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ABSTRACT Distributed generation (DG) units are power generating plants that are very important to the
architecture of present power system networks. The primary benefits of the addition of these units are to
increase the power supply and improve the power quality of a power grid while considering the investment
cost and carbon emission cost. Most studies have simultaneously optimized these objectives in a direct
way where the objectives are directly infused into the multiobjective framework to produce final values.
However, this method may have an unintentional bias towards a particular objective; hence this paper
implements a multi-stage framework to handle multiple objectives in a categorical manner to simultaneously
integrate DG units and Battery Energy Storage System (BESS) in a distribution network. A new hybrid
metaheuristic technique is developed and combined with the Technique Order for Preference by Similarity to
Ideal Solution (TOPSIS) approach and the crowding distance technique to produce Pareto optimal solutions
from the multiple collective objectives, namely technical, economic, and environmental. Compared to the
conventional direct way approach in multiobjective handling, the proposed categorical approach reduces
bias towards a set of objective(s) and efficiently handles more objectives. Results also show that the Whale
Optimization Algorithm and Genetic Algorithm (WOAGA) produces the smallest power loss of 101.6 kW
compared toWhaleOptimizationAlgorithm (WOA) andGenetic Algorithm (GA), which produces 105.1 kW
and 105.8 kW respectively. The algorithm, although does not have a faster convergence than the WOA, has a
better computational time than the WOA and GA. The multiobjective WOAGA also performs better than the
Non-dominating Sorted Genetic Algorithm (NSGA-II) and the multiobjective WOA in terms of the quality
of Pareto optimal solutions.

INDEX TERMS Battery energy storage system (BESS), hybrid metaheuristic algorithm, distribution
networks, multiobjective optimization, renewable energy, whale optimization algorithm, genetic algorithm,
pareto optimal solutions.

I. INTRODUCTION
The integration of Distribution Generation (DG) units is
an essential feature in the modern-day electric utility grid.

The associate editor coordinating the review of this manuscript and

approving it for publication was Bilal Alatas .

Certain parameters can be considered, such as quantity and
size of DG units, the best location, bus configuration, and
even the most suitable DG unit technology to be used [1].
A common and central problem is the placing and sizing of
DG units [1]. Inappropriate installation of DG units can have
adverse effects on power flow and voltage stability, which
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can cause an upsurge in line losses [2], [3], thereby inferring
an increase in economic costs [4]. Besides, the installation
of DG units is a non-linear problem, which means that the
increase in the number of DG units does not directly improve
grid performance. Therefore, it is essential to find the opti-
mal location and size of DG units in power networks to
solve certain objectives. To reduce carbon emissions, most
studies have integrated the renewable energy-based DG units
in distribution networks. However, renewable energy (RE)
sources, such as Photo-voltaic (PV) panels intermittent power
supply is a setback for constant power flow. To obviate
this drawback Battery Energy Storage Systems (BESS) are
integrated into the grid to store energy from the renewable
energy DG units at their peak times. The integration of BESS
units also comes with additional complexity and extra cost;
therefore, there is a need to (i) apply an efficient optimization
algorithm and (ii) mitigate its cost effect. Several methodolo-
gies have been proposed for solving the optimal integration,
such as the analytical approaches (mathematical methods)
and metaheuristic techniques. The combined combinatorial
and nonconvex nature of the placing and sizing problem
has influenced the frequent use of metaheuristic algorithms
which is mainly because of its better computational time and
efficiency rate [5], [6].

While some techniques have been developed to reduce
the problem’s complexity, they do not guarantee suboptimal
solutions. They are mostly used to grade the current tech-
nical status of each bus in a distribution network. By that,
the technique would suggest the bus location for DG units.
Some examples are power loss index (PLI), voltage stability
index (VSI), and most recently, loss sensitivity factor (LSF).
These techniques have also been researched and improved
over time [7].

Numerous optimization techniques have been applied to
solve the optimal integration problem in distribution net-
works and have been in a multiobjective space. Although
some recent studies have focused on one objective (mostly
power loss minimization), some of those studies emphasize
more on new models and then validate it by formulating and
optimizing an objective function. Otherwise, a multiobjective
framework will be formulated. Related studies are discussed
in Section II.

To the best of the authors’ knowledge, researchers have
not studied the categorization of objectives in a multiob-
jective optimization framework. This is corroborated by [8]
where it is reported that previous studies have only han-
dled multiple objective functions in a non-categorized man-
ner where all adopted objective functions are pushed to a
multiobjective framework for a final decision value. For
instance, when power loss, voltage stability, and instal-
lation cost are optimized simultaneously, the final utility
value will automatically have a bias towards the tech-
nical objective because they possess similar parameters.
As explained in [9], uncontrollable bias will occur when
there are closely similar parameters in some objectives.
Unless the decision-maker prefers this bias, the optimal

integration problem’s final objective values will be termed
flawed.

Another instance is where a study focuses on only one
collective objective, where power loss, voltage stability, and
line loading can be the adopted functions in a multiobjec-
tive framework. While this type of study focuses on the
project’s technical aspects, it lacks an equilibrium approach
to handle all collective objectives. Hence, the practicality
of the study is questionable. The two instances previously
mentioned may not represent a practical scenario where all
collective objectives are thought differently from each other.
In a real-world scenario, modern distribution networks’ plan-
ning should compulsorily consider the technical, economic,
and environmental aspects.

Another vital point is explained in [10], [11] where it is
discussed that the higher number of objectives in a multi-
objective optimization framework increases the number of
nondominated solutions, which adversely affects the com-
putational burden of the optimization model. To avoid the
aforementioned setbacks, this paper proposes a multi-stage
multiobjective framework, which uses a categorical approach
that can intelligently accommodate and optimize all collec-
tive objectives. A categorical approach can separately handle
a group of objectives, followed by the final objective handling
(the conventional method).

The main contributions of this paper can be stated as
follows.
• The investigation for the optimal integration of PV-DG
and BESS units is carried out by focusing on power loss
minimization, voltage stability improvement, voltage
deviation reduction, installation cost reduction, oper-
ational cost reduction, and emission cost reduction.
Research works [12]–[14] have studied one or more of
these objectives in different variations but not all of the
objectives.

• A novel approach for optimal distribution network plan-
ning is introduced, where PV-DG and BESS units are
integrated simultaneously by injecting real power from
the PV modules and the BESS units. The proposed
approach enables a seamless interactive mechanism
between DG allocation and BESS allocation, unlike
in [12], [13] where PV is either fixed or initially inte-
grated based on physical observation before the integrat-
ing the BESS units, the approach assigns bus locations
to PV-DG units at every second round of iterations.

• In contrast to developing a hybrid metaheuristic algo-
rithm that requires the whole mechanism of each algo-
rithm to solve the optimal integration problem (as
in [15]), this paper splits the problem into subproblems
and assigns each algorithm according to their strengths.
As a result, the proposed algorithm becomes more com-
putationally efficient.

• A new approach based on a multistage multiobjective
framework is proposed to optimize all objectives in a
categorized manner. Earlier studies have either applied
weights to multiple objectives or produce Pareto optimal
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solutions from the objectives without considering each
objective’s categories.

• A Technique Order for Preference by Similarity to
Ideal Solution (TOPSIS) approach is combined with the
crowding distance technique to produce Pareto optimal
solutions from the multiple objectives.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III discusses the prob-
lem formulation of the study which explains the handling of
uncertainties and all adopted objectives. The section further
explains the power flow constraints and BESS constraints.
The optimization strategy is discussed in Section IV. Here
the new multi-stage multiobjective framework is discussed,
and the multiobjective approach is introduced. The proposed
algorithm and its implementation to the optimal integra-
tion of PV-DG units in distribution networks are also dis-
cussed. Section V presents the results from the analysis.
In doing so, the IEEE 33-bus test network is used as the
testbed for evaluation. Finally, the conclusion is entailed in
Section VI.

II. RELATED WORKS
According to literature, optimization in distribution network
planning can be categorized into deterministic and stochastic
algorithms. The algorithms can be subdivided into single
objective and multiobjective frameworks. Some significant
contributions have been made in applying stochastic algo-
rithms, such as metaheuristic algorithms, to distribution net-
work planning. Xiao et al. [16] used the GA to optimally
allocate and size BESS units in a renewable energy-present
distribution network. The algorithm was implemented such
that every violated constraint in the solution is discarded
during each generation, making the algorithm computation-
ally efficient. Xiao et al. [17] used a bi-level optimization
approach to allocate DG and BESS units to plan distribution
networks optimally. The first level minimizes the overall
costs using a summation method while the second level
ensures optimal coordinated operation of the integrated units.
It is to note that handling multiple objectives is as important
as the optimization technique applied. Das et al. [13] used
the summation method to simultaneously optimize voltage
deviation, flickers, power losses, and line loading while using
the fitness-scaled chaotic Artificial Bee Colony (ABC) to
optimally allocate and size BESS units in a distribution net-
work. Although simple and less complex, the summation
approach is arguably not a proper approach to simultaneously
handle multiple objectives.Wong et al. [12] applied theWOA
to minimize the real power loss. The study experimented
with two methods of siting and sizing BESS DG units in
a conventional and PV-integrated distribution network: the
(i) two-step method and (ii) simultaneous siting and sizing
method. The performance of both methods was validated by
comparing the WOA to the firefly algorithm and the Particle
Swarm Optimization (PSO).

Previous studies have developed hybrid metaheuristic
algorithms to solve the optimal integration problem in

distribution networks. Moradi and Abedini [18] proposed a
hybrid algorithm of Intelligent Water Drops (IWD) and GA
for optimally allocating and sizingDGunits in amicrogrid for
solving objectives such as power loss minimization, voltage
stability improvement, and total voltage variation improve-
ment. The proposed algorithm was applied in a stepwise
manner where the GA finds the optimal location while the
IWD finds the optimal sizes. The authors handled the mul-
tiple objectives by assigning weights before the optimiza-
tion process, which is not a very practical solution in a
multiobjective space. They, however, varied the weights to
observe the effect on simulation results. In [19], the PSO
and ABC were hybridized to optimally size capacitor banks
while minimizing power loss and energy loss in a 34-node
and 69-bus distribution network. A summation method was
used to handle the objectives which may not produce accurate
results for real-world scenarios. Jeddi et al. [15] hybridized
a Harmony Search Algorithm (HSA) and the Firefly Algo-
rithm (FA) in a chaotic model (dubbed CHSFA) to maximize
profits of distribution network companies by reducing opera-
tional costs and increasing income in a distribution network.
The proposed algorithm uses the HSA mechanism to search
towards the best objective values in the harmony memory and
uses the FAmechanism for a random search, was validated on
a 38-bus distribution network and reported to converge faster
than the HSA. Since the process is repeated twice to achieve
an optimal solution, it is assumed that the CHSFA, due to its
complex mechanism, will have a higher computational time
than the HSA.

The handling of multiple objectives is a crucial feature
in the optimal integration problem in distribution networks,
and proper handling is synonymous to the practicality of
results. A direct weight assignment approach (WSA) is the
simplest form of handling multiple objectives and has been
used in the optimal integration problem, as in [20]. The
authors created different multiobjective aggregation scenar-
ios for siting and sizing capacitors and DG units. The WSA
technique always comes with bias since the preference level
is carried out before the optimization process. Shaheen and
El-Sehiemy [21] considered four objective functions, and
unlike a direct WSA method like in [3], the Analytical Hier-
archical Process (AHP) was used to determine the weights
for each objective function. They proposed an enhanced grey
wolf optimizer to optimally allocate DG units, capacitor
banks, and voltage regulators. The AHP was also used in [22]
and [23] to select the weights required for each objective in a
multiobjective integration of DG and BESS units in distribu-
tion networks. The AHP technique only douses the effect of
weight input bias in the optimization process. The aposteriori
method proves to overcome the bias problem since preference
evaluation is done after the optimization process.

Selim et al. [24] proposed an improved Harris Hawks
Optimization (IHHO) algorithm to allocate and size DG units
in amultiobjective framework. Themultiobjective framework
was based on the Pareto optimal front, where the power
loss minimization, voltage deviation reduction, and voltage
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stability improvement were considered as the objectives.
The final solution was determined using the Grey Rela-
tional Projection (GRP) method and was tested on the IEEE
33- and 69-bus distribution networks. Although computa-
tionally efficient, the GRP method can only select compro-
mise solutions among closely related objectives; hence, only
the technical objectives are considered. Zeynalli et al. [25]
hybridized the GA, DE, and Strength Pareto Evolutionary
Algorithm (SPEA-II) to generate Pareto optimal solutions
from the integration of RES-based DG units (solar and
wind), capacitor banks, and EV in a distribution network.
The study considered voltage stability, carbon emissions, and
installation cost as objectives, and the fuzzy decision-making
technique was used to handle the selection of compromise
solutions from the Pareto optimal solutions. The fuzzy-based
technique applies a three-scale fuzziness to each alternative
solution and compares each solution to the best individual
solution to select the compromise solution.

Recent studies have used the Technique for Order Prefer-
ence by Similarity to Ideal Solution approach to finding the
best solution from a set of alternatives in the field of multiob-
jective DG unit integration. The TOPSIS approach efficiently
chooses a compromise solution based on the relative close-
ness index. The approach minimizes the Euclidean distance
between each alternative solution and its best solution set
(positive ideal solution) and simultaneously maximizes each
alternative solution from its worst solution set (negative ideal
solution). Meena et al. [26] used the TOPSIS approach to
(i) produce non-dominating solution from the proposed mul-
tiobjective Elephant Herding Optimization (ELO) algorithm
and (ii) select a compromise solution. The proposed algo-
rithm was applied to optimize power loss minimization, volt-
age deviation, and voltage stability and the spacing metric
was used to measure statistical values to compare with other
variations of the ELO. From [27], a multiobjective hybrid
algorithm PSO and GA was proposed to optimally allocate
energy storage systems in a wind farm-infused IEEE 30-bus
meshed network, considering the uncertainties. Their objec-
tive was to improve voltage deviation and reduce operating
costs and carbon emissions while using TOPSIS to select
compromise solutions from the generated Pareto set. The
authors formulated a single-, two-, and three-objective study
to compare the best objective values for each formulation.
The single objective formulation produced the best voltage
deviation and emission cost value, while the three-objective
produced the best installation cost value. However, further
work can be done to compare the quality of Pareto solutions
distribution. The TOPSIS was also used in [14] to select
the compromise solution from a Pareto optimal set. The
authors implemented the Non-dominating Sorted Genetic
Algorithm (NSGA-II) to allocate and place BESS units in a
distribution network while minimizing power loss and grid
demand cost.

Despite the multiobjective techniques seen in literature,
a categorical approach of handling multiple objectives simul-
taneously in a distribution network planning problem has

not been studied. Furthermore, most studies used a one-way
approach to allocate DG and BESS units in a distribution
network, although this approach reduces the computational
complexity, it may not produce practical results. This paper
implements a novel iterative approach to allocate DG and
BESS units in distribution, and a hybrid metaheuristic algo-
rithm is developed to handle the additional computational
complexities.

III. PROBLEM FORMULATION
This section discusses the modelling that aims to find the
optimal locations and sizes of multiple PV-DG and BESS
units while observing the objective functions. The uncer-
tainty handling approach, adopted objective functions, and
constraints are explained in the following subsections.

A. MODELLING UNCERTAINTY
This paper takes PV power output and electricity pricing as
uncertain input, given that there can be exact values through-
out a season. The PV power output solely depends on solar
irradiance, with temperature, and the PV module character-
istics. The solar irradiance is modelled as a beta distribution
function [28], [29], which is shown as

fb(s) =


0(p+ q)
0(p)0(q)

s(p−1)(1− s)(q−1), 0 6 s 6 1
p,q>0

0, else
(1)

where fb(s) is the beta distribution function of solar irradiance,
s. The input parameters are p and q are calculated using the
mean, µ and variance, σ of the solar irradiance data, and are
defined as

q = (1− µ)
(
µ(1+ µ)
σ 2 − 1

)
(2)

p =
µ× β

1− µ
, (3)

where

ρys =

∫ sy+1

sy
fb(s) d s (4)

is the probability of occurrence from the boundaries of solar
irradiance at states sy and sy+1. The PV output power is
evaluated as [30]

Ppvt = N × FF × Vt × It , (5)

given that

FF =
Vmpp × Impp
Voc × Isc

, (6)

Vt = Voc − Kv × T ct , (7)

It = st
[
Isc − KI ×

(
T ct − 25

)]
, (8)

and

T ct = Ta + st

(
Tnom − 20

0.8

)
. (9)
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The PV power output, Ppvt at time t , is a factor of the fill
factor, FF , the output voltage Vt and the output current It .
The FF is defined in (6) where Vmpp and Impp represent the
voltage and current at maximum power point, respectively,
Voc represents the open circuit voltage and Isc is the short
circuit current. Equations (7) and (8) define Vt and It , respec-
tively and Kv is the voltage temperature coefficient, KI is the
current temperature coefficient, and T ct is the cell temperature
in celcius which is defined in (9); st is the solar irradiance at
time t , Ta is the ambient temperature, Tnom is the nominal
operating temperature. The electricity prices are modelled as
a log-normal distribution function to characterize the tariff at
each hour. It is expressed as

fb(P) =
1

Pσ
√
2π

exp
(
−
(lnP− µ)2

2σ 2

)
, (10)

where the µ and σ represent the mean and standard deviation
values, and P is the distribution function parameter. The
Probability Density Functions (PDFs) are sliced into multiple
intervals such that each interval produces a probability of
occurrence and a mean value.

The backward technique is used to eliminate duplicate
scenarios to reduce the number of scenarios generated. This
technique also helps to reduce the computational burden of
the whole algorithm [31].

B. OBJECTIVE FUNCTIONS
The considered collective objectives of the study are
expressed by the following objectives

1) POWER LOSS INDEX
This objective is based on the power loss of the distribution
network, before and after DG unit allocation. Power loss min-
imization has a significant impact on distribution networks,
as improves the voltage profile. It is defined as [26]

PLOSSt =

N∑
i=1

N∑
j=1

αij

(
PtiP

t
j + Q

t
iQ

t
j

)
+ βij

(
QtiP

t
j − P

t
iQ

t
j

)
(11)

where

αij =
rij
ViVj

cos
(
δi − δj

)
(12)

and

βij =
rij
ViVj

sin
(
δi − δj

)
. (13)

Here, i and j are the sending and the receiving bus indices
respectively, while Zij = rij + jx ij represents the branch
impedance from bus i to bus j, P and Q are the real and
reactive power at each bus.

2) VOLTAGE DEVIATION
Voltage regulation and monitoring are a primary, yet impor-
tant task of the distribution network operator, which is also
a concern for the consumer given that appliances and meters.

It is therefore essential to measure the voltage deviation while
injecting the DG and BESS units. It is defined as [32]

VD =
N∑
i=2

|V t
i − Vref |, (14)

where the reference voltage, Vref is set at one and Vi repre-
sents the voltage at each bus after the addition of DG or BESS
units.

3) VOLTAGE STABILITY INDEX
Voltage collapse is a phenomenon that is a consequence of
random load increase in distribution networks. While inte-
grating DG units, the VSI is applied to monitor the degree
of voltage collapse of the system. The VSI needs to be
maximized and is defined by [30]

vsii+1,t+1 =
(
|Vi,t |2 − 2Pi,tRi,t − 2Qi,tXi,t

)2
− 4 ·

(
P2i,t + Q

2
i,t

)
·

(
R2i,t + Xi,t

2
)
, (15)

VSIi,t =
1

min(vsii+1,t+1)
, (16)

VSI =
1
24

N∑
i=2

24∑
t=1

VSIi,t . (17)

4) INSTALLATION COST
The cost generated while sizing the DGs is very important.
Therefore, there is a need to minimize it simultaneously with
the sizing objective [33]–[35] which is

Cinst =

N∑
i=1

(nPVi × c
PV
+ nBESSi × cBESS), (18)

where nPV and nBESS are the unit number of solar PV and
BESS units respectively, and cPV and cPV are the unit cost of
solar PV and BESS units respectively.

5) OPERATIONAL COST
The operational cost includes the cost of maintaining DG
and BESS units and the cost of power from the grid. It is
formulated as [30], [36]

Cop=

Y∑
y=1

24∑
t=1

Ns∑
s=1

ρs(Css
t,s×P

ss
t,s+PV

OM
t,s )×

(
1+ inf
1+ int

)y−1
,

(19)

where Css
t,s represents the cost of power from the substation,

Psst,s indicates the power from the substation, PVOM
t,s is the

operation and maintenance cost of the PV-DG units, and ρs
is the probability of scenario s. The inf and int respectively
represents the inflation and interest rates over a 10-year
period.
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6) EMISSION COST
The emission cost objective is formulated as the real power
from the substation [25], and can be defined as

Y∑
y=1

24∑
t=1

Psst,s × Ef , (20)

where Ef is the emission in kg/kWh and Psst,s is the real power
from the substation.

C. CONSTRAINTS

Pti =
N∑

j=1,j6=i

YijV t
i V

t
j cos(θij + δj − δi) (21)

and

Qti =
N∑

j=1,j6=i

YijV t
i V

t
j sin(θij + δj − δi). (22)

Although there was no injection of reactive power, it is
necessary to monitor boundaries during the injection of real
power. The operating voltage at every bus must satisfy the
range at all buses. The admittance on branch is represented
as Yij. The bus voltage limit is formulated as

Vmin
i ≤ Vi ≤ Vmax

i i = 1, 2, . . . ,N , (23)

where Vi is the current voltage at bus i. Then Vmin
i and Vmax

i
are 0.98 and 1.01 respectively.

The power flow balance is also considered. The total real
power generation (from all DG and BESS units) must be
equal to the total real load, total real power loss, and the BESS
charging and discharging power [37]. Therefore, a balance of
the power flow is calculated as

N∑
i=1

PDGi +
J∑
j=1

PDisj =

N∑
i=1

PLOSSi +

N∑
i=1

PLOADi +

J∑
j=1

PChj ,

(24)

where the PDisj and PChj represent the BESS discharging and
charging power to and from the grid from bus j.

D. BESS OPERATION CONSTRAINTS
Given that BESS’s performance in any application depends
on the BESS technology, this paper selected the Lead-acid
battery technology. Lead-acid batteries are reliable, econom-
ically viable, and can be left on a float charge for more
extended periods; hence their overcharging tolerance. These
characteristics are well suited for the ESS integration in dis-
tribution networks.

For a practical scenario, the BESS model is subject to
certain constraints such as SOC limit prevents excessive
charging or discharging from the battery, and defined as [38]

SoCmin <
EBt
EBAt

< SoCmax , (25)

where the SoCmin and SoCmax are 0.2 and 0.9 respec-
tively. The charging and discharging power are specified
as [39], [40]

EBt+1 =

E
B
t − P

B
t 4tηBc PBt 6 0

EBt −
PBt 4t
ηBd

PBt > 0,
(26)

where EBt is the energy of the BESS unit at time t , PBt is
the charging power of the BESS unit at time t , 4t is the
time interval, ηBd and ηBc are the discharging and charging
efficiency of the BESS unit respectively, the battery power is
limited by

Emin 6 EBi,t 6 Emax, (27)

where Ei,t is the energy of the ith BESS unit at time t .

IV. OPTIMIZATION STRATEGY
A. MULTISTAGE MULTIOBJECTIVE FRAMEWORK IN AN
OPTIMAL INTEGRATION PROBLEM IN
DISTRIBUTION NETWORKS
In the optimal integration problem, objective functions are
categorized into three collective objectives: grid performance
(or technical benefits), economic benefits, and environmental
benefits. Each of these collective objectives can consist of
many objective functions except for the environmental bene-
fits, which only deals with the greenhouse gas emission cost.
The proposed framework categorically handles the adopted
objectives according to their respective collective objectives.
Fig. 1 shows the conventional and proposed method for han-
dling multiple objectives.

As seen in the Fig. 1a, the conventional approach, irre-
spective of the approach, the objectives are fed into the
MOO framework without considering the collective objec-
tives. Fig. 1b illustrates the initial handling of categorized
objectives, followed by the final handling of the collective
objectives. The first stage of optimization adopts the apriori
approach, which implements the Weighted Sum Aggregate
method (WSA) to all concerned objectives to get subfinal val-
ues. The subfinal values represent the value for each collec-
tive objective, which are handled using a TOPSIS approach.

B. MULTIOBJECTIVE FRAMEWORK USING
THE TOPSIS APPROACH
This process is merged with the multistage multiobjec-
tive framework to produce non-dominating solutions. The
TOPSIS method is used to solve the multiobjective optimal
integration problem in distribution networks. This method
applies the Euclidean geometry between positive ideal solu-
tions (P+ve) and the negative ideal solutions (P−ve). The
shortest distance from P+veand longest from P−ve helps iden-
tify the best compromise solution from the Pareto optimal
set. The following steps explain the process of the TOPSIS
method.

Step 1 all objectives are transformed into a nondimen-
sional entity and stored in a normalized decision matrix. The
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FIGURE 1. Approaches for handling multiple objectives in an optimal integration problem in distribution networks.

normalization is defined as

Dij =
Fij√∑

i∈M ,j∈N F
2
ij

, (28)

where M represents the number of alternatives and Fij is the
ith alternative value of the jth objective.

Step 2 as an option, weights are assigned to determine the
importance level of all objectives. The element in the decision
matrix are determined as

WDij = WjD, (29)

where the sum of weight Wj of the jth objective is equals to
one.

Step 3: The values of P+ve and P−ve which represents the
best and worst solutions of the objective functions. They are
expressed as

P+ve = B+1 ,B
+

2 , . . . ,B
+

M (30)

P−ve = B−1 ,B
−

2 , . . . ,B
−

M (31)

where

B+j =

{
max(Bij), if objectives are benefits
min(Bij), if objectives are cost-wise

B−j =

{
max(Bij), if objectives are cost-wise
min(Bij), if objectives are benefits

Step 4 Find the Euclidean distance from the ideal solutions
of P+ve and P−ve to their alternative solutions, Pi. It is repre-
sented as

d+i =

√√√√ N∑
J=1

(B2ij − B
+

j
2
) (32)

d−i =

√√√√ N∑
J=1

(B2ij − B
−

j
2
) (33)

Step 5 Calculate the relative closeness index, ζ based on
the Euclidean distance from step 4, and expressed as

ζ =
d−i

d+i + d
−

i

(34)

Step 6 Select the best solution based on the highest value
of ζ .

C. PROPOSED ALGORITHM
1) OVERVIEW OF THE WHALE OPTIMIZATION ALGORITHM
The WOA was developed by Mirjalili [41] and has been
applied successfully to many optimization problems, includ-
ing the optimal sizing problem. The algorithm involves the
feeding nature of whales (specifically humpback whales).
According to whales’ intelligent behavioural nature, they
use a specific technique to target small fish that are close
to the sea surface. This technique is called the bubble net
feeding, where whales swim round a school of fish (prey)
to form a 9-shaped bubble trail. In this algorithm, an initial
solution is termed as the objective prey and assumed as the
current best solution. During iterations, other whales update
their positions towards the best whale position. The WOA is
mathematically modelled in three sections. (i) encircling prey
(ii) bubble net hunting method and (iii) search the prey.

a: ENCIRCLING PREY
This form of hunting is based on a circular positioning around
a prey. The position of the whale moves towards the prey in
a step-wise manner. It can be modelled as

−→
X t+1 =

−→
X
∗

t − A ·
−→
D , (35)

where A = 2a · r − a and a is linearly reduced from 2 to 0,
and r ∈ [0, 1] where r can take up random in 0 and 1 interval.
−→
D = |C ·

−→
X∗t −
−→
Xt |, is the distance between the current whale

position and the best whale position where C = 2 · r is a
random parameter that is updated at every round of iteration.
The current iteration is denoted by subscript t and t + 1 for
the next iteration.

−→
X represents the position vector and

−→
X ∗

represents the current best solution.

b: BUBBLE NET HUNTING METHOD
This method is the exploitative phase of the algorithm.
This behaviour is attained by decreasing the value of a,
as explained in Section IV-C1.a. This behaviour is modelled
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FIGURE 2. Structure of a whale chromosome for each population.

as shown in Equation (35). The spiral equation is created as
follows:

−→
X t+1 =

−→
D ′ · ebl · cos(2π l)+

−→
X ∗. (36)

The component cos(2π l) simulates the spiral shape of the
whale’s path, l takes a value between [-1,1], and b is a con-
stant (usually 1) that gives the spiral shape regular definition.
Since the whales can be shrink towards a prey or move
spirally, there is a need to model this behaviour. A probability
of 50% is chosen for both feeding mechanisms. The model is
as follows:

−→
X t+1 =

{−→
X ∗t − A ·

−→
D , p < 0.5

−→
D · ebl · cos(2π l)+

−→
X ∗t p > 0.5

(37)

where p is a random number between [0, 1].

c: SEARCH FOR PREY
The WOA uses this technique to overcome a possible local
optimum mainly. This is called the exploration phase, where
whales search randomly according to check other possible
solutions. If the best solution is not global, the search agent
can still find other better solutions in the global space. The
use of this approach is dependent on the value of A. If the
value of A is lesser than 1, Equation (35) is triggered, else
Equation (38) is triggered, as shown below.

−→
X t+1 =

−→
X rand − A ·

−→
D , (38)

where
−→
D =

∣∣∣C · −→X rand −
−→
X t

∣∣∣, −→X rand represents the ran-

dom whales’ position in current iteration,
−→
D is the dis-

tance between current whale position,
−→
X t and the randomly

selected whales’ position while C is a random parameter
generated anew in every round of iteration.

2) PROPOSED HYBRID WOA-GA APPROACH
The WOA-GA is a hybrid method to find improved solutions
from the optimal integration of DG and BESS units. The
optimal integration of units in distribution networks is a
combinatorial problem due to the discrete nature of finding
optimal locations, and a non-convex problem due to the non-
linear nature of power constraints while finding optimal DG
unit sizes. The WOA-GA exploits the GA’s binary encoding
attribute and the fast convergence attribute of the WOA,
which is excellent for solving the complex and large iterative
computations. Fig. 2 shows how the problem is structured in
the WOA-GA algorithm.

Firstly, the WOA mechanism finds the optimal sizes for
DG units for pre-selected bus locations. The WOA possesses
a fast convergence capability, which is an excellent attribute
for solving the complex and large iterative computations.

The second stage uses the GA to find the optimal locations
of the DG and BESS units, through an integer-based tech-
nique. The GA deploys the crossover and mutation operators
to generate a child for each parent in a population. A condition
is set for each offspring to replace their parent if they have a
better fitness value. Otherwise, the parent is rolled over to the
next generation. The tournament selection process is used to
select the parents in the current generation while a heuristic
crossover operator is adopted as applied in [42], is used to
produce new whales solution. Lastly, a vectorized mutation
operator, as in [43], is used to improve the health of each
whale. For the crossover rate (as in [44]), we consider a pair
of parent x1 = {x11 , x

1
2 , . . . , x

1
n } and x

2
= {x21 , x

2
2 , . . . , x

2
n } to

produce an offspring u1 = {u1, u2, . . . , un}, therefore

ui = σ (x2i − x
1
i )+ x

2
i , (39)

where σ is a uniformly distributed value in the range [0,1]
and parent x2 would have a better fitness value than parent
x1. This kind of crossover operator utilizes parents’ fitness
value to produce offsprings; hence, the crossover probability
is relatively proportional to the fitness value. The mutation
operator is adopted from the differential evolution algorithm
and expressed as

−→
V G
i =
−→
X j
r i1
+ F × (

−→
X G
r i2
−
−→x G

r i3
), (40)

where
−→
V G
i is the donor vector created from the target vector

−→
X G
i and F is the scaling parameter for controlling the differ-

ence vectors. The notations r i1, r
i
2, and r

i
3 are random integers

in the range [1, Nvar ], where Nvar is the number of decision
variables.

3) IMPLEMENTATION OF THE MULTIOBJECTIVE WOA-GA
This section discusses the implementation of the proposed
multi-stage multiobjective WOA-GA framework in the opti-
mal integration of DG and BESS units in a distribution
network. The variables and parameters of the WOA-GA are
presented in Table 2. To solve the integration problem using
the proposed framework, a pod of whales is modelled as a set
of solutions. Eachwhale has a chromosome representing their
fitness in terms of DG and BESS units locations and their
sizes. Fig. 2 illustrates the structure of each whales’ chromo-
somes. The first part of the whales’ chromosome represents
the DG or BESS location and the second part represents the
DG or BESS sizes, which are used as the decision variables.
The whales’ population is illustrated as

−→
X pop =


L11 · · · L

1
N S11 · · · S

1
N

L21 · · · L
2
N S21 · · · S

2
N

... · · ·
...

... · · ·
...

LM1 · · · L
M
N SM1 · · · S

M
N

 , (41)
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FIGURE 3. Flowchart of the proposed MOWOAGA implementation to the optimal DG and BESS unit integration.

where LMN is the total N number of DG or BESS unit location
for M number of whales, and SMN represents the sizes of the
proposed DG or BESS units.

The following steps are involved in the implementation of
the hybrid WOA-GA.

1) Read the distribution network data; Power at each bus,
Load at each bus, Resistance on each branch, Reactance
on each branch.

2) Generate an initial population of whales with chromo-
somes representing DG locations and sizes.

3) Update the distribution network by injecting the DG
sizes (corresponding to their rated power) in the sug-
gested bus locations

4) Run the backward/forward load flow algorithm to
determine the new voltage magnitude and real power
at each bus.

5) Calculate the objective functions using the new param-
eters obtained from step 4.

6) Update the chromosomes of all whales in the popula-
tion (i.e. the DG sizes) according to step 3 - 4.

7) Select the whale with the best chromosome for the sec-
ond phase.

8) Use the GA to update the DG location.

• Choose the best two whales as parents
• Perform the crossover operation to generate off-
spring from the parent

• Perform the mutation operation to obtain off-
springs with better chromosomes

• Stop when sub-criteria is reached
9) Generate another population of whales with chromo-

somes representing BESS locations and sizes.
10) Inject the BESS units into the updated distribution

network (with the DG units).
11) Run the load flow algorithm to determine the new

voltage magnitude and real power generated at each
bus.

12) Update the distribution network according to step 4 - 8.
13) Stop if criteria are reached.
14) Print out final objective values.
These steps are illustrated as a flowchart in Fig. 4.

V. NUMERICAL RESULTS
The proposed algorithm is evaluated on the IEEE 33-bus
distribution test network (See Fig. 4), with a total real
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FIGURE 4. A single line diagram of the IEEE 33-bus test distribution
network [45].

TABLE 1. Parameters of the system model.

TABLE 2. Parameters of the WOAGA.

and reactive power of 3.72 MW and 2.3 MVaR respec-
tively. The voltage and apparent power are 12.66 KV and
100 MVA respectively. All buses are feasible for installing
PV-DG or BESS units except the first bus reserved for the
substation. The real power from PV-DG units is based on the
PV module characteristics, temperature, and solar irradiance,
which is considered as an uncertainty; hence modelled as a
beta PDF.

The model parameters is listed in Table 1 and the pro-
posed WOAGA, compared to its primary variants; WOA and
GA, using the relative parameters is shown in Table 2. This
paper proposes a new sub-framework for handling multiple
objectives across different collective objectives in an optimal
integration problem. As discussed in Section IV-A, there is
a need to always consider objectives in the sense of the
technical aspect, economic aspect, and due to the rise in
reducing carbon emission, environmental aspects. The Pareto
front for the collective objectives in a feasible region is shown
in Fig. 5. Theoretically, all Pareto optimal solutions, even in
a constrained space, should follow a uniform distribution in a
multiobjective projection. The combination of TOPSIS and
crowding distance substantially projects this characteristic.

FIGURE 5. Pareto optimal solutions and final whale solutions.

FIGURE 6. Pareto optimal front the economic and environmental
objective.

FIGURE 7. Pareto optimal front the economic and technical objective.

The TOPSIS approach was also used to select the best trade-
off solution among the Pareto optimal solutions. It is to note
that the final compromise solution is neutral to any collective
objective; hence no weights have been applied in step 3 of the
TOPSIS approach (See Section IV-B). However, weights can
be applied at the request of the decision-maker to show other
alternative results.

Further Pareto projections can be seen in Figs. 6 and 7,
where the economic/environmental and technical/economic
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TABLE 3. Final objective values for optimal location and sizing of PV-DG
and BESS units.

TABLE 4. Comparison of algorithms performance on collective objectives.

objectives are projected on a two-dimensional plane respec-
tively. It is seen that to focus more on the technical objectives
will be a trade-off for the economic objective. In the same
vein, improving the environmental objective, that is reducing
carbon emissions, will require more cost; hence a propor-
tional increase in the economic objective.

Table 3 shows the comparison of the final objective values
from the conventional direct method and the proposed cate-
gorical method. Both approaches are compared based on the
MOWOAGA technique, which produces a final fitness value
by selecting the best compromise from Pareto optimal solu-
tions. It can be seen that the direct approach produces lesser
power loss and voltage deviation values than the categorical
approach. The better technical objective values may be influ-
enced by the higher number of (related) technical objectives.
Although not on the same scale, the objective values are
factored by related parameters, such as voltage, power, and
current. On the other hand, the categorical approach produces
a more reduced installation, operational cost, and emission
cost. A practical scenario like the DG planning problem
should consider closely related and conflicting objective
functions in producing Pareto optimal solutions; else, a higher
number of closely related objectives than other objectives
may cause a bias even without applying a preference method.
The obtained results are shown in Table 4 where each collec-
tive objective values are displayed. The WOAGA is the spot-
light as it optimizes all collective objective objectives better
than the WOA and GA. According to the table, the WOAGA
yields the technical, economic, and environmental objectives
as 33.853, 12954.31, and 1823457, respectively.

Table 5 shows the optimal DG and BESS unit locations,
their sizes, and the effect on power loss (PL), voltage devi-
ation (VD), and voltage stability (VS). It is seen that the
WOAGA produces an optimal location at bus 11, 19, 26,
and 32, with their power capacity as 914.2 kW, 865.1 kW,
959.7 kW, and 990.8 kW respectively, and BESS location 6,
26 with their sizes as 791.2 kW and 831.4 kW respectively,
which produces favourable technical objective values than
the WOA and GA. The GA binary operation’s effect can
also be seen through the suggested BESS location from the
WOAGA and the GA. Compared to the study in [12] where
the total power loss is lower without PV-DG integration than

FIGURE 8. A 24-hour mean voltage profile for different cases.

FIGURE 9. Performance of the each algorithm in obtaining the minimum
voltage deviation of the distribution network.

with PV-DG units, the total power loss is further reduced
when the PV and BESS are integrated simultaneously into
the distribution network.

Fig. 8 shows the comparison of mean voltage profile of
a full day for three cases; the base case, when DG unit is
integrated, andwhenDG andBESS units are integrated. It can
be seen that the integration of DG and BESS units improves
the distribution networks’ voltage profile.

Different statistical methods are used to understand the
proposed algorithm’s performance for solving the optimal
integration of DG and BESS units in a distribution network.
Fig. 9 shows the box plot for the voltage deviation outputs
when each algorithm are run 50 times. It is seen that the
performance of the WOAGA and WOA are very consistent
in producing the optimal values while the GA has a lower
consistency with a larger interquartile range.

The convergence characteristics of each algorithm are dis-
played in Fig. 10. It is observed that the WOAGA, although
not faster than the WOA to converge, converges faster than
the GA and eventually produces the best value at the 78th

iteration. This outcome is attributed to the shared attribute
from the WOA and the GA.
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TABLE 5. Comparison results for optimal location and sizing of PV-DG and BESS units.

FIGURE 10. Convergence characteristics of each algorithm.

TABLE 6. Statistics for the grid performance of the distribution network.

Each algorithm was run 50 times, and a Kruskal Wallis
rank-sum test was used to confirm a statistically significant
result and a box plot to visualize the performance from each
algorithm. Table 6 shows the mean and standard deviation
with their p-values. It is also noticed that, unlike some hybrid
algorithms where complexity is traded-off with performance,
the WOAGA uses the unique features of the WOA and GA to
produce better trade-off solutions; hence the better computa-
tional time from Table 6.

Furthermore, the performance of the multiobjective meth-
ods is analyzed to observe the uniform spread of Pareto
solutions. In context, the single objective analysis is simi-
lar to the multiobjective space since they both involve the
understudy of the change in the distribution of solutions in
relation to different techniques. The multiobjective analysis
tends to reveal the quality of non-dominated solutions, which
is determined mostly by their spatial nature. Since this paper

FIGURE 11. Convergence characteristics of the each algorithm.

proposed a new multiobjective framework that involves a
double production of Pareto optimal solution selection, it is
necessary to measure the quality of the solutions; hence,
the spacing metric (SP-metric) is adopted for this purpose.
SP-metric is the progressive distance between each solution
and its closest neighbour. The computed SP-metric for each
algorithm is displayed as a box plot in Fig. 11. It can be
seen that the MOWOAGA is the centerline of the boxes are
almost in line with each other, which shows that the median
is similar; hence, the techniques follow the same distribution
pattern. The box plot validates the proposed approach as
it is observed that the MOWOAGA box has the shortest
height, which means a better SP metric than other algorithms.
In other words, the MOWOAGA produces non-dominating
solutions that are uniformly distributed and close to each
other. The TOPSIS approach is responsible for this even and
compact distribution due to its consideration of best andworst
solutions for final decision value, making it easier for the
crowding distance to sort the Pareto optimal solutions at the
final stage.

VI. CONCLUSION
This paper developed a novel approach to seamlessly coor-
dinate the interaction between the allocation of the PV-DG
and BESS units in a distribution network and developed the
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MOWOAGA, a new multiobjective metaheuristic algorithm,
to decompose the discrete and nonconvex optimal DG and
BESS unit integration problem. In addition to the algorithm,
a new multi-stage framework is proposed for handling mul-
tiple objectives in a collective manner. The MOWOAGA is
validated by applying it to the simultaneous integration of
PV-DG and BESS units in the IEEE 33-bus test network,
which compares favourably with other variants of the algo-
rithm, such asWOA andGA. The proposed algorithm utilizes
the GA’s powerful binary operation to manoeuvre the opti-
mization problem’s discrete nature and inherits this approach
and uses the WOAs’ mechanism to produce a faster conver-
gence. The effect is seen in the convergence curve where it
converges better than the GA and produces a better fitness
value than the WOA. The quality of the non-dominating
solutions produced by theMOWOAGA ismeasured using the
SP metric, which shows superiority than the WOA and GA.

The different variation of weights assignment to all objec-
tives in a multi-stage multiobjective optimization framework
could be studied in future works. Future work could also
implement Pareto optimal solutions in the first and second
stage of the multi-stage framework. It will be interesting to
see the interactions between the two stages.
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