nodes for
the tree expansion to within the area of local regions. RRT-
CML shows significant improvements in total runtime when
compared to the single tree RRT-ML.

The contributions of this research paper are summarized
as follows:

 An improved run-time of the mesh-based RRT
planner by introducing a local region procedure
which reduces the exploration space of the planner.

 Reducing the length and the number of geodesics to
be computed in the mesh-based planner.

 Applicability of the proposed method in different
3D Mesh surfaces without being affected by the size
of the mesh or the obstacles present in the Mesh.

The remainder of this paper is organised as follows:
section II introduces RRT on a mesh surface with local
regions (RRT-ML), geodesic distances, RRT-Connect on a
mesh surface with local regions (RRT-CML). In section III,
the simulation results of the RRT-ML algorithm and the
RRT-CML are presented and discussed. The conclusion and
future work are given in section IV.

II. METHODS

RRT's are amongst other sampling-based algorithms that
have been used to solve path finding problems due to their
ability to quickly explore the robot's workspace. Given the
start configuration and the goal configuration, RRT
incrementally grows the tree simply by randomly sampling
the workspace to find feasible configurations and connecting
the closest node into the randomly selected node. Fig. 1
adapted from [21] shows the tree expansion process, where
qnew is being added into the tree. The random node qrand is
sampled at each iteration. The random node is only added
into the tree if the distance between the random node and the
nearest node qnear is obstacle free and is within the specified

step size, ϵ . Otherwise, a new node qnew to be added in the
tree is derived using a steering function.

A. Discrete geodesic paths on mesh surfaces

A discrete geodesic path can be seen as a straight line
connecting the set of points on the unfolded mesh that
determines the local shortest path between the points. The
computation of discrete geodesic paths is a well-known
problem in computational geometry, and it arises naturally in
fields such as robotics and geographic information systems
[28]. Computing shortest paths in a 3D mesh surface with
obstacles is generally an NP-hard problem [4]. Computation
of paths for ground robots on 3D surface meshes is an
application of discrete geodesics. Depending on the number
of source points and target points, the computation of
geodesic paths and distances can be done differently. A
geodesic path can be computed between two given mesh
points, i.e. only one source point, and one target point, or it
can be between a single point and many points. The latter is
commonly known as a single-source shortest path problem.
The geodesic paths can also be computed between all pairs of
points

With the aid of the Triangulated Surface Mesh Shortest
Paths package [17] in the Computational Geometry
Algorithms Library (CGAL) [12], this paper solves a single
point to many points geodesic problem on a mesh surface.
Based on the algorithm introduced by Xin and Wang [26],
the Triangulated Surface Mesh Shortest Paths package
computes the geodesic paths from any source point in a
triangle mesh to a selected target point in the mesh by
constructing a sequence tree (T) which contains
nodes/vertices and edges of the mesh. Thus, locally shortest
paths between nodes can be computed. Given a mesh surface
M , the algorithm of Xin and Wang [26] finds an exact
shortest path λs, which is constrained to the surface of M ,
between the target point t and a source point s∈ S, where S
is the set of all source points.

Fig. 1. RRT tree expansion.

B. RRT on a mesh surface with local regions (RRT-ML)

A local region-based RRT on a mesh (RRT-ML), which
allows for the reduction of geodesic length and number of
paths was introduced in Mthabela et al. [22] as an attempt to
reduce the overall computational time of RRT on a mesh
surface. This method uses local regions as the exploration
area for RRT. Initially the random points are selected within
the local region of the first tree node, which is the area of
radius r around the tree node. A local region of a point p
consists of triangles/faces that are within the area less than

πr2, centred at p. As the tree grows, local regions around
each node in the tree are combined to form a subset of the
mesh called sub-mesh. An example of a sub-mesh embedded
in the original mesh is depicted in Fig. 2, where the original
mesh is the gray area and the sub-mesh is the pink area.

The start and the goal configurations are within the sub-
mesh. The sampling of random point qrand is done within the
sub-mesh which reduces the length of shortest paths to be
computed and when searching for the nearest neighbour
qnear only the tree nodes that are found within a local region

around qrand which is the area of radius randr are
considered. As a result the number of shortest paths to be
computed is reduced. RRT-ML pseudocode is given by
Algorithm 1. To speed up the performance of RRT-ML, the
goal biasing factor [25], which replaces qrand by qgoal with a

probability pgoal is used, to draw samples towards the goal.
The steering function determines an obstacle-free path
segment between qnear and qrand which is one step size ϵ or

less from qnear. Any triangle face with a normal vector
orientation that is greater than or equal to 30° from the
vertical is considered as an obstacle, and, therefore, the path
cannot pass through that face.

Planning on a mesh surface is more challenging than
planning in 2D, all tree nodes and edges must lie on the mesh
surface. Triangulated Surface Mesh Shortest Paths package
[17] from CGAL ensures that all paths and tree nodes are
fixed on the surface of the mesh while computing the exact
geodesic paths. Computation of geodesic path in RRT-ML is
performed often, thus causing RRT-ML to take long to find
the path since the process of finding geodesic paths on a
mesh is computationally expensive [22].

Fig. 2. A union of local regions.

C. RRT-Connect on a mesh surface with local regions
(RRT-CML)

RRT-Connect on a mesh can speed up the process of
finding the solution. The underlying classical RRT in RRT-
Connect still has the tendency to explore a vast area in a
robot's workspace, thus resulting in a large number of
possibly long geodesic paths to be computed. The
performance of RRT-Connect on a mesh can be improved
through the introduction of local regions to restrict the
sampling space into a subset of the mesh, which reduces the
exploration space for the planner into a growing sub-mesh
instead of the entire mesh surface. In this section, RRT-
Connect with local regions (RRT-CML) is discussed. Since
this approach grows two trees alternately, one rooted at the
initial configuration and the other at the goal configuration,
both initial and goal configurations are initialized with local
regions of radius, r . As each tree grows towards the other,
two subsets of local regions are created and later intersect. As
soon as these local regions intersect, the connection point,
which belongs to both trees will be found and the path from
the initial configuration to the goal configuration will be
obtained. Depending on which tree is being expanded in each
iteration, these subsets are interchanged when sampling for a
random point. The nearest neighbour search is done through
the computation of shortest geodesic paths between tree
nodes and the random point. Again this is done in each tree
expansion, everything that was done for a single tree in RRT-
ML in the previous section is done twice for the RRT-CML.

The EXTEND and REACHED procedure used for the
RRT-CML are given by the pseudocode in Algorithm 3 and
Algorithm 4, respectively. The function NEWCONFIG
(Algorithm 2) used in this method is slightly different from
the one used in the basic RRT-Connect [18]. The pseudocode
for RRT-CML is given in Algorithm 5. This is the main
algorithm taking in a mesh M={R ,T } as input, with t 1

and t 2 being proper subsets of T . Since growing two trees

alternately, two unions of local regions are also grown
alternately. Two lists are created for this purpose, list 1 in
line 3 of Algorithm 5 initially contains nodes that are within
the local region of the starting configuration q init and is

grown simultaneously with the first tree (t 1), list 2 in line 4 of
Algorithm 5 initially contains nodes that are within the local
region of the goal configuration qgoal is also grown

simultaneously with the second tree (t 2). By combining list 1

and list 2 a SubMesh is obtained, since list 1 is a set

difference of SubMesh and list 2; and list 2 is a set difference

of SubMesh and list 1. In line 7, REACHED function checks
if the connection point is found or not found while searching
in list 1's local region area. If the connection point is found

(line 8), the local region of the point qmid is added into list 1

(line 9) then the path is extracted in line 10 and returned in
line 11. The planner will stop at this point. Otherwise, if line
9 returned false, the process is repeated from line 12 with t 1

replaced by t 2 and vice-versa and list 1 replaced with list 2.
REACHED function is called again in line 13 to check if the
connection point is found now searching in list 2's local
region area. If the connection point is found (line 14), the
local region of the point qmid is added into list 2 (line 15)
then the path is extracted in line 16 and returned (line 17) and
the planner stops. Otherwise, the process is repeated and if
the connection point is not found after N iterations, the
empty path is returned in line 21.

III. RESULTS

All experiments were computed using C++ on a Dell
OptiPlex-7050 computer with Intel® CoreTM i7-7700 CPU @
3.60GHz processor and 8 GB memory.

For simulations a synthetic mesh which consists of a
tunnel and a bridge, representing an environment with non-
spherical topology, was initially created using Blender v2.82
[8] and processed in MeshLab [6]. This synthetic mesh has
18362 triangles and 9330 vertices and two different slopes of
angles 16° and 35° respectively. To evaluate the methods
presented in this paper, we used a set of starting and goal
positions. This is motivated by the application of path
planning in mobile robots where multiple paths have to be
computed as part of navigation. The path for each different
starting and goal position pair could have the same distance
but the time taken for the planner to find the path may differ,
due to the fact that the planner might encounter obstacles in
one route that are not necessarily on the other route. For all
simulations, the step size ϵ=1m and the maximum number
of iterations is 1500. For the RRT-ML the goal biasing factor
is 0.2, representing the probability of using the goal in place
of qrand, for new point selection. For the local region method
the radius r=1 is used for all tree nodes and r=2 for each
random point qrand. Any face having a normal vector
orientation with angle θ from the vertical of 30° or above is
considered as an obstacle, therefore the planner cannot pass
through that face.

Table I shows the result of RRT-ML and RRT-CML for
different sets of starting and ending positions, where average
iterations is the total number of iterations that each of these
planners took to find the path, averaged over five trials. To
evaluate the performance of these methods on a mesh, the
total number of iterations taken by each method to find the
path is also considered. In Table I the average time per
iteration is the time taken by RRT-ML and RRT-CML to
complete one iteration and the average time is the total
runtime of the planner, each averaged over five trials. The

average path length indicates the average distance of the path
produced by each of the planners for each case over five
trials. Both RRT-ML and RRT-CML were tested on the
synthetic mesh described above with the same parameter set
up. RRT-CML was also evaluated on a real mesh containing
67263 vertices and 133822 faces. The mesh was created
using the colourised 3D LiDAR SLAM point cloud selection
collected by Cox et al. [9]. The original dataset has 3521563
vertices. For this simulation, a section of this data containing
a ramp with a slope of approximately 5.9° was used.

Fig. 3, shows the tree (orange) grown by RRT-ML. RRT-
ML is able find a feasible path in a 3D environment
containing nonspherical topology. For the case 2 in Table I,
RRT-ML was able to find the path after 40 iterations in 8.61
seconds, on average. However, the average execution time is
higher than that for RRT-CML, since goal biasing requires
computation of shortest paths to all RRT nodes. The tree is
grown on traversable parts of the mesh and growing on
obstacles, such as walls, is intentionally avoided.

Fig. 3. RRT-ML tree for Case 4 with a starting point in green and the goal
point in red. The orange lines are the RRT tree.

Fig. 4. Path produced by RRT-ML for Case 4 with a starting point in green
and the goal point in red.

Growing two trees alternately has had a tremendous
result in improving the performance of RRT [18]. Fig. 6

shows the tree produced by RRT-CML on a mesh. Since this
method grow two trees alternately at each iteration, the need
for goal biasing was removed. Looking at the results in Table
I, it is quite clear that the bi-directional RRT version quickly
completes its search. Taking case 2, for example, RRT-CML
reached the goal point in almost half the iterations required
by RRT-ML and in less than half the time, required by RRT-
ML. As shown in the table, in all cases, RRT-CML
completed the planning tasks in less time than that required
by RRT-ML.

RRT-CML was also tested on a real mesh which is
different from the synthetic mesh in terms of the total
number of faces and vertices it has and the density of points.
Fig. 7 shows RRT-CML on a real mesh.

IV. CONCLUSION

Path planning in 3D environments for ground robots is a
challenging task since the path must lie on the surface.
Planning on a mesh requires the computation of geodesic
paths to ensure that all paths lie on the surface of the mesh.
Through the use of CGAL, computation of geodesic paths on
a mesh was enabled; however, determining geodesic paths is
computationally expensive. By introducing local regions, the
exploration space for RRT is reduced to a growing sub-
mesh, thus reducing the length and number of geodesics to be
computed. As a result, the runtime of the algorithm is
reduced.

Fig. 5. RRT-CML tree for Case 4 with a starting point in green and the
goal point in red. The first tree is orange and the second tree is green.

Fig. 6. Path produced by RRT-CML for Case 4 with a starting point in
green and the goal point in red. The point connecting the two trees, one
orange and the other green, is in yellow.

Fig. 7. RRT-CML on a real mesh. The starting point is in green and the
goal point is in red. The point where the first tree (orange) and the second
tree (green) connect is shown in yellow.

To further reduce the runtime of the planner on a mesh
surface, RRT-CML, which grows two trees alternately,
removing the need for goal biasing, was developed and
demonstrated on a synthetic and on a real mesh. RRT-CML
outperformed the RRT-ML method by finding a path in
fewer iterations and in less time, on a synthetic mesh. RRT-

CML operation was also shown in the context of a real 3D
surface mesh, showing capabilities to work well in real world
problems.

In future research the local region approach could be
applied in the asymptotically optimal planner, RRT*, to
obtain optimal solutions. The local regions concept may aid
the near neighbour search and rewiring processes of the
RRT* since it can be used to create the ball of radius k used
by RRT*. This will allow nodes to be selected for the nearest
neighbour and rewiring processes, allowing the RRT*
algorithm to iteratively minimize path cost.

REFERENCES

[1] A. Bhatia and E. Frazzoli. Incremental search methods for
reachability analysis of continuous and hybrid systems. In
International Workshop on Hybrid Systems: Computation and
Control, pages 142–156. Springer, 2004.

[2] P. Bose, A. Maheshwari, C. Shu, and S. Wuhrer. A survey of geodesic
paths on 3d surfaces. Computational Geometry, 44(9):486 – 498,
2011.

[3] A. Breitenmoser and R. Siegwart. Surface reconstruction and path
planning for industrial inspection with a climbing robot. In 2012 2nd
International Conference on Applied Robotics for the Power Industry
(CARPI), pages 22–27, 2012. doi: 10.1109/CARPI.2012.6473354.

[4] J. Canny and J. Reif. New lower bound techniques for robot motion
planning problems. In 28th Annual Symposium on Foundations of
Computer Science (sfcs 1987), pages 49–60, 1987. doi:
10.1109/SFCS.1987.42.

[5] J. Carsten, D. Ferguson, and A. Stentz. 3D Field D*: Improved path
planning and replanning in three dimensions. In Proceedings of the
2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3381–3386, 2006.

[6] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia. MeshLab: an Open-Source Mesh Processing Tool. In

V. Scarano, R. D. Chiara, and U. Erra, editors, Eurographics Italian
Chapter Conference. The Eurographics Association, 2008. ISBN 978-
3-905673-68-5.

[7] F. Colas, S. Mahesh, F. Pomerleau, M. Liu, and R. Siegwart. 3D path
planning and execution for search and rescue ground robots. In 2013
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 722–727, 2013. doi: 10.1109/IROS.2013.6696431.

[8] B. O. Community. Blender - a 3D Modelling and Rendering Package.
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
URL http://www.blender.org.

[9] M. Cox, P. Borges, and T. Lowe. Paintcloud. 3, 2018/06// 2018. URL
https://doi.org/10.4225/08/5b31c59fca196.

[10] E. W. Dijkstra. A note on two problems in connexion with graphs.
NUMERISCHE MATHEMATIK, 1(1):269–271, 1959.

[11] M. Elbanhawi and M. Simic. Sampling-based robot motion planning:
A review. IEEE Access, 2:56–77, 2014. doi:
10.1109/ACCESS.2014.2302442.

[12] A. Fabri and S. Pion. CGAL: The computational geometry algorithms
library. In Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages
538–539, 2009.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968. doi:
10.1109/TSSC.1968.300136.

[14] M. Kallmann. Navigation queries from triangular meshes. In Motion
in Games, pages 230–241. Springer, 2010.

[15] M. Kallmann and M. Kapadia. Navigation meshes and real-time
dynamic planning for virtual worlds. In ACM SIGGRAPH 2014
Courses. Association for Computing Machinery, 2014. doi:
10.1145/2614028.2615399.

[16] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research,
30(7):846–894, 2011. doi: 10.1177/0278364911406761.

[17] S. Kiazyk, S. Loriot, and E. C. de Verdiere. Triangulated surface
mesh shortest paths. In CGAL User and Reference Manual. CGAL
Editorial Board, 5.1 edition, 2020. URL
https://doc.cgal.org/5.1.1/Manual.

[18] J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient approach
to single-query path planning. In Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No.00CH37065),
volume 2, pages 995–1001, 2000. doi: 10.1109/ROBOT.2000.844730.

[19] J.-C. Latombe. Motion planning: A journey of robots, molecules,
digital actors, and other artifacts. The International Journal of

Robotics Research, 18(11):1119–1128, 1999. doi:
10.1177/02783649922067753.

[20] S. M. Lavalle. Rapidly-exploring random trees : a new tool for path
planning. The Annual Research Report, 1998.

[21] S. M. Lavalle and J. J. Kuffner, Jr. Rapidly-exploring random trees:
Progress and prospects. In Algorithmic and Computational Robotics:
New Directions, pages 293–308, 2000.

[22] C. Mthabela, D. Withey, and C. Kuchwa-Dube. RRT based path
planning for mobile robots on a 3d surface mesh. In 2021 Southern
African Universities Power Engineering Conference/Robotics and
Mechatronics/Pattern Recognition Association of South Africa
(SAUPEC/RobMech/PRASA), pages 1–6, 2021.

[23] I. Noreen, A. Khan, and Z. Habib. A comparison of RRT, RRT* and
RRT*-smart path planning algorithms. International Journal of
Computer Science and Network Security (IJCSNS), 16(10):20, 2016.

[24] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane.
Path planning for autonomous underwater vehicles. IEEE
Transactions on Robotics, 23(2):331–341, 2007. doi:
10.1109/TRO.2007.895057.

[25] C. Urmson and R. Simmons. Approaches for heuristically biasing
RRT growth. In Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat.
No.03CH37453), volume 2, pages 1178–1183 vol.2, 2003. doi:
10.1109/IROS.2003.1248805.

[26] S.-Q. Xin and G.-J. Wang. Improving Chen and Han’s algorithm on
the discrete geodesic problem. ACM Transactions on Graphics
(TOG), 28(4):1–8, 2009.

[27] S. Xu, D. Honegger, M. Pollefeys, and L. Heng. Realtime 3D
navigation for autonomous vision guided MAVs. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 53–59, 2015. doi: 10.1109/IROS.2015.7353354.

[28] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia. Survey of robot
3D path planning algorithms. Journal of Control Science and
Engineering, 2016. ISSN 1687-5249. doi: 10.1155/2016/7426913.

[29] Y. Sun, X. Ran, G. Zhang, H. Xu, X. Wang. AUV 3D Path Planning
Based on the Improved Hierarchical Deep Q Network. Journal of
Marine Science and Engineering. 2020; 8(2):145.
https://doi.org/10.3390/jmse802014.

[30] J.L. Sanchez-Lopez, M. Wang, M.A. Olivares-Mendez, M. Molina
and H. Voos. A Real-Time 3D Path Planning Solution for Collision-
Free Navigation of Multirotor Aerial Robots in Dynamic
Environments. J Intell Robot Syst 93, 33–53 (2019).
https://doi.org/10.1007/s10846-018-0809-5

https://doi.org/10.3390/jmse802014

	I. Introduction
	II. Methods
	A. Discrete geodesic paths on mesh surfaces
	B. RRT on a mesh surface with local regions (RRT-ML)
	C. RRT-Connect on a mesh surface with local regions (RRT-CML)

	III. Results
	IV. Conclusion
	References

