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Abstract—This work discusses how the TCP window size 

affects the throughput and its measurements and estimated 

packet delivery delay on two experimental setups using freely 

available tools JPerf and PsPing. The first setup is a direct 

connection between two PCs using gigabit Ethernet. The second 

setup uses a linked pair of Television White Space (TVWS) 

devices. The tools JPerf and PsPing are used to perform the 

throughput and latency measurements, respectively, over a range 

of different sizes of the TCP window. The results recommend 

specific ranges of TCP window size to either maximise the 

throughput or minimise latency. The results also suggest that 

performing valid measurements of peak throughput require 

careful consideration in selecting the TCP window size or usage 

of parallel streams.  
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 INTRODUCTION 

Today, the transmission control protocol (TCP) version 4 
[1] is perhaps the most commonly used network protocol for 
connecting end user devices over the Internet. The TCP 
window size is a key parameter of the TCP protocol. It 
represents how much data a receiving device can receive and 
store in an intermediate buffer at any given time. It is needed 
to avoid unnecessary waiting for packet acknowledgement 
before sending more packets. It thus affects the throughput 
and latency, especially when both the link capacity and the 
communication latency are high. The theoretical optimum size 
of the TCP window (bits), Wmin, may be expressed as a 
product of the link’s capacity C (in bps) and latency L (in s): 

 

Wmin = C × L. 

 
The size of this buffer can be made very large to improve 

the link’s achievable throughput. The size is limited by the 
performance of the computing platform (i.e. memory available 
and the processing speed).  

Substantial work has been done on the effects of the TCP 
window size on throughput and latency, e.g. [6]6-10]. We 
focus on the effect of TCP window size when using different 
types of communication technologies and over a wide range of 
window sizes, a subject not well covered in the literature.  

Measuring a link’s peak performance requires setting the 
TCP window size to an appropriate value or measuring an 
aggregate of multiple parallel streams. The appropriateness of 
the window size value is determined by the time it takes for a 
packet to reach the destination and by the time to receive the 
acknowledgement of receipt, as indicated above.  

This paper analyses experimental results of throughput and 
latency measurements. The measurements rely on the tools 
JPerf and PsPing, two of the most commonly used free 
software tools for network performance evaluations. Two 
modes, using TCP window size and parallel streams were 
used. 

Section 2 discusses the laboratory measurement setup, 
including hardware and software components, and 
measurement methodology. Section 3 presents and analyses 
the results. The last section concludes the work and lists the 
next steps. 

MEASUREMENT SETUP 

The overall setup includes the computers used for 
performing the measurements and used under the 
methodology also presented below, as well as software tools.  

A. Setup and tools 

We used two hardware setups for performing the 
measurements. One is a reference setup for measuring and 
testing a direct PC to PC gigabit Ethernet link through a cable. 
The second setup relies on a radio link, through a pair of 
Television (TV) White Space Devices (WSDs) [11-13]. Both 
WSDs are used as sample radio link devices and have the 
embedded cognitive radio intelligence disabled. 

For the measurements, we used JPerf version 2.0.2 [14] 
and PsPing version 2.1 [15]. Both tools are popular free 
software. 
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JPerf [14] is a graphical user interface operating over the 
tool iperf. iperf is a link throughput measurement tool. It sends 
time-stamped packets between PCs and records how quickly a 
packet moves from the sender to destination and from this 
estimates the throughput. iperf can measure throughput 
periodically, over a specified time interval (e.g. it can produce 
averages every second).  

PsPing [15] is a free tool used to test latency. PsPing was 
used instead of more traditional ping utility as PsPing provides 
sub-millisecond resolution.  

The tools used for measurements are operated in Windows 
10 and 7 environments and used default settings for their main 
functions. psping can measure network throughput and 
bandwidth, but the result depends on the number of iterations 
and duration of the test.  

1. Hardware Setup I 

The setup in Fig. 1 shows a gigabit Ethernet link between 
PC1 and PC2 through an Ethernet cable. The PCs have AMD 
E2-7110 and Intel Core i7 processors respectively, and 4 GB 
memory each. This setup serves as a reference setup as it 
relies on a minimum possible amount of hardware for a link 
(two gigabit network cards connected by Ethernet cable).  

 

Fig 1: PC1 to PC2 connected via gigabit Ethernet 

2. Hardware Setup II 

Setup II, illustrated in Fig. 2 shows a connection via two 
WSDs. The radio frequency (RF) ports of the WSDs are 
connected using a radio cable and an attenuator. A 60 dB 
attenuator is used to ensure a strong radio link without 
saturating the receivers. The wireless interface of the WSDs is 
set to operate with QPSK ½ modulation. 

 

Fig 2: PC1 to PC2 interlinked via WSDs 

MEASUREMENT METHOD 

Prior to staring the main measurements, the speed 
achievable with Setups I and II was measured.  

The speed achievable with Setup I was measured with the 
default setting for the TCP window size (56 kB) and using 
multiple parallel TCP steams. The result is shown in Fig. 3. It 

is clear that the maximum achievable TCP throughput over the 
gigabit Ethernet link is around  900 Mbps. Also, the curve 
shows that for a small TCP window size (56 kB) does not 
achieve the full speed. Increasing the number of parallel 
streams from one to about 10 increases the throughput to 
maximum. This increase is because each stream’s throughput 
is limited by the feedback required by TCP, but the streams 
are reasonably independent from each other and transfer 
independent portions of the overall dataset in parallel.  

When using between approximately 10 to 20 parallel 
streams, the throughput stays at its maximum. Assuming that 
one stream requires 56 kB of memory, all 10 to 20 streams 
require 560 to 1120 kB of memory. This is slightly more than 
the optimum size of TCP window required for achieving the 
best throughput (319 kB), as will be shown later in the paper, 
in 2.2.3.  

Further increasing the number of parallel streams beyond 
20 starts to decrease the aggregate throughput. This reduction 
is likely because the processing overhead (switching between 
different streams and re-caching different datasets) required by 
handling multiple parallel streams starts to take a more and 
more significant portion of the processor’s time.  

As the radio link between the two WSDs is the main 
limiting factor for Setup II, its performance was also 
estimated. The radios’ specifications allow for modulation 
rates up to around 200 Mbps. Fig. 4 lists the WSDs’ 
characteristics. However, the overall speed of the Setup II is 
hardware-limited to 89 Mbps as a) the WSDs’ wired Ethernet 
network ports can run at a maximum of 100 Mbps and b) the 
WSDx’ radio interface was tested to peak at 89 Mbps under 
the best conditions. 

10
0

10
1

10
2

10
3

200

300

400

500

600

700

800

900

1000

n

M
b
p
s

 

 

w switch

cable

 

Fig 3: Aggregate throughput (Mbps) measured over the gigabit Ethernet link 

(Setup I) versus the number of parallel TCP streams. The two curves 

correspond to using a) a bare cable (green curve with cross as the marker) and 
b) inserting a common switch in the link (blue curve with dots as markers). 

It may also be noted that the TCP throughput in the given 
WSDs depends on the WSD parameter “distance, km”, which 
expresses the link distance in km. The influence of this 
parameter is shown in Fig. 5. The likely explanation for the 
variation is that the embedded protocols use this parameter to 
decide how long to wait for a response from another node in a 
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half-duplex TVWS network. Increasing this parameter 
therefore gives more time to the receiver to listen and less time 
to the transmitter to transmit. This parameter was set to near 
zero to maximise the throughput.  

 

Fig 4: Measured modulation rate and throughput versus power level for an 

isolated WSD link [13]. 
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Fig 5: TCP throughput vs. WSD parameter “distance, km” [13]. 

For the main measurements, the following steps were 
taken: 

A. Communication between the two PCs is achieved 

• The PCs are set to the same subnet. 

• Link latency and round trip delay are measured using 
PsPing, with default parameters. 

B. For Setup II (with WSDs), communication between the 

WSDs is established 

• The WSDs are rebooted and set to the default setting.  

• Step A is performed on the PCs controlling the WSDs.  

C. The expected optimal TCP window size is estimated with 

the measured latency: 

SO = WB x tR, 

with SO being the optimal window size in bits, WB the 

bandwidth in bits per second (bps) and tR the return delay in s. 
Since we are working with window sizes in bytes, we 

should scale the parameter accordingly: 

SO = WB x tR ÷ 8 bits/byte, 

with SO being the window size in bytes, WB the bandwidth in 
bps and tR the return delay in s. 

In anticipation of the next section covering measured results, 
we calculate the optimal packet size for Setups I and II 
respectively: 

Setup I: SO = (1 Gbps)×(2.55 ms) ÷ 8 bits/byte= 319 kB 

Setup II: (100 Mbps)×(2.45 ms) ÷ 8 bits/byte= 31 kB 

D. Measuring latency and throughput for different TCP 

window sizes (changing the TCP window size in JPerf, 

results in a change in the throughput recorded): 

• The throughput is measured using JPerf for various 
values of the TCP window size. 

Both directions (PC1 to PC2, and PC2 to PC1) are 

tested separately.  

The TCP window size and measured throughput values are 
used to calculate the equivalent latency, i.e. an estimated 
packet transmission delay. The need to receive an 
acknowledgement for every TCP packet must be taken into 
account.  

RESULTS AND DISCUSSION 

This section presents and elaborates on the measured and 

calculated results.  

A. Measured throughput versus TCP window size 

Fig. 6 presents the throughput measured for various 
configurations of the two setups.  

The throughput curve starts with a minimum, as the 
acknowledgment of a correct receipt of a transmitted packet is 
required before a new packet may be transmitted and the 
packet may need to be broken down into yet smaller packets 
manageable with the given buffer size. The initial points are at 
around 50 kbps which may be compared to the maximum 
capacities of the Setup I and I links being 1 Gbps and 
100 Mbps, respectively. This is likely due to the TCP window 
size being less than or around the size of a single packet. 

As the TCP window size starts to accommodate more than 
one packet, the throughput increases dramatically. The curves 
continue to grow steadily, until the TCP window size nears the 
optimal TCP window size (estimated in 2.2.3 as 319 kB and 
31 kB for Setups I and II, respectively).  
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After that point, the achievable throughput remains 
approximately steady until the TCP window size leads to the 
need to work with extremely large buffers. It is assumed that 
the differences in the behaviour of the curves in that region of 
the plot are due to the differences in the performance of the 
PCs. 

From the above, it is clear that the following rules are 
important in deciding on the TCP window size: 

• TCP window size below a value sufficient to 
accommodate several packets leads to very slow 
performance (orders of magnitude below the link 
capacity); 

• To maximise the throughput, increasing the TCP 
window size to around the optimum value maximises 
the throughput achievable with TCP v4.  

• Increasing the TCP window size above the optimum 
value does not offer noticeable improvements.  

 
Furthermore, one may compare the shapes of the curves in 

Fig. 3 and 6 and observe that the use of the TCP window 
offers a much more efficient way to gain and maintain high 
throughput. At the same time, if one’s target is in reducing the 
packet delivery delay, the use of parallel TCP streams may be 
the only way to keep the delay low while trying to improve the 
efficiency of using the available link capacity.  

 

Fig 6: Throughput (Mbps) versus TCP window size (kB). The legend 

notations are as follows: “PC to PC” refers to Setup I. “WSD” refers to 

Setup II 

B. Estimated packet delivery delay 

Fig. 7 shows the estimated packet delivery delay 
(excluding the latency) for the two setups, as a function of the 
TCP window size.  

The equivalent latency of both setups starts at a relatively 
high value. This excessive delay may be explained by having 
to wait for receipt confirmation for many small packets. These 
small packets are also likely to lead to a quick overflow of the 
buffer, dropped packets and the need to re-transmit packets. 

This inefficiency is the dominant factor restricting throughput, 
regardless of the capacity offered by the link.  

After the TCP window size allows more than one packet to 
be transmitted within the window, the packet delivery delay 
quickly drops to around its minimum. Here it is possible to see 
the drastic difference between the gigabit Ethernet and much 
slower radio links. The time to deliver one packet includes the 
time to transmit this packet (inversely proportional to the 
capacity of the link) and the latency. For sending one packet, 
the latency is approximately the same. The observed 
difference in the delays is roughly inversely proportional to 
the capacity of the links. This effect of processing the multiple 
packets with a feedback loop may be contrasted to a negligible 
difference in the ping-measured single-packet latency between 
Setups I and II.  

As the TCP window size continues to increase, the plot 
shows that the equivalent packet delivery delay rises 
approximately monotonically. This rise may be explained by 
needing to wait for more packets confirmed as received in the 
receiver’s buffer, before releasing these packets for further 
processing. Presumably, this effect could be reduced by 
modifying the buffer management software to allow packets to 
be released for processing in the receiver before the 
acknowledgement has been sent. 

After the TCP window size reaches about 10 MB, and 
especially after 100 MB mark, the curves start to behave 
differently, which is likely due to the different processing 
capabilities of the PCs used in the testing.  

From the above, one may conclude that  

• The TCP window size must accommodate more 

than one packet to avoid unnecessary large 

protocol delays; 

• Voice over IP, gaming, and other applications 

requiring low latency may benefit from having 

the smallest viable TCP window size, as it 

minimises the delay in delivering the packets (at 

the expense of substantially lowering the 

throughput achievable with TCP v4); 

• Increasing the TCP window size past one packet 

size increases the packet delivery rate 

approximately proportionally. 

 

CONCLUSIONS AND NEXT STEPS 

The paper presents the calculated packet delivery delay 
and throughput experimentally measured with JPerf on a link 
clear from interference.  

The measurements followed a careful characterisation of 
the test setup. The measurements indicate that the TCP 
window needs to be more than one packet large in order to 
ensure a reasonable throughput but should be around an 
optimum value, i.e. the product of link capacity and link 
latency, to maximise the throughput. The packet delivery 
delay important for VoIP and gaming applications is the 
lowest for the smallest viable TCP window size able to 
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accommodate just a few packets. This would, however, be at 
the expense of sacrificing the achievable TCP throughput and 
possible heavy underutilisation of the available channel 
bandwidth.  

The tests also suggest that measurements of peak TCP 
throughput could be achieved by optimising TCP window size 
in a more efficient manner, e.g. with less memory and 
computational resources, as compared to using parallel 
streams. The use of TCP window offers a much more efficient 
way to gain and maintain high throughput. At the same time, if 
one’s target is in reducing the packet delivery delay, the use of 
parallel TCP streams may be the only way to keep the delay 
low while trying to improve the efficiency of using the 
available link capacity. 
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Fig 7: Equivalent packet delivery delay (ms) versus TCP window size (kB) 
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