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Abstract—Helicopter main rotor blade flashes in radar mea-
surements are an oft-used feature for target classification. While
focus is often placed on being able to detect them, little attention
has been given to what is required to ensure that they are reliably
and persistently intercepted. Using mathematical analysis and
simulation, this paper explores the probability of helicopter blade
flash interception in search radar. The effects of radar antenna
azimuth beamwidth, scan rate, and waveform on the average
probability of intercept for two-bladed helicopter blade flashes (a
worst-case scenario) are examined. The results presented provide
an upper bound on achievable flash detection performance and
can be used to understand and optimize the performance of
helicopter classification modes.

Index Terms—Probability of Intercept (PoI), helicopter blade
flash, radar, PRF, dwell, scan, pulse train, Non-cooperative Target
Recognition (NCTR), classification.

I. INTRODUCTION

One of the most commonly suggested and used features in
radar measurements of helicopters is main rotor blade flashes.
The topic has received significant attention in literature over
more than three decades. Early mathematical models of blade
returns were produced by Schneider [1] and Martin and Mul-
grew [2]. Numerous subsequent studies such as [3]–[7] have
made use of measurements to validate blade flashing models.
Another avenue of research has focused on the exploitation
of blade modulation for the classification and identification
of helicopters. Examples include time domain [8], [9], time-
frequency [10], [11] and sparse signal representation [12], [13]
approaches.

The exploitation of blade flashes in radar measurements
presupposes that they have been intercepted. This is potentially
a limiting factor in search radar. As Misiurewicz notes in
[5], the interception of blade flashes in a single scan are rare
under the normal operating conditions of a rotating antenna.
Interception also places an upper bound on the achievable
detection performance. Despite this, it has only received
cursory attention in literature.

Interception of blade flashes in pulse-Doppler search radar
depends mainly on two radar parameters. Firstly, the Pulse
Repetition Interval (PRI) must be short enough such that
a blade flash cannot occur between two successive pulses
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without being intercepted. Secondly, the dwell time on target
must be long enough such that at least one blade flash must
occur during a dwell. Misiurewicz [9] provides requirements
on the minimum values of PRI and dwell time on target to
guarantee a blade flash intercept. When these requirements
are not met, simplifying independence assumptions are made
to calculate the cumulative probability of flash interception
after a certain number of consecutive scans. Likewise, Tait
[14] provides requirements on PRI and target dwell to ensure
interception and suggests that the cumulative probability over
several short dwells can be used to obtain reasonable intercep-
tion performance. Olsen et al. [15] also provide a discussion
on blade flash interception, however, their work was limited
to the requirements on pulse duration and PRI to guarantee
intercept. While the requirements to guarantee intercept have
been well covered [9], [14], [15], insufficient analysis has been
conducted for the case when these requirements are not met.
The contributions of this paper are focused on addressing this.
The insights can be used to better understand the trade-offs and
limitations associated with the use of helicopter blade flashing
in search radar.

The remainder of this paper is structured as follows. Sec-
tion II frames the probability of intercept problem as one
concerning the interception of pulse trains and outlines some
assumptions made in the analysis. In Section III, the concept
of helicopter main rotor blade flashing is introduced and
equations developed to specify the associated parameters.
Thereafter, Section IV introduces the blade flash interception
problem and discusses the minimum requirements on PRI
and target dwell time to guarantee interception. Thereafter,
Section V discusses the two pulse PoI problem and presents
PoI results related to radar waveform (i.e. PRI) and scanning.
In Section VI, the three pulse train PoI problem is analyzed
and results presented when radar waveform and scanning are
simultaneously accounted for. Finally, conclusions are drawn
in Section VII.

II. PROBLEM FORMULATION

Helicopter blade flash interception can be modeled as a
pulse train interception problem. Specifically, the periodic
processes involved, namely radar scanning or rotating, heli-
copter blade flashing and radar waveform can be modeled as
pulse trains. This is shown in Fig. 1. Note that the starting
phases (φ), are defined for convenience from the falling edge
of a pulse. The pulse widths and periods are derived from
designed radar and helicopter parameters and are assumed
to be consistent. Note that this means the analysis is only
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Fig. 1. Periodic processes, modeled as pulse trains, involved in the intercep-
tion of helicopter blade flashes. The pulse train periods (T ), pulse widths (τ )
and start phases (φ) are indicated.

applicable to radars with constant sector revisit time. For
mechanically scanned radars that scan back and forth within
an angular sector, the analysis will only be relevant when the
helicopter is situated precisely in the middle of the scan sector.
The starting phases are assumed to be unknown, and uniformly
distributed. Given that they are related to initial conditions at
start-up, and the time of start-up relative to the start of the
observation period (t), this is a reasonable assumption.

The aim of the analysis is to determine the Probability of
Intercept (PoI) of at least one blade flash, after the pulse trains
have been observed for a certain time t. These problems arise
in the field of Electronic Support (ES), where ES receivers
are required to intercept a scanning radar transmission while
measuring at the correct frequency band. The nature of the
problem has meant that there are a number of works that
use reasonable approximations [16]–[18]. Clarkson [19]–[21]
has also published extensively on this topic, and does not
specifically rely on the use of approximations. The analysis
in this paper draws significantly on this work.

The vertical dark blue region in Fig. 1 represents an
interception event between the pulse trains. The parameter
d defines the minimum duration an intercept must exist for
to be valid. If d = 0, pulses only need to touch, while
if d = min(τs, τflash, τw), the shortest of the pulses must
overlap entirely with the others. d will have a very important
influence on radar detection since it determines how much
energy is returned to the radar. At closer ranges, a low d value
might be sufficient to ensure detection, while longer ranges
may require a higher value for d. As a compromise, for the
remainder of the paper, it is assumed that d = τmin/2, where
τmin is the shortest pulse length of all the pulse trains under
consideration.

Before proceeding, typical parameter values for helicopters
and radars that relate to the analysis will be briefly discussed.
Although 2, 3, 4 and 5 bladed helicopters are common, 2
bladed helicopters produce the lowest flash rate, and therefore
represent a worst-case scenario for interception. Consequently,
they are the main focus of this paper. The main rotor rotation
rate for most helicopters lies between 250 and 500 Revolu-
tions per Minute (RPM). This analysis focuses on the region
between 350 to 450 RPM.

The analysis is performed for radars operating between 1
and 10 GHz, which includes a significant portion of typical
search radars. Azimuth beamwidths for these radars vary
roughly between 1◦ and 5 ◦. Search radars have pulse widths

Fig. 2. Top view of a simplistic helicopter main rotor blade.

that can be roughly between 1µs and 100µs. In this paper
a fairly conservative (i.e. longer) value is obtained by using
10% duty-cycle waveforms. The PRFs covered are between 1
and 15 kHz which extend slightly higher than is typical for
search radars. Larger, longer range search radars typically have
rotation rates between around 5 RPM and 30 RPM. Smaller,
shorter range radars can have higher rotation rates of around
60 RPM. This study makes use of 15, 30 and 60 RPM.

III. HELICOPTER MAIN ROTOR BLADE FLASHING

In this paper, simple models are used to provide equations
for blade flash width and blade flash period that describe a
pulse train. These are presented in the sections that follow.

A. Blade Flash Width

The Radar Cross Section (RCS) of helicopter blades, de-
noted by σ, can be approximated by modeling them as perfect
electrical conducting cylinders. Using physical optics [22], the
Equation for the RCS is

σ = kaL2 cos2 θaz

[
sin(kLcos(θel)sin(θaz))

kLcos(θel)sin(θaz)

]2
, (1)

where k = 2π/λ , a is the cylinder radius, L is the length,
θaz is the angle off broadside as shown in Fig. 2, and θel is
the elevation angle relative to the radar. Given the ranges at
which radar targets are typically measured, θel is assumed to
be small and reasonably approximated as 0◦.

Using Equation 1, it can be shown that the null-to-null
azimuth angular width of the flash is θnn ≈ 2π/(kL).
According to the Rayleigh resolution criterion, the angular
width (α) of a ’sinc’ type beam can be approximated as half
the null-to-null width, yielding α ≈ λ/(2L). The blade flash
width in time (τflash) can then be calculated using the rotor
rotation rate and expressed in terms of the blade tip speed.
For even bladed helicopters the effective blade length can be
considered to be twice that of a single blade, yielding the
following approximations,

τflash ≈

{
λ

4vtip
for N even

λ
2vtip

for N odd
, (2)

where N is the number of main rotor blades. In helicopters,
due to aerodynamic considerations, the blade tip velocity must
be kept roughly constant and generally falls between 200 to
250 m/s [3], [5], [9]. This constraint allows τflash to be
specified independently of the rotor rotation rate and blade
length, making it only a function of radar wavelength. For
simplicity, Equation 2, with vtip = 225m/s was used to
calculate τflash for the remainder of the results presented in
this paper.
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B. Blade Flash Period

The blade flash period (Tflash) is the other main parameter
of interest for PoI analysis. It is calculated using Equation 3
below. fheli is the main rotor rotation rate in Hz.

Tflash =

{ 1
fheliN

for N even
1

fheli2N
for N odd

(3)

The equation entails that two blade flashes occurring simulta-
neously, as is the case for an even bladed helicopter, can be
considered to be a single flash event.

C. Limitations

Some caveats of using some simplifying assumptions and
basic models, such as those specified in the previous sections,
merit a brief discussion:
• Maneuvering or accelerating helicopters can produce el-

evation angles that violate the small angle approximation
previously stated. Larger elevation angles will lead to
a broadening of the blade flashes in time that is not
accounted for in this study.

• As noted by Point [7], the blade flash durations produced
by a simple model such as Equation 2 can produce
flash durations that are sometimes significantly less than
have been observed in measured data. The difference is
attributed to various deformations that the blades undergo
when in motion.

• Receding and incoming flash durations may be different
due to the different deformations the blades undergo.

• For even bladed helicopters, receding and incoming
flashes may not occur simultaneously as is assumed in
Equations 2 and 3.

As outlined above, there are scenarios in which the models
and assumptions used in this study are inaccurate. The parame-
ter values used however tend to err in a conservative direction,
placing more stringent requirements on radar parameters than
may be absolutely necessary. The work can thus be considered
to provide lower bound estimates on the PoI of blade flashes.

IV. SINGLE PULSE TRAIN PROBABILITY OF
INTERCEPTION

The continuous observation of a single pulse train over a
period of time is illustrated in Fig. 3. The red region represents
the observation time (t), and d the required overlap for an
intercept to be legitimate. If d = 0, Pint(t) can be viewed
as the portion of T that has been observed (t), plus the pulse
width, normalized by T . If the pulse train is observed for a
single instant in time, Pint(0) = τ/T . This takes into account
all possible uniformly distributed pulse train start phases (φ).

Should d > 0, d must be subtracted from both τ and the
observation time t to produce the correct probability. For t >
d, Equation 4 expresses this mathematically.

Pint(t) =
t+ τ − 2d

T
(4)

Once the pulse train has been observed for t ≥ T − τ + 2d,
interception is certain since there is no possible region within

 

Fig. 3. PoI for one pulse train after an observation time t and a required
overlap of d.
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Fig. 4. Probability of main rotor blade flash intercept for at least one main
rotor blade flash for two bladed helicopters at 10 GHz.

the pulse period that could contain a pulse that has not been
observed for the requisite duration. For pulse trains with τ �
T , the PoI progression over time is almost entirely dependent
on the period (T ).

A. The Effect of Dwell Time on Target

When a helicopter is illuminated by a radar beam contin-
uously (as is the case in a tracking radar), the probability
of intercepting a blade flash over time can be calculated by
applying Equation 4 with the relevant blade flash pulse train
parameters.

Fig. 4 shows Pint(t) for hypothetical two-bladed helicopters
with different rotation rates, measured at 10 GHz as a function
of dwell time. In generating the results, at least 50% of a
blade flash must be observed to count as an intercept (i.e.
d = 0.5τflash). A dwell time greater than approximately 80
ms is required to guarantee intercept for most feasible main
rotor rotation rates.

Although the results in Fig. 4 are generated for a specific
transmit frequency, it is typical that t � τflash. Taking
this into account allows Equation 4 to be approximated as
Pint(t) ≈ t/Tflash, which is independent of radar transmit
frequency. Consequently, the result in Fig. 4 can be considered
largely independent of transmit frequency.

B. The Effect of PRF

The minimum requirement on PRF to guarantee blade flash
interception can be analyzed in a similar manner to dwell
time using Equation 4. The main difference is that the pulse
train under consideration is not that of the blade flashing,
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Fig. 5. Probability of main rotor blade flash intercept for two bladed
helicopters after an observation time equal to one blade flash width.

but that of the radar waveform. For a waveform with a pulse
repetition interval (Tw) and a transmitted pulse width (τw), the
probability of interception can be evaluated for t ≤ τflash. In
effect, a blade flash can be considered to ’observe’ a waveform
period.

Fig. 5 shows the Pint(t) for different PRF and transmit
frequency combinations after one completed blade flash (t =
τflash). The simulated radar transmit waveforms have a duty-
cycle of 10%. It can be seen that to ensure intercept, a PRF
that would be considered high1 in the context of the transmit
frequency is required.

V. TWO PULSE TRAIN PROBABILITY OF INTERCEPTION

If the minimum requirements for interception in the pre-
vious section cannot be met (likely due to update rate re-
quirements for target detection and tracking in search radar, or
an unambiguous range requirement on the PRF), the problem
becomes one concerned with the PoI of two pulse trains. One
of these is produced by blade flashing, the other by a search
radar antenna, or by the transmitted waveform of a pulse-
Doppler radar.

Two variations of the PoI problem are analyzed here:
1) In the discrete time variation, as referred to by Clarkson

[20], the PoI as a function of continuous observation
time, Pint(t), is determined for the case where the start
phase of one of the pulse trains (call it pulse train 1)
is known and the other (pulse train 2) is unknown and
uniformly distributed over the period T2. The obvious
limitation here is that a random start phase of pulse
train 1 (φ1) is not accounted for. As will be explained
in more detail in the next section, this limitation can
be mitigated by only evaluating Pint(t) (as derived for
a particular φ1 value) at non-zero integer multiples of
T1. At these time instants Pint(t) is independent of φ1
and is the reason for the ’discrete time’ name for this
variation of the problem. The analysis of this version
is performed to help build a conceptual understanding

1likely range ambiguous and Doppler unambiguous

and as an intermediate step towards the continuous time
variation.

2) In the continuous time variations, both start phases are
unknown and uniformly distributed over the respective
pulse periods. The derived Pint(t) is applicable for any
continuous observation time t. Understanding of this
variation is important as a foundation for the three pulse
train PoI problem.

The analysis in the subsections that follow makes use of the
following conventions:

• For the sake of brevity, it is always assumed that T1 ≥ T2.
It is, however, possible to perform the same analysis when
T1 < T2. The outcomes and conclusions reached will be
equivalent.

• It is assumed that the required overlap for an interception
to be declared (as shown in Fig. 1 as d) has been
accounted for in the pulse widths of each of the pulse
trains (i.e. τi := τi − d). Consequently, the analysis can
proceed as if the pulses are just required to touch to
constitute an intercept.

A. Discrete Time PoI

Building on the explanation for a single pulse train (see
Section IV), consider a hypothetical 2 pulse train scenario
shown in Fig. 6. For illustration purposes, φ1 = 0, φ2 is
uniformly distributed over T2 and the observation time is 2T1 .
Two examples of pulse train 2, with different start phases, are
provided in red and gray. Similarly to Section IV, pulses from
pulse train 1 can be considered to observe different portions
of T2. This is shown at the bottom of Fig. 6 where the blue
and green pulses from pulse train 1 occupy different regions
of T2. Note that τ2 is appended (or prepended depending
on convention) to every observed region to fully account for
all interception possibilities. With wrapping of the observed
regions allowed, the total region covered is independent of
φ2. The average PoI over all possible φ2 values is the total
portion of T2 that has been observed, normalized by T2,

Pint(2T1) =
2(τ1 + τ2)

T2
. (5)

While the process of observing the T2 phase space can be
used to account for the uniform distribution of φ2, it does
not account for a uniformly distributed φ1. To illustrate this
consider Fig. 7 which shows color-coded Pint(t) curves for
different φ1 values. The different start phases produce unique
Pint(t) curves, however in all cases Pint(T1) is equal, inde-
pendent of φ1. This is generally true over extended observation
times as long as Pint(t) is evaluated at non-zero integer
multiples of T1. This is because, at these time instants, the
total duration of observed τ1 pulses (including partial pulses
at the beginning and end of a period) is constant regardless of
the start phase.

The discrete time version of the two pulse train problem is
useful to analyze to develop an understanding of the influence
of pulse widths and periods on the progression of PoI over
time. This will be done in the two subsections that follow.



5

Pulse Train 1

Pulse Train 2

Example 1

Overlay 

Example 2

T2 coverage

Pulse Train 2

Example 2

Overlay 

Example 1

Fig. 6. PoI of 2 hypothetical pulse trains after t = 2T1. The start phase of
pulse train 2 is uniformly distributed and two examples (in red and gray) of
start phases are provided.

Fig. 7. Examples of the progression of the PoI over time for different values
of φ1, assuming φ2 is uniformly distributed over T2. The differing amplitudes
of the pulses in the top graph have no significance and are varied purely for
visibility reasons.

1) The Influence of Pulse Train Periods: To analyze the
influence of pulse train periods, consider the parameter Tshift,
as defined in the equation below, and indicated at the bottom
of Fig. 6.

Tshift =

(
T1
T2
−

⌊
T1
T2

⌋)
T2 (6)

Here, b.c denotes the floor operation. This parameter deter-
mines where in the T2 phase space a new τ1 pulse falls relative
to the previous τ1 pulse. It thus influences how the PoI grows
over time. If 0 < Tshift < τ1 + τ2, successive τ1 pulses
‘observe’ different parts of the T2 phase space, however, at
a decreased rate due to overlapping with previously observed
regions. In the extreme, the PoI does not grow after the first τ1
pulse. This occurs when there is persistent, complete overlap
with previously observed regions of the T2 phase space (i.e.
Tshift = 0 since T2 is an integer multiple of T1). If the
magnitude of Tshift is precisely one half of the T2, every
second scan will be observing the same portion of the T2.
Alternatively, if Tshift = τ1 + τ2, the PoI will grow to 1 at a
maximum rate since each new τ1 pulse observes a new region
of T2.
Tshift can assume any value between 0 and T2, each of

which provide a different way in which the T2 phase space is
observed over time. If Tshift is rational, there exists integers n
and m, such that nT1 = mT2. The implication is that there is

a point in time (tr) that is a non-zero integer multiple of both
T1 and T2. This is significant for the PoI because it means that
from tr onwards, no new regions of T2 will be observed as the
observation cycle will repeat indefinitely at integer multiples
of tr.

If Tshift is normalized by T2 to produce T̃shift, then 0 ≤
T̃shift < 1 and rational T̃shift values are part of a set of
fractions called Farey sequences [20] of a particular order.
For example, the Farey sequences of order 1 and 2 are given
by F (1) =

{
0
1
1
1

}
and F (2) =

{
0
1
1
2
1
1

}
. The selection of the

appropriate order of Farey sequence for a particular pulse train
interception problem will be addressed in the next section.

If Tshift is irrational, it is guaranteed that exactly the same
point in the T2 phase space will never be revisited. This has
the benefit that the PoI will eventually grow to 1.

2) The Influence of Pulse Widths: From the example in Fig.
6, it is clear that in addition to the pulse periods, the length
of both the pulses play a role in determining the growth of
the PoI over time. When there is no overlap between new τ1
pulses and previously observed portions of T2, the probability
grows at its maximum rate, which is ∆Pint = (τ1 + τ2)/T2.

The pulse widths also determine the order of Farey sequence
(nfarey) applicable to a PoI problem. If 0 < T̃shift ≤
(τ1+τ2)/T2 and rational (i.e. a member of a Farey sequence),
new ’observations’ from τ1 pulses will always overlap with the
previous one. This means that there cannot be regions in T2
that are unobserved by the time the ’observation cycle’ starts
to repeat. The appropriate order of Farey sequence should
therefore not contain any values < (τ1 +τ2)/T2. The equation
to determine nfarey is given below [20],

nfarey =

⌈
T2

τ1 + τ2

⌉
− 1, (7)

where d.e denotes the ceiling operation. The number of
Farey sequence values in a set grows with increasing order.
Consequently, the lower the order, the lower the possibility
that T̃shift will fall on or close to a Farey sequence number.
Given Equation 7, it is clear that the larger τ1+τ2 is, the better.
If T̃shift > (τ1 + τ2)/T2 and is a Farey sequence value, it is
possible but not certain, that the PoI ’saturates’ before reaching
1. This will occur because observed regions within the T2
phase space are revisited repeatedly, while unobserved regions
remain as such. T2 can never therefore be fully observed and
the PoI converges to a value < 1.

3) PoI Calculation: A conceptually simple algorithm to
calculate the PoI after a certain number of T1 periods can
be conceived with reference to the example in Fig. 6. The
algorithm keeps track of the regions of T2 observed after every
T1 period (including the merging of any overlapping regions).
The PoI can then be calculated by summing the length of
the regions covered and normalizing by T2. While such an
algorithm is straightforward to implement, it is not necessarily
computationally efficient.

In [20], Clarkson derives a piecewise linear equation to
solve this problem that is significantly more efficient than the
approach discussed above. Exploiting the same principles dis-
cussed in the previous two sections, the equation makes use of
outputs from the Simple Continued Fraction (SCF) expansion
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of the ratio of the pulse periods. The approximation tolerance
that is used as a stopping criterion for the SCF expansion is
set to the sum of the pulse widths. The resulting equation
consists of 4 linear segments. The slope of the segments and
their boundaries are determined by the pulse train parameters
and the outputs (some of which are intermediate) from the
SCF expansion.

B. Continuous Time PoI

For the continuous time problem, uncertainty in phase for
both pulse trains must be taken into account to produce a PoI
at any observation time t >= 0. To investigate the effect of a
uniformly distributed φ1, consider the ensemble of functions
Pint(t, φ1). Several examples of such functions are shown by
the colored plots at the bottom of Fig. 7. Each of the functions
is produced by observing the coverage of the T2 phase space
over time for a particular φ1 value in the interval [0, T1).

Since Pint(t, φ1) is a function of the uniformly distributed
random variable φ1, it can be considered a stochastic process,
the average of which can be calculated as follows,

Pint(t) =
1

T1

∫ T1

0

Pint(t, φ1) dφ1, (8)

The computational requirements to numerically solve Equation
8 can be reduced significantly by exploiting the behavior of
Pint(t, φ1) over time for φ1 ∈ [τ1, T1). To show this, Pint(t)
can be expressed as the summation of two terms:

Pint(t) =
τ1
T1
Pint(t)φ1∈[0,τ1) +

T1 − τ1
T1

Pint(t)φ1∈[τ1,T1)

(9)

For the first term in Equation 9, the τ1 pulse is only partially
present at t = 0. In Fig. 7, examples of functions that fall in
this interval are colored green and red. Each of the functions
in this interval have unique probability progressions over time.
Calculating Pint(t)φ1∈[0,τ1) involves averaging all the unique
Pint(t, φ1) curves for all applicable values of φ1.

The calculation of Pint(t)φ1∈[τ1,T1)
can proceed slightly

differently. When φ1 ∈ [τ1, T1), no partial τ1 pulse is en-
countered, and different values of φ1 in this interval produce
the same probability progression over time, except for a time
delay. Examples of this are shown in Fig. 7 as the blue, gray
and purple colored curves. Expressed mathematically,

Pint(t, τ1 + ∆t) = Pint(t−∆t, τ1), (10)

provided ∆t ∈ [0, T1 − τ1]. Pint(t)φ1∈[τ1,T1)
can then be

determined by averaging delayed versions of Pint(t, τ1) up
to a delay of T1− τ1, as expressed in Equation 11 where β is
a dummy integration variable.

Pint(t)φ1∈[τ1,T1)
=

1

T1 − τ1

∫ T1−τ1

0

Pint(t−β, τ1) dβ (11)

For numerical computation, producing an accurate estimate
of Pint(t)φ1∈[τ1,T1)

in Equation 11 entails that Pint(t, τ1) is
known for a sufficient number of uniformly distributed values
of t over an interval of at least T1−τ1. This requirement is less
computationally intensive than having to simulate Pint(t, φ1)

for all φ1 ∈ [τ1, T1] at only a single time value (which is when
the computational saving is at its lowest). This is because the
operations required to compute Pint(t, τ1) for later values of
t require the same operations already completed for earlier
values of t. For all φ1 ∈ [τ1, T1] at one value of t, they are
independent.

By exploiting Equation 11, the number of computations
required to calculate Pint(t) can be reduced by a factor close
to (T1 − τ1)/T1. Given that often τ1 � T1, this can be a
significant saving.

As with the discrete time problem, Clarkson has also ana-
lyzed the continuous time problem and produced an expression
for the PoI over time [19], [20]. The expression is very
similar to the discrete time expression as it is also piecewise
linear. There is, however, an additional quadratic segment.
The simulation results presented in Sections V-C and V-D are
generated using this expression [20]. This was done for reasons
of accuracy and efficiency. The detailed analysis in this section
is provided to develop a conceptual understanding and to build
towards an algorithm for three pulse train PoI problems, which
Clarkson’s expression does not cater for. This will be covered
in Section VI.

C. The Effect of Radar Scanning

The parameters of a pulse train formed by a rotating radar
antenna can be calculated using the antenna rotation rate (fs)
and the radar antenna azimuth beamwidth (Baz). The period
(Ts) is given by Ts = 1/fs, where fs is in Hz. The dwell time
on target (τs) for each rotation is τs = Baz/(360fs), for Baz
in degrees.

Fig. 8 shows the PoI and a function of time for hypothetical
two-bladed helicopters with rotation rates between 350 and
450 RPM. For each of the three plots in the figure the radar
azimuth beamwidth is set to 2.5◦ with the scan rate being 15,
30, and 60 RPM. In each of the plots, the growth in probability
over time is evident. The most prominent features are the
helicopter RPM values that result in Farey sequence points.
They can be seen as valleys in the probability surfaces that
extend over time. They are increasingly prevalent and deeper
for high radar scan rates. This is to be expected given Equation
7 from Section V-A2. The higher the antenna rotation rate,
the higher the applicable order of Farey sequence and thus the
number of Farey sequence values.

To quantify the influence of different antenna rotation rates
and beamwidths, probabilities are averaged over helicopter
rotation rates, however, the transmit frequency is kept constant
at 9 GHz. Resulting average probability curves are presented in
Fig. 9 for observation times of 4 and 15 seconds. At 4 seconds,
there is a notable difference between performance at 15 RPM
compared to the others. This is the result of the antenna
rotation rate and beamwidth combinations guaranteeing flash
intercept in a single dwell for a higher proportion, and in some
cases all, of the simulated helicopter rotation rates (350 - 450
RPM).

It is clear that unless the antenna rotation rate is low
enough to guarantee intercept, it plays a fairly insignificant
role in the development of the PoI over time. Beamwidth is
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Fig. 8. PoI for hypothetical two bladed helicopters as a function of time
and helicopter rotation rate for radar rotation rates of 15 RPM, 30 RPM and
60 RPM. Radar transmit frequency is 9 GHz and the radar antenna azimuth
beamwidth is 2.5◦.
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Fig. 9. PoI for two bladed helicopters as a function of azimuth beamwidth
for different antenna rotation rates, after 4 (solid line) and 15 (dashed line)
second observation times. The radar transmit frequency is 9 GHz.

significantly more important. A plausible explanation for this
is that the decreased PoI associated with a shorter dwell (or
higher antenna rotation rate) is counteracted to a large extent
by an improved update rate.

By the time 15 seconds have elapsed the difference in
performance between rotation rates is negligible. It is clear
that, for shorter observation times, there is significant benefit
to ensuring that a single dwell intercept is guaranteed. Relying
on multiple revisits to improve the PoI is effective, but comes
at the cost of the observation time required.

Fig. 8 and Fig. 9 also highlights an important practical
observation. To provide an indication of PoI levels that can be
expected on average, the results in Fig. 9, and in almost all of
the results that follow in this paper, are the average over likely
helicopter main rotor RPMs. Fig. 8 shows that the performance
obtained for a particular helicopter can vary significantly from
the average. Even though average PoI performance may be
acceptable, the performance for a particular helicopter may
not be. The simplifying independence assumptions often used
to calculate the cumulative PoI after multiple scans [9], [14]
do not provide this insight. It is worth noting that although
results in Fig. 9 are produced for 9 GHz, they are relatively
insensitive to transmit frequency.
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Fig. 10. PoI as a function of time for hypothetical two bladed helicopters
with rotation rates between 350 and 450 RPM. The PRF is 5 kHz, waveform
duty-cycle 10% and the transmit frequency is 9 GHz.

D. The Effect of Radar Waveform

The effect of a PRF that is too low will now be considered.
It is assumed in this section that the target is being observed
continuously (i.e. no antenna scanning). Fig. 10 shows the PoI
as a function of time for hypothetical two-bladed helicopters.
There is a strong prevalence of helicopter RPMs that are
Farey sequence values as evidenced by the numerous valleys
in the probability surface extending vertically over time. It is
however noticeable that the majority of helicopter RPM values
have a high PoI after about a second. This is significantly
shorter than what was seen for the radar scanning in the
previous section and is to be expected given the comparatively
shorter pulse periods.

Fig. 11 presents the average PoI at observation times of
0.1s and 0.5s for hypothetical helicopters with rotation rates
between 350 and 450 RPM at different PRF and transmit
frequencies. The waveform duty-cycle is kept constant at 10%.
At an observation time of 0.1s, all the simulated helicopter
flash periods have elapsed. As a result, all PRF-transmit
frequency combinations that guarantee intercept after 1 flash
are at a probability of 1. As with radar scanning, it is evident
that time does cause an improvement in probability levels as
there is significant growth in PoI after only 0.5s. Given the fast
initial growth, the extent of the improvement is not significant
after an extended observation period.

It is interesting to note that for a 10 GHz transmit frequency,
at PRFs below 3 kHz the PoI appears to no longer be
dependent on PRF. Likewise, at 6 GHz, PRFs below 1.8 kHz
no longer influence the PoI. The reason for this relates to
the definition of the required overlap for interception (d). At
the respective transmit frequencies, PRFs below 3 kHz and
1.8 kHz result in τw > τflash. Recall from Section II that,
d = 0.5[min(τw, τflash)], thus d = 0.5τflash in this case. As
highlighted in Section V-A2, τ1 + τ2 plays a critical in the
growth of the PoI. For these PRFs, τw + τflash − 2d = τw
and the growth of the PoI is effectively independent of τflash.
Because a fixed duty-cycle waveform is used, as Tw grows,
so does τw in the same proportion. When averaged over the
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Fig. 11. Averaged probability of main rotor blade flash intercept for at least
one main rotor blade flash for two bladed helicopters for differing PRFs and
transmit frequencies after observation times of 0.1 and 0.5 s. The helicopter
rotation rates over which the PoI is averaged are uniformly distributed between
350 and 450 RPM and the waveform duty-cycle is 10%.

different simulated helicopter flash rates, this results in the
constant PoI that is observed.

VI. THREE PULSE TRAIN PROBABILITY OF INTERCEPTION

When the requirements to guarantee intercept for radar
waveform (i.e. PRF) and radar scanning (i.e. too short dwell
time) are simultaneously unmet, a three pulse train PoI prob-
lem is encountered as shown in Fig. 1. The PoI for more
than two pulse trains becomes increasingly difficult to solve.
Clarkson has shown in [20] that, for such a problem, the
number of linear segments in an expression for the PoI over
time is unbounded. Consequently, it is not possible to derive
an expression as was done for the discrete and continuous time
two pulse train problems. Clarkson then resorts to considering
only short observation times, where it is possible to derive
exact expressions for M pulse trains. The approximation
developed by Self and Smith [18], which is also applicable
to M pulse trains, suffers from the same problem of only
being accurate for short observation time periods.

The approach to calculate the three pulse train PoI in this
paper can be considered an extension of the continuous time
two pulse train algorithm from Section V-B. It combines
Monte Carlo simulation with statistical analysis to produce an
algorithm that is accurate and more efficient than pure Monte
Carlo.

Assume that the pulse trains are ordered by period length
such that labels 1, 2, and 3 result in T1 ≥ T2 ≥ T3. For
illustration, assume that start phases φ1 and φ3 are set to
constant values. Such a scenario is shown in Fig. 12. The first
step in calculating the PoI involves determining the overlap-
ping regions between pulse trains 1 and 3. Together they form
a new merged pulse train, possibly with an irregular period
and pulse width (the purple regions in Fig. 12). The merged
pulse train then ’observes’ the T2 phase space as described
in previous sections. Again, τ2 is appended to every observed
region and wrapping is allowed. A single probability curve as
a function of time, Pint(t, φ1, φ3), can then be determined.
To produce the average probability curve for all start phases,

Pulse Train 1

Pulse Train 2

Overlay

T2 coverage

Pulse Train 3

Merged Pulse 

Train 1 and 3

 

 
Wrapped coverage

Fig. 12. Example of the calculation of the PoI for 3 hypothetical pulse trains.
The start phase of pulse train 1 and 3 are known.

the same procedure must be repeated for all φ1 ∈ [0, T1) and
φ3 ∈ [0, T3), and the results averaged.

Pint(t) =
1

T1T3

∫ T1

0

∫ T3

0

Pint(t, φ1, φ3) dφ1 dφ3. (12)

Numerically, this entails sampling φ1 and φ3 at a fine enough
resolution or using Monte Carlo simulation. Just as for the
continuous time two pulse problem, an improvement in effi-
ciency is possible. The first step is to take φ3 into account
over [0, T3) to produce,

Pint(t, φ1) =
1

T3

∫ T3

0

Pint(t, φ1, φ3) dφ3. (13)

Pint(t, φ1) represents an ensemble of curves, each of which
is produced by a different φ1 value and the average of φ3 ∈
[0, T3). The desired average probability can then be specified
by breaking it into two terms.

Pint(t) =
1

T1

(∫ τ1

0

Pint(t, φ1) dφ1+∫ T1

τ1

Pint(t, φ1) dφ1

)
.

(14)

The first term in Equation 14 must be calculated by aver-
aging all the individual curves Pint(t, φ1) for φ1 ∈ [0, τ1).
The second term can be calculated differently to allow for
computational efficiency as with the two pulse problem. For
φ1 ∈ [τ1, T1), a change in φ1 is equivalent to a shift in time,
thus∫ T1

τ1

Pint(t, φ1) dφ1 =

∫ T1−τ1

0

Pint(t− β, τ1) dβ. (15)

This means that φ1 only needs to be varied in the interval
[0, τ1] during computation.

A. The Simultaneous Effect of Radar Waveform and Radar
Scanning

The simultaneous effect of radar waveform and scanning
was investigated using the algorithm described in the previous
section. It was developed in Julia [23] to exploit the speed
and distributed computing capability provided by the language.
The simulation implementation was verified as follows:
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1) The results match those produced by the exact expres-
sion from Clarkson [20], that is applicable only for short
observation intervals.

2) A three pulse train problem with one pulse train having
a 100% duty-cycle produced the same results as an
equivalent two pulse train problem (i.e. the 100% duty-
cycle pulse train can be removed). Thereafter, as the
duty-cycle was shortened, the calculated probabilities
decreased compared to those produced for the two pulse
problem.

To generate results, the algorithm was deployed in parallel
across multiple Central Processing Unit (CPU) cores, on
multiple different machines in a High Performance Computing
(HPC) Cluster. To account for the uniform start phases in each
specific 3 pulse train interception problem, a Monte Carlo
simulation was run for different combinations of φ1 ∈ [0, τ1)
and φ3 ∈ [0, T3) (see previous section for details). Each of
the three pulse trains are specified by two parameters (pulse
width and period, start phase is accounted for in the algorithm)
making a total 6 of parameters. Simulating many variations of
all these parameters results in a combinatorial explosion. For
this reason, the extent to which each parameter could be varied
had to be constrained as follows:

• Antenna beamwidth: 2.5◦ and 5◦

• Antenna scan rate: 15, 30, and 60 RPM
• Transmit frequency: 1.5 GHz, 3 GHz, 6 GHz and 10 GHz
• Helicopter main rotor rotation rate: 401 values uniformly

distributed between 350 and 450 RPM
• PRF: 1 kHz to 15 kHz in 200 Hz steps
• Waveform duty-cycle: Fixed at 10%

To illustrate the effect of radar scanning and waveform
combined, Fig. 13 provides a comparison with related two
pulse train results. Where PRF is relevant it is set to 5 kHz
and the transmit frequency is 9 GHz. The addition of a third
pulse train has a significant effect on the achieved probability.
In both of the two pulse train results, a significant portion of
the probability surface is equal to 1, whereas the three pulse
train result does not reach levels more than roughly 0.3. To
investigate this further, Fig. 14 provides the average PoI over
helicopter main rotor rotation rates at observation times of 4
seconds (at least 1 full antenna rotation at the slowest antenna
RPM), and 40 seconds. The left column provides results for a
radar with an antenna azimuth beamwidth of 2.5◦, and the
right column provides results for a radar with an antenna
azimuth beamwidth of 5◦. Rows 1, 2, and 3 provide results
for antenna rotation rates of 15, 30 and 60 RPM respectively.
In all the sub-figures, PRFs greater than 4.5 kHz at 1.5 GHz,
and greater than 9 kHz at 3 GHz represent scenarios where
the PRF is high enough so that it no longer is a factor in
interception. This region can be used as a reference for what
is achievable when only scanning is relevant. In the two pulse
train results in previous sections, there was clear benefit to
specifying parameters such that only one scan or PRI was
required for intercept. This kind of observation extends to the
three pulse problem, where there is clear benefit to making it
a two pulse train problem.

It is also evident that at PRFs lower than 3 kHz at 10 GHz
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Fig. 13. Comparison between the PoI as a function of time and helicopter
RPM for different measurement scenarios. Bottom: staring measurement of
a helicopter at a PRF of 5 kHz (too low to guarantee interception). Middle:
the PRF is high enough to guarantee intercept while the radar scans (dwell is
too short to guarantee intercept). Top: the radar is scanning and the PRF is 5
kHz. The transmit frequency is 9 GHz and the hypothetical helicopters with
different rotation rates are all 2 bladed.

and 1.8 kHz at 6 GHz, the same plateau in PoI as encountered
in Section V-D is seen. This is again a consequence of the
overlap parameter d as previously discussed.

The most dramatic affect on performance occurs during the
initial period of observation. At 4 seconds, regardless of the
radar rotation rate and beamwidth, there is a significant portion
of the PRF-transmit frequency space that produce probabilities
that are too low to be of practical use.

Comparing the results for the different antenna rotation
rates, it can be seen that it is not influential at all. The antenna
beamwidth once again has a more significant effect.

If length of observation is not a critical parameter to
minimize, the PoI can be improved to be above 0.8 for a sig-
nificant portion of the PRF-transmit frequency combinations.
This is true even for the worst-case scan parameters of 60
RPM and 2.5◦ beamwidth. However, even after 40 seconds
of observation, there remain lower PRF and higher transmit
frequency combinations for which the PoI does not reach more
than 0.8. Radars operating in this region cannot expect to
produce any kind of reliable blade flash detection performance.

VII. CONCLUSION

The probability of helicopter main rotor blade flash in-
tercept in scanning pulse-Doppler radar has been thoroughly
analyzed in this paper. This work extends insight into blade
flash detection, enabling more predictable and reliable target
classification. To ensure that blade flashes are intercepted
in a single dwell, dwell times greater than approximately
80 ms are required. PRFs greater than roughly > 900/λ
ensure interception by a pulsed radar waveform. When either
or both of these two requirements are not met, relying on
multiple pulses or scan revisits to improve the PoI can be
effective. If the minimum requirement on dwell time is not
met, antenna azimuth beamwidth plays a significant role in
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Fig. 14. Average PoI after an observation time of 4 seconds (solid lines) and
40 seconds (dashed lines) for hypothetical two bladed helicopters as a function
of PRF at different radar antenna rotation rates, azimuth beamwidths and
transmit frequencies. The probabilities are averaged over helicopter rotation
rates between 350 and 450 RPM.

improving the growth of PoI over time. Scan rate is relatively
inconsequential. When staring at a helicopter, if the PRF
requirement is not met, a high PoI (> 0.8) is attained for a
large number of PRF - transmit frequency combinations within
roughly the first 1 second of observation. Thereafter, the rate
of improvement diminishes significantly.

When dwell and PRF requirements are both unmet, PoI
performance is particularly compromised during the initial
phase of observation and a reasonably long period of time
(> 15 seconds) is required if reasonable PoI levels (> 0.8)
are to be attained. In general, it is advisable to ensure that
intercepting blade flashes never becomes a three pulse train
interception problem.

The results produced have focused on average probabilities,
particularly for the worst-case, two-bladed helicopter scenario.
For helicopters outside this category, the blade flash PoI may
be significantly higher than that presented in this paper. It
should also be noted, as highlighted in Section V-C, that PoI
performance for individual helicopters can differ substantially
from the average.
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