
2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS)

Measuring with JPerf and PsPing:

Throughput and Estimated Packet Delivery Delay vs

TCP Window Size & Parallel Streams

Nakampe Sydney Sebopetse1, Chris R. Burger1,

Mofolo Mofolo1, and Albert A. Lysko1,2
1NextGen Enterprises and Institutions

Council for Scientific and Industrial Research (CSIR)

Pretoria, South Africa

Albert A. Lysko1,2
2School of Electrical Electronic and Computer Engineering

North-West University (NWU)

Potchefstroom, South Africa

 NSebopetse@csir.co.za

Abstract—This work discusses how the TCP window size

affects the throughput and its measurements and estimated

packet delivery delay on two experimental setups using freely

available tools JPerf and PsPing. The first setup is a direct

connection between two PCs using gigabit Ethernet. The second

setup uses a linked pair of Television White Space (TVWS)

devices. The tools JPerf and PsPing are used to perform the

throughput and latency measurements, respectively, over a range

of different sizes of the TCP window. The results recommend

specific ranges of TCP window size to either maximise the

throughput or minimise latency. The results also suggest that

performing valid measurements of peak throughput require

careful consideration in selecting the TCP window size or usage

of parallel streams.

Keywords— TCP, TCP window size, Throughput, Latency,

Packet, Delay, Bandwidth, White space devices, WSDs, Television

White Spaces, TVWS, Measurements

 INTRODUCTION

Today, the transmission control protocol (TCP) version 4
[1] is perhaps the most commonly used network protocol for
connecting end user devices over the Internet. The TCP
window size is a key parameter of the TCP protocol. It
represents how much data a receiving device can receive and
store in an intermediate buffer at any given time. It is needed
to avoid unnecessary waiting for packet acknowledgement
before sending more packets. It thus affects the throughput
and latency, especially when both the link capacity and the
communication latency are high. The theoretical optimum size
of the TCP window (bits), Wmin, may be expressed as a
product of the link’s capacity C (in bps) and latency L (in s):

Wmin = C × L.

The size of this buffer can be made very large to improve

the link’s achievable throughput. The size is limited by the
performance of the computing platform (i.e. memory available
and the processing speed).

Substantial work has been done on the effects of the TCP
window size on throughput and latency, e.g. [6]6-10]. We
focus on the effect of TCP window size when using different
types of communication technologies and over a wide range of
window sizes, a subject not well covered in the literature.

Measuring a link’s peak performance requires setting the
TCP window size to an appropriate value or measuring an
aggregate of multiple parallel streams. The appropriateness of
the window size value is determined by the time it takes for a
packet to reach the destination and by the time to receive the
acknowledgement of receipt, as indicated above.

This paper analyses experimental results of throughput and
latency measurements. The measurements rely on the tools
JPerf and PsPing, two of the most commonly used free
software tools for network performance evaluations. Two
modes, using TCP window size and parallel streams were
used.

Section 2 discusses the laboratory measurement setup,
including hardware and software components, and
measurement methodology. Section 3 presents and analyses
the results. The last section concludes the work and lists the
next steps.

MEASUREMENT SETUP

The overall setup includes the computers used for
performing the measurements and used under the
methodology also presented below, as well as software tools.

A. Setup and tools

We used two hardware setups for performing the
measurements. One is a reference setup for measuring and
testing a direct PC to PC gigabit Ethernet link through a cable.
The second setup relies on a radio link, through a pair of
Television (TV) White Space Devices (WSDs) [11-13]. Both
WSDs are used as sample radio link devices and have the
embedded cognitive radio intelligence disabled.

For the measurements, we used JPerf version 2.0.2 [14]
and PsPing version 2.1 [15]. Both tools are popular free
software.

2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS)

JPerf [14] is a graphical user interface operating over the
tool iperf. iperf is a link throughput measurement tool. It sends
time-stamped packets between PCs and records how quickly a
packet moves from the sender to destination and from this
estimates the throughput. iperf can measure throughput
periodically, over a specified time interval (e.g. it can produce
averages every second).

PsPing [15] is a free tool used to test latency. PsPing was
used instead of more traditional ping utility as PsPing provides
sub-millisecond resolution.

The tools used for measurements are operated in Windows
10 and 7 environments and used default settings for their main
functions. psping can measure network throughput and
bandwidth, but the result depends on the number of iterations
and duration of the test.

1. Hardware Setup I

The setup in Fig. 1 shows a gigabit Ethernet link between
PC1 and PC2 through an Ethernet cable. The PCs have AMD
E2-7110 and Intel Core i7 processors respectively, and 4 GB
memory each. This setup serves as a reference setup as it
relies on a minimum possible amount of hardware for a link
(two gigabit network cards connected by Ethernet cable).

Fig 1: PC1 to PC2 connected via gigabit Ethernet

2. Hardware Setup II

Setup II, illustrated in Fig. 2 shows a connection via two
WSDs. The radio frequency (RF) ports of the WSDs are
connected using a radio cable and an attenuator. A 60 dB
attenuator is used to ensure a strong radio link without
saturating the receivers. The wireless interface of the WSDs is
set to operate with QPSK ½ modulation.

Fig 2: PC1 to PC2 interlinked via WSDs

MEASUREMENT METHOD

Prior to staring the main measurements, the speed
achievable with Setups I and II was measured.

The speed achievable with Setup I was measured with the
default setting for the TCP window size (56 kB) and using
multiple parallel TCP steams. The result is shown in Fig. 3. It

is clear that the maximum achievable TCP throughput over the
gigabit Ethernet link is around 900 Mbps. Also, the curve
shows that for a small TCP window size (56 kB) does not
achieve the full speed. Increasing the number of parallel
streams from one to about 10 increases the throughput to
maximum. This increase is because each stream’s throughput
is limited by the feedback required by TCP, but the streams
are reasonably independent from each other and transfer
independent portions of the overall dataset in parallel.

When using between approximately 10 to 20 parallel
streams, the throughput stays at its maximum. Assuming that
one stream requires 56 kB of memory, all 10 to 20 streams
require 560 to 1120 kB of memory. This is slightly more than
the optimum size of TCP window required for achieving the
best throughput (319 kB), as will be shown later in the paper,
in 2.2.3.

Further increasing the number of parallel streams beyond
20 starts to decrease the aggregate throughput. This reduction
is likely because the processing overhead (switching between
different streams and re-caching different datasets) required by
handling multiple parallel streams starts to take a more and
more significant portion of the processor’s time.

As the radio link between the two WSDs is the main
limiting factor for Setup II, its performance was also
estimated. The radios’ specifications allow for modulation
rates up to around 200 Mbps. Fig. 4 lists the WSDs’
characteristics. However, the overall speed of the Setup II is
hardware-limited to 89 Mbps as a) the WSDs’ wired Ethernet
network ports can run at a maximum of 100 Mbps and b) the
WSDx’ radio interface was tested to peak at 89 Mbps under
the best conditions.

10
0

10
1

10
2

10
3

200

300

400

500

600

700

800

900

1000

n

M
b
p
s

w switch

cable

Fig 3: Aggregate throughput (Mbps) measured over the gigabit Ethernet link

(Setup I) versus the number of parallel TCP streams. The two curves

correspond to using a) a bare cable (green curve with cross as the marker) and
b) inserting a common switch in the link (blue curve with dots as markers).

It may also be noted that the TCP throughput in the given
WSDs depends on the WSD parameter “distance, km”, which
expresses the link distance in km. The influence of this
parameter is shown in Fig. 5. The likely explanation for the
variation is that the embedded protocols use this parameter to
decide how long to wait for a response from another node in a

2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS)

half-duplex TVWS network. Increasing this parameter
therefore gives more time to the receiver to listen and less time
to the transmitter to transmit. This parameter was set to near
zero to maximise the throughput.

Fig 4: Measured modulation rate and throughput versus power level for an

isolated WSD link [13].

0 20 40 60 80 100
60

65

70

75

80

85

90

distance, km

T
C

P
 t
h

ro
u

g
h

p
u

t,
 M

b
p

s

Fig 5: TCP throughput vs. WSD parameter “distance, km” [13].

For the main measurements, the following steps were
taken:

A. Communication between the two PCs is achieved

• The PCs are set to the same subnet.

• Link latency and round trip delay are measured using
PsPing, with default parameters.

B. For Setup II (with WSDs), communication between the

WSDs is established

• The WSDs are rebooted and set to the default setting.

• Step A is performed on the PCs controlling the WSDs.

C. The expected optimal TCP window size is estimated with

the measured latency:

SO = WB x tR,

with SO being the optimal window size in bits, WB the

bandwidth in bits per second (bps) and tR the return delay in s.
Since we are working with window sizes in bytes, we

should scale the parameter accordingly:

SO = WB x tR ÷ 8 bits/byte,

with SO being the window size in bytes, WB the bandwidth in
bps and tR the return delay in s.

In anticipation of the next section covering measured results,
we calculate the optimal packet size for Setups I and II
respectively:

Setup I: SO = (1 Gbps)×(2.55 ms) ÷ 8 bits/byte= 319 kB

Setup II: (100 Mbps)×(2.45 ms) ÷ 8 bits/byte= 31 kB

D. Measuring latency and throughput for different TCP

window sizes (changing the TCP window size in JPerf,

results in a change in the throughput recorded):

• The throughput is measured using JPerf for various
values of the TCP window size.

Both directions (PC1 to PC2, and PC2 to PC1) are

tested separately.

The TCP window size and measured throughput values are
used to calculate the equivalent latency, i.e. an estimated
packet transmission delay. The need to receive an
acknowledgement for every TCP packet must be taken into
account.

RESULTS AND DISCUSSION

This section presents and elaborates on the measured and

calculated results.

A. Measured throughput versus TCP window size

Fig. 6 presents the throughput measured for various
configurations of the two setups.

The throughput curve starts with a minimum, as the
acknowledgment of a correct receipt of a transmitted packet is
required before a new packet may be transmitted and the
packet may need to be broken down into yet smaller packets
manageable with the given buffer size. The initial points are at
around 50 kbps which may be compared to the maximum
capacities of the Setup I and I links being 1 Gbps and
100 Mbps, respectively. This is likely due to the TCP window
size being less than or around the size of a single packet.

As the TCP window size starts to accommodate more than
one packet, the throughput increases dramatically. The curves
continue to grow steadily, until the TCP window size nears the
optimal TCP window size (estimated in 2.2.3 as 319 kB and
31 kB for Setups I and II, respectively).

2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS)

After that point, the achievable throughput remains
approximately steady until the TCP window size leads to the
need to work with extremely large buffers. It is assumed that
the differences in the behaviour of the curves in that region of
the plot are due to the differences in the performance of the
PCs.

From the above, it is clear that the following rules are
important in deciding on the TCP window size:

• TCP window size below a value sufficient to
accommodate several packets leads to very slow
performance (orders of magnitude below the link
capacity);

• To maximise the throughput, increasing the TCP
window size to around the optimum value maximises
the throughput achievable with TCP v4.

• Increasing the TCP window size above the optimum
value does not offer noticeable improvements.

Furthermore, one may compare the shapes of the curves in

Fig. 3 and 6 and observe that the use of the TCP window
offers a much more efficient way to gain and maintain high
throughput. At the same time, if one’s target is in reducing the
packet delivery delay, the use of parallel TCP streams may be
the only way to keep the delay low while trying to improve the
efficiency of using the available link capacity.

Fig 6: Throughput (Mbps) versus TCP window size (kB). The legend

notations are as follows: “PC to PC” refers to Setup I. “WSD” refers to

Setup II

B. Estimated packet delivery delay

Fig. 7 shows the estimated packet delivery delay
(excluding the latency) for the two setups, as a function of the
TCP window size.

The equivalent latency of both setups starts at a relatively
high value. This excessive delay may be explained by having
to wait for receipt confirmation for many small packets. These
small packets are also likely to lead to a quick overflow of the
buffer, dropped packets and the need to re-transmit packets.

This inefficiency is the dominant factor restricting throughput,
regardless of the capacity offered by the link.

After the TCP window size allows more than one packet to
be transmitted within the window, the packet delivery delay
quickly drops to around its minimum. Here it is possible to see
the drastic difference between the gigabit Ethernet and much
slower radio links. The time to deliver one packet includes the
time to transmit this packet (inversely proportional to the
capacity of the link) and the latency. For sending one packet,
the latency is approximately the same. The observed
difference in the delays is roughly inversely proportional to
the capacity of the links. This effect of processing the multiple
packets with a feedback loop may be contrasted to a negligible
difference in the ping-measured single-packet latency between
Setups I and II.

As the TCP window size continues to increase, the plot
shows that the equivalent packet delivery delay rises
approximately monotonically. This rise may be explained by
needing to wait for more packets confirmed as received in the
receiver’s buffer, before releasing these packets for further
processing. Presumably, this effect could be reduced by
modifying the buffer management software to allow packets to
be released for processing in the receiver before the
acknowledgement has been sent.

After the TCP window size reaches about 10 MB, and
especially after 100 MB mark, the curves start to behave
differently, which is likely due to the different processing
capabilities of the PCs used in the testing.

From the above, one may conclude that

• The TCP window size must accommodate more

than one packet to avoid unnecessary large

protocol delays;

• Voice over IP, gaming, and other applications

requiring low latency may benefit from having

the smallest viable TCP window size, as it

minimises the delay in delivering the packets (at

the expense of substantially lowering the

throughput achievable with TCP v4);

• Increasing the TCP window size past one packet

size increases the packet delivery rate

approximately proportionally.

CONCLUSIONS AND NEXT STEPS

The paper presents the calculated packet delivery delay
and throughput experimentally measured with JPerf on a link
clear from interference.

The measurements followed a careful characterisation of
the test setup. The measurements indicate that the TCP
window needs to be more than one packet large in order to
ensure a reasonable throughput but should be around an
optimum value, i.e. the product of link capacity and link
latency, to maximise the throughput. The packet delivery
delay important for VoIP and gaming applications is the
lowest for the smallest viable TCP window size able to

2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS)

accommodate just a few packets. This would, however, be at
the expense of sacrificing the achievable TCP throughput and
possible heavy underutilisation of the available channel
bandwidth.

The tests also suggest that measurements of peak TCP
throughput could be achieved by optimising TCP window size
in a more efficient manner, e.g. with less memory and
computational resources, as compared to using parallel
streams. The use of TCP window offers a much more efficient
way to gain and maintain high throughput. At the same time, if
one’s target is in reducing the packet delivery delay, the use of
parallel TCP streams may be the only way to keep the delay
low while trying to improve the efficiency of using the
available link capacity.

0

2

20

200

2000

1 100 10 000

PC to PC

client

latency

PC 2 PC

server

latency

WSD 1RF

Client

latency

WSD 1RF

Server

latency

Fig 7: Equivalent packet delivery delay (ms) versus TCP window size (kB)

References

[1] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley Pub. Co., 1994.

[2] W. R. Stevens; G. R. Wright, TCP/IP Illustrated, Volume 2: The
Implementation, 1994.

[3] W. R. Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions,
HTTP, NNTP, and the UNIX Domain Protocols, 1996.

[4] RFC 675, Specification of Internet Transmission Control Protocol.

[5] Guru99.com. 2021. TCP vs UDP: What's the Difference?. [online]
Available at: https://www.guru99.com/tcp-vs-udp-understanding-the-
difference.html. Last accessed on 12 February 2021.

[6] D. Madhuri and P. C. Reddy, "Performance comparison of TCP, UDP
and SCTP in a wired network," 2016 International Conference on
Communication and Electronics Systems (ICCES), Coimbatore, 2016,
pp. 1-6, doi: 10.1109/CESYS.2016.7889934.

[7] Shriram A. et al. Comparison of Public End-to-End Bandwidth
Estimation Tools on High-Speed Links. In: Dovrolis C. (eds) Passive
and Active Network Measurement. PAM 2005. Lecture Notes in
Computer Science, vol 3431. Springer, Berlin, Heidelberg. 2005.
https://doi.org/10.1007/978-3-540-31966-5_24.

[8] JDSU Application Note “TCP Wirespeed: Testing TCP Throughput to
10 G,” 2010. Available online at https://www.viavisolutions.com/de-
de/literature/tcp-wirespeed-testing-tcp-throughput-10g-application-
notes-en.pdf . Last accessed on 2019-11-15.

[9] Spirent TCP Network Latency and Throughput Or ‘Why your customer
doesn’t receive the Throughput they paid for’, 2016. Available online at
https://www.spirent.com/Assets/WP/WP_TCP-Network-Latency-and-
Throughput . Last accessed on 2018-06-22.

[10] E. Pelletta and H. Velayos, Performance measurements of the saturation
throughput in IEEE 802.11 access points, Third International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt'05), April 2005.

[11] H. Mauwa, et al., “Systematic analysis of geo-location and spectrum
sensing as access methods to TV white space,” ITU Kaleidoscope: ICTs
for a Sustainable World (ITU WT), 2016, pp. 1-8.

[12] M.T. Masonta, D.L. Johnson, and M. Mzyecel, “The White Space
Opportunity in Southern Africa: Measurements with Meraka Cognitive
Radio Platform,” in R. Popescu-Zeletin et al. (Eds.) AFRICOMM 2011,
LNICST 92, pp. 64–73, 2012.

[13] A. A. Lysko, “Lessons learned from TVWS trials, tests and further
research,” Invited talk for WAPAZOLA 2019, Pretoria, South Africa, 17
September 2019.

[14] Rarst.net . Available online at https://www.rarst.net/software/JPerf/ ,
2010. Last accessed at 2018-06-22.

[15] PStools, 2017, Available online at https://ss64.com/nt/psping.html. Last
accessed on 2020-12-30.

