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Currently, ensuring that power systems operate efficiently in stable and secure conditions has become a key
challenge worldwide. Various unwanted events including injections and faults, especially within the generation
and transmission domains are major causes of these instability menaces. The earlier operators can identify and
accurately diagnose these unwanted events, the faster they can react and execute timely corrective measures to
prevent large-scale blackouts and avoidable loss to lives and equipment. This paper presents a hybrid classifi-
cation technique using support vector machine (SVM) with the evolutionary genetic algorithm (GA) model to
detect and classify power system unwanted events in an accurate yet straightforward manner. In the proposed
classification approach, the features of two large dimensional synchrophasor datasets are initially reduced using
principal component analysis before they are weighted in their relevance and the dominant weights are heu-
ristically identified using the genetic algorithm to boost classification results. Consequently, the weighted and
dominant selected features by the GA are utilized to train the modelled linear SVM and radial basis function
kernel SVM in classifying unwanted events. The performance of the proposed GA-SVM model was evaluated and
compared with other models using key classification metrics. The high classification results from the proposed
model validates the proposed method. The experimental results indicate that the proposed model can achieve an
overall improvement in the classification rate of unwanted events in power systems and it showed that the
application of the GA as the feature weighting tool offers significant improvement on classification performances.

1. Introduction summary, some of the security challenges modern power systems are

facing are presented in Figure 1.

Modern power systems rely on advanced technologies, communica-
tion networks and other sophisticated tools for efficient monitoring,
control and operation of physical equipment. These tools offer varying
contributions in terms of performance and reliability enhancement as
some of them are designed and equipped with a variety of outstanding
features for efficiency and effectiveness. However, the increasing use of
these devices and other cyber presence increases the vulnerabilities and
channels through which sabotage, terrorism and intrusion can be
perpetuated into the network [1, 2, 3]. The consequences of various
high-profile incidences such as the Yemen blackout, Ukrainian power
grid blackout, Iran nuclear program attack, etc. have shown the devas-
tating effects of intrusion and unwanted events on power infrastructures
[1, 3]. Also, as modern power system networks spread across wide
geographical landscapes, substations and transmission lines that travel
over thousands of miles can be physically assaulted by adversaries. In
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In the literature, several studies have discussed the threats, effects and
impacts of these security challenges [4, 5, 6]. Adversaries can access
network nodes, alter control commands and inject attacks such as the
denial of service (DOS) attack, thereby destabilizing the operation,
creating blackouts, financial losses, and in some situations, national se-
curity can be put into jeopardy. As power systems plays a major role in
today's world, there is a growing need for adequate monitoring of the
events at all layers of the network [7]. The introduction of technologies
such as the phasor measurement units (PMUs) have significantly
improved the possibilities of monitoring and analysing power system
dynamics [8]. PMUs provide time synchronized data which include
voltage and current phasors, relays, switches, circuit breakers statuses,
etc. to control centres thereby enabling the accurate monitoring and
identification of events [8, 9, 10].
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Figure 1. Security challenges of modern power system [1, 2].

However, it is noteworthy that various sophisticated infrastructures
including the PMUs are vulnerable. Various experiences and studies in
the literature have discussed PMU technology vulnerabilities to
numerous intrusions and attacks [10, 11, 12, 13, 14]. Pan et al. [10]
explained that a sophisticated cyberattack in form of a false measurement
injection can mimic a fault thereby triggering a relay trip. Such imitation
may not be detected by PMU technology. As intrusions and attacks have
become rather inevitable, it is highly important that effective models for
identifying and classifying undesirable events into power system are
available, so that proper control commands and mitigation responses can
be instigated promptly.

In recent years, numerous mathematical/statistical theories and
models such as graph theory [15, 16], game theory [17, 18, 19, 20],
traditional machine learning (ML) models [7, 21, 22], etc. have been
proposed for power system security analysis. However, the proposed
methods have shown various forms of shortcomings and poor per-
formances. The poor performances are closely tied to the deployed
data preprocessing techniques which include the deployed feature
selection and weighting techniques for the large dimension syn-
chrophasor datasets, poor parameter selections for the classifier(s),
etc. In some of the existing works, human experiences were used for
data preprocessing. Furthermore, several power system security
works deployed conventional techniques such as InfoGain [22], relief
algorithm [23], correlation-based feature selection, sequential back-
ward selection [24], etc., as preprocessing techniques. However, the
results achieved indicated that the proposed techniques offered less
classification performance compared to the technique proposed in
this study.

In this work, the hybridization of genetic algorithm (GA) and support
vector machine (SVM) for the detection and classification of unwanted
events into a power system network is presented. The weighted and
dominant selected power system features by the GA are utilized to train a
linear SVM and radial basis kernel (RBF) SVM model in accurately
classifying the malicious control commands from normal one. To validate
the efficacy of the developed GA-SVM model, experimentations were
done using two power system datasets and the results were compared
with various other models.

Specifically, the main contributions of the paper are summarized as:

e Develop an effective classification model that is capable of dis-
tinguishing power system events and efficiently classifying the events
into their appropriate categories.

To improve the generalization ability and classification performance,
the features of large dimensional power system datasets are initially
reduced using principal component analysis (PCA) before they are
varied in their relevance and the dominant weights are heuristically
identified using a GA.

The remainder of the paper is organized as follows. Section 2 presents
related research works. Section 3 presents the methodology, and the
simulation results and discussions are presented in Section 4. The con-
clusions are presented in Section 5.

2. Related works

In the literature, various ML algorithms have been modelled for
power system events' detection and classification. Alimi et al. [3] pre-
sented a review of ML approaches to power systems security solutions.
Among the foremost deployed ML tools, SVM has continued to be a
dominant model as it gives excellent classification performances [7]. The
authors in [21] presented the use of SVM for power system security
evaluation. Similarly, Binna et al. [25] explored the use of SVM and
recurrent neural network for classifying attacks on a power system test
system. For performance improvement, Chen et al. [26] proposed the use
of various ensemble learners as power system's attack detectors. In a
similar study, Alimi et al [7] modelled the ensemble of SVM and
multilayer perceptron neural network (MLPNN) for cyber-attacks
detection on a load flow analysis result of a 24-bus test system. Howev-
er, as conventional ML algorithms are highly susceptible to errors and
misclassifications owing to ineffective parameter selections, feature
weighting techniques and complicated design procedures, the proposed
models have shown various forms of shortcomings. To this end, various
feature selection, feature weighting and optimization techniques have
been deployed for ML performance optimization, feature selection and
weighting procedures [3]. Ullah et al. [22] proposed InfoGain as
filter-based selection method for a Bayes Net and J48 power system
classification. Ali et al. [27] and Shang et al. [28] proposed the use of
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Particle swarm optimization (PSO) to optimize Extreme Learning Ma-
chine classifier and one class SVM respectively. In related work, Abdoos
et al. [24] deployed Gram-Schmidt orthogonalization (GSO) as feature
selection and optimizer for SVM in classifying power quality events.
However, some heuristic algorithms have disadvantages when deployed
as optimization tools. While GSO are popular with their numerical
instability with regards to rounding error, PSO are adjudged to easily fall
into local optimum in high dimensional space [3, 29]. Thus, the tech-
niques are not as effective in comparison to the GA that is deployed as
feature weighting technique in this paper.

Inspired by the widespread acceptance of GA as a powerful optimi-
zation and/or feature enhancing tool that is based on the principle of
Darwin's theory of evolution, an attempt has been made in this paper to
implement a GA model as the feature weighting tool for SVM model for
power system security assessment. The results achieved from the pro-
posed GA-RBF SVM model was compared with those obtained using or-
dinary and GA-feature weighted linear SVM, Random Forest (RF),
MLPNN and existing models in the literature. The proposed GA-SVM
model outperformed the results achieved from the other models.

3. Methodology

This section presents the detailed description of the power system
architecture, the testbed and the dataset used in the study. Also, the
section presents a comprehensive description of the proposed classifi-
cation model for accurately classifying power system events.

3.1. Power system architectural framework and dataset description

The power system architecture described in [30] was deployed in the
study. The architecture presents a typical non-pilot directional over
current relay protection scheme. A detailed description of the power
system architecture can be accessed in [9, 30]. The framework is a fully
operational scaled down 3-bus system that is integrated with four circuit
breakers, tagged CB1, CB2, CB3 and CB4, that are controlled by relays.
Figure 2 presents the one-line diagram of the 3-bus system.

As shown in Figure 2, Beaver et al. [30] explained that via trans-
mission line 1 and line 2, the load is powered by Generators- Gen 1 and
Gen 2. The Relays (1, 2, 3 and 4) with incorporated PMU functionality
reside at each end of the lines that control the four breakers. As expected,
Relay 1 and Relay 2 offer instantaneous over current protection for line 1.
Relay 1 provides the same services for line 2 if Relay 3 fails in protecting
line 2 against faults. Similarly, at line 2, Relay 3 and Relay 4 protects line
2 against faults and Relay 4 offers line 1 standby if Relay 2 failed a
tripping test. All the relays constantly monitor and send the time syn-
chronized data to the control centre via the phasor data concentrator
(PDQ).

To generate the datasets used in this study, Beaver et al. [30] simu-
lated a testbed to implement the power system framework depicted in
Figure 2. The testbed includes a real-time power system simulator,
making use of commercial PMUs, PDCs and relays. Each relay logs data
which includes phase voltage, current phasor, apparent line impedance,
etc. Furthermore, breaker events log, Snort alerts log, and control panel
alerts logs were captured. In the constructed simulation testbed, a threat
model consisting of thirty-seven sets of five major event scenarios was
designed to collect the balanced experimental datasets. The 5 major
event scenarios include data injection attack, short-circuit fault, line
maintenance, remote tripping command injection attack and relay
setting attack. Each event aims to achieve some physical effect on the
system.

From the simulation, three different classes of datasets were gener-
ated, which can be accessed via [31]. Two out of the three datasets were
deployed in this study. A two-class data with the event scenarios cate-
gorized as either attack (28 events) or normal operation (9 events) while
the second dataset deployed in the study is a three-class data with the 37
event scenarios distributed into natural events (8), no event (1) and
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attack events (28). The datasets generated were randomly sampled at
1%. Each of the two datasets deployed in this study is made up of 78,377
samples with 128 features.

3.2. GA-SVM model description

This subsection presents a detailed description of the proposed clas-
sification model which is based on using a GA as a feature weighting tool
for the SVM model for accurately classifying power system events. The
simplified flowchart of the proposed model is presented in Figure 3. The
main steps of the model are the pre-processing steps, the GA-based
feature weighting steps and the SVM training and evaluation steps.

3.2.1. The pre-processing steps

Generally, raw datasets require preparation into appropriate form for
ease of classification. The pre-processing steps are important as they have
significant influence on classification performance [3]. As we are work-
ing with voluminous datasets, we used PCA [32] for the reduction of the
feature dimension of the two datasets. The PCA helps in decomposing the
multivariate quantities into a set of orthogonal components that assist in
improving training efficiency, prevention of overfitting and general
enhancement of the classifier's accuracy. Each dataset is then partitioned
at a ratio of 7:3 representing training and testing set respectively.

3.2.2. GA-based feature weighting steps

Current and future research in relevant fields including power system
security studies, constantly work on voluminous data which poses a
major challenge for conventional ML algorithms. The most common
methods for efficient processing of voluminous datasets are feature
weighting and feature selection techniques. While feature selection al-
gorithms refer to algorithms that select the best subset which retain the
interpretation of the large original data, feature weighting models
operate based on the ideology that data features vary in their importance
and each feature's contribution to the classification task should be
different [33, 34]. Thus, higher weights are allocated to relevant features
and lesser weights are allocated to the less relevant ones [35].

For a linear feature weighting approach for ML classifier's perfor-
mance improvement, consider a training dataset a, which contains f
features and h number of feature instances, defined in (1) [34]:

{ain,yylh€Handief } (@9

where q; is the i feature and y denotes the output labels. The linear
feature weighted data a.l can be defined as (2):

a; = W.a 2)

where W; denotes the corresponding weight of the i feature. It alters the
feature space of the classification task by escalating the space of highly
weighted features while attenuating the space of less weighted features.
The complication of feature weighting tasks relatively intensifies with
respect to the volume of the data features.

Various algorithms including heuristic optimization techniques such
as GA are widely used to process data feature weights [35, 36]. Inspired
by Charles Darwin's theory of genetics, GA are powerful tools that are
well known for their strong global search ability in finding solutions to
non-deterministic polynomial-time hardness problems. They have been
extensively combined with various ML models as a feature weighting tool
and parameter optimization technique in several classification tasks [33,
35, 36]. The basic step of a GA process is stated briefly as follows:

1. Creating population chromosome.

2. Evaluating the fitness values of individuals in the population based on
the deployed fitness function.

3. Applying the genetic operators (selection, crossover and mutation) to
create new populations.
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Figure 2. One-line diagram of the deployed test system [9, 30].

4. Step 2 and step 3 are continuously repeated until termination con-
ditions are met. For more details on GA, the authors refer readers to
[35, 36, 37].

For the process of using GA as the feature weighting method in our
study, it is necessary to define the GA parameters which include the
population size (), chromosome number (M), crossover rate (P.), mu-
tation rate (Pn), mutation step size (¢) and iteration number (I). In our
work, the values of M and (u) are considered from [38] as we are dealing
with similar dataset structures. We randomly choose values between
0 and 1 for each weight value of the individual feature. For the fitness
function, the fitness of each population chromosome is assessed using the
quadratic loss function described in [39]. For the parent selection, we use
size 2 tournament selection technique [35]. In size 2 tournament selec-
tion, 2 individuals are selected out of the population randomly and the
better of the two individuals, (based on the fitness function ranking), is
chosen as the next parent [35]. For the crossover, we used two-point
crossover technique. In the scheme, two crossover points are picked
randomly from the parent chromosomes. The bits in between the two
points are swapped between the parent organisms to create new
offspring. We deployed a simple inversion mutation [40] on each chro-
mosome probabilistically, whereby a point is selected randomly during
mutation and it is inverted afterwards. For instance, if the value is X
before mutation, the value will be (1 —X) post-mutation. The entire
process is repeated until the number of iterations reaches the maximum
100 generations, or there is no improvement of the fitness value recor-
ded. For the choice of the quantitative parameter values, some pre-
liminary experiments were conducted using various parameter settings.
During the experimentations, the parameter settings specified in Table 1
produced the best results in terms of performance and overall behaviour
of the algorithm. The pseudocode of the GA feature weighting steps is
presented in Algorithm 1.

3.2.3. SVM training and evaluation steps
A SVM is a unique ML tool that has been consistently deployed in a
wide range of classification studies as they are known to produce high

GA

Table 1. Qualitative and quantitative parameter settings for the modelled GA.

Parameter Setting/Value
Chromosome Number (M) 50
Population size (u) 100

Iteration number (I) 100

(Pm) 0.1

(Pc) 0.9

(o) 1%

Parent selection Tournament selection

Recombination 2-point crossover

accuracy, strong generalization and high stability [41]. SVMs works by
using an iterative training algorithm to find an optimal separating hy-
perplane, which separates sample instances into its categories [7]. For
linearly inseparable classification tasks such as power system event
classifications, the sample instances are mapped into a high dimensional
feature space by means of a nonlinear transformation process.

Consider a SVM classification task having a training dataset D defined
in (3) [35]:

D= {(d],yl),((dz,yz),((l3,y3), """ (“nvyn)}ﬂ (3)

where n is defined as the features' number andi = (1, 2, 3, ...... n). For
an input a;, the corresponding label is y;. Assuming the corresponding
classes for individual instances are labelled as y; € { — 1, 1}, all
training samples are expected to meet the qualification equation given in
(4) [42]:

yillw,a)+b) =1 + & =20 (€3]

where ¢&; is the positive slack variable, introduced to boost the model's
fault tolerance and b is the bias. Maximizing the SVM hyperplane dis-
tance by using (4) is equivalent to solving the optimization problem in (5)
subject to (6) [35,38]:

. 1 2 -
miny ol + €34 ®)

yillwa)+b) =1 + & >0 (6)

where C denotes the penalty parameter that is used to control the trade-
off between the slack variable penalty and the margin size. Usually, C is
defined using the K-fold cross validation method. Similar to most ML
algorithms, the classification effectiveness of SVM depends not only on
the properties of the data, but also on selected feature processing tools
and the appropriate parameter values such as C , the kernel function type,
kernel parameter, etc. [7, 35, 42]. Typical Kernel functions k(a;, a;)
include radial basis function (RBF), linear and polynomial kernel func-
tions which are defined in (7), 8 and (9) respectively [35, 38].

weighti nglphase

Power system data [
(binary and 3-class)

l

Preprocessing
(feature reduction)

Create
population

Fitness
Evaluation

Classifiers’ training
and evaluation

Conditions
met?

Feature weight
solution

Figure 3. Simplified GA-SVM flowchart.
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Algorithm 1
Pseudocode of GA for feature weighting

Input: Initial Chromosome Number (M),
Iteration number (1),
Size of Population (u),
Mutation rate (Pp,), Crossover rate (P.)
Output: Optimal weight solutions
Begin
Initialize the population chromosome with respect to the size

NOUuh~wWNHF

S
=

8 Evaluate fitness values and sort the population with respect to
the fitness values

9 for(i=1:Ddo

10 Select best individuals with respect to the rate (P.) based on
Tournament selection

11 Generate new offspring by 2-point crossover

12 Perform mutation with regards to the rate (Pp,)

13 Evaluate fitness of new offspring

14 Resort the population

15 Prune the worst population individuals

16 //loop to end once the two conditions are met

17 End

Table 2. SVM, MLPNN and RF parameter settings.

Algorithm Parameter Value
Linear SVM C =09
RBF SVM C=12,y=15
MLPNN ReLu activation function, 3 hidden layers of 30 neural nodes each,
Solver = Adam [7]
RF max_depth = 6, n_estimators = 10, max_feature = 1
2
k(ai,a)) = exp (—ylla; — aj]|") @
k(ai,a)) = ala; ®
d
k(ai,a)) = (1 +a; . a;) (C)]
wherei, j = 1,2, 3, ...... , m., d is the degree of the polynomial kernel,

|la; — aj|| is the Euclidean distance and y is the RBF kernel function
parameter. For more details on SVM, the authors refer readers to [42,
43, 44]. In this work, the SVM classifier model is trained using the
training datasets with the feature weighted by the GA. We experi-
mented using the linear SVM and RBF kernel SVM. For the modelled
RBF and linear SVM, Table 2 presents the parameter settings used. The
choice of these parameters is based on numerous initial experiments.
During the initial experiments, the parameters were varied to achieve
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results with reduced generalization errors and overfitting problems. For
comparison and validation, we developed a RF and a MLPNN model.
The parameters used for the modelled RF is also chosen based on
several initial trials. For the modelled MLPNN, the parameter settings
are adapted from our previous work [7]. The parameters for the
MLPNN and SVM are also presented in Table 2. Note that the param-
eters in Table 2 were used for both datasets.

e Accuracy: the accuracy can be described as the percentage of correct
classifications in relation to the total classification choices [45]. Ac-
curacy can be expressed mathematically as [7]:

total corrected classified sample

%Accuracy = 10)

total dataset samples

e Precision: Precision refers to how frequently the ML algorithm is
correct. Mathematically, precision can be expressed as [7]:
TP
Precision = ————— an
TP + FP

where TP can be described as the number of correctly classified un-
wanted event instances and FP is the number of normal events instances
that are wrongly classified as unwanted events.

e Recall: Recall measures the true positive rates [45]. Recall can be
expressed mathematically as [7]:
TP

Recall = ————— 12)
TP + FN

where FN can be described as the rate of false negative observations.

e F-Measure: it is described as the harmonic average of Precision and
Recall [7].

e Specificity: Specificity is described as the ratio of actual negatives
instances that were predicted as true negative instances.

4. Simulation results and discussions

The performance of the proposed GA-SVM model for classifying the
deployed power system datasets were evaluated and compared with
those obtained using RF, MLPNN, ordinary linear, RBF SVM and existing
models in the literature.

4.1. Evaluation of binary class dataset results

Using the binary class dataset, Table 3 presents the classification re-
sults for the RF, MLPNN, linear and RBF kernel SVM with and without the
use of the GA feature weighting process. As shown in Table 3, the RBF
kernel SVM performed better, compared to the linear SVM and other

Table 3. Comparison of binary class data results using SVM, MLPNN and RF models with and without GA feature weighting.

Classifiers Accuracy Precision Recall F-Measure
Linear SVM 76.2% 76.2% 75.4% 73.3%
RBF SVM 81.0% 80.1% 82.5% 76.0%
MLPNN 78.8% 78.5% 80.2% 75.3%
RF 81.9% 82.6% 83.9% 77.9%
GA-Linear SVM 87.0% 85.2% 86.6% 80.1%
GA-RBF SVM 91.9% 93.7% 95.0% 87.0%
GA-MLPNN 86.4% 87.2% 85.7% 84.9%
GA-RF 88.2% 87.4% 89.1% 86.1%
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Figure 4. Comparative result of the developed models using binary class dataset.

ordinary conventional models. Unlike linear SVM, the ability of RBF
kernel SVM to create nonlinear combinations of features to elevate
samples onto an upper dimensional feature space can be attributed to the
better performance achieved.

As shown in Table 3, using GA as the feature weighting tool for the
binary class data contributed to the performance enhancement of the
classification results. Using the GA as the feature weighting tool, the
accuracy of MLPNN, RF, Linear SVM and RBF kernel SVM models in
correctly classifying the unwanted power system events increased
significantly from 78.8%, 81.9%, 76.2% and 81.0%-86.4%, 88.2%,
87.0% and 91.9% respectively. Focusing on key classification errors,
Figure 4 presents a presentation of the comparison result of the GA-RBF
SVM model with the result of RBF kernel SVM, MLPNN and RF in clas-
sifying the 37 event scenarios in the binary class dataset. As depicted in
Figure 4, the GA-RBF SVM presented the best result in terms of true
negative rates, recall, etc. This is due to the fact that GA-based feature
weighting method is capable of effectively choosing the optimal weights
of features used for enhancing power system events classification.

Furthermore, using the binary dataset, Table 4 presents the compar-
ison results achieved from the developed model with other related works
in the literature. As shown in Table 4, the specificity and recall result

achieved from the proposed model is superior to the result achieved
using the AdaBoost + JRipper model proposed by Hink et al. [45]. The
relatively high precision achieved using the AdaBoost + JRipper model
by Hink et al [45] can be attributed to the fact that AdaBoost is a
meta-algorithm that uses an iterative approach to learn from the mistakes
of weak classifiers, and turn them into strong ones [46, 47]. Similarly,
Table 4 shows that the adaptive regularized cost-sensitive online gradient
descent algorithm (ARCSOGD) model proposed by Li et al. [48] presented
recall and specificity results which are remarkably lower than the one
achieved using the proposed GA-SVM model. Using the same convention
for the weighted sum calculation proposed by Li et al. [48], the com-
parison result in Table 4 shows that the weighted sum result from the
proposed GA-SVM model result is better than the result achieved using
the ARCSOGD model proposed by Li et al. [48]. For further validation of
our GA feature weighting choice, we compare our algorithm with models
that involved the use of other prominent heuristic optimization methods
as feature weighting tool for the SVM classifier. As shown in Table 4, the
precision, accuracy and recall results achieved from the proposed
GA-SVM model are significantly superior to the results achieved using the
PSO-SVM model proposed by Huang et al. [49] and the SVM-ant colony
optimization (SVM-ACO) model proposed by Li et al. [50].

Table 4. Comparison of binary class data results with results achieved from existing models using the same binary class data.

Classifiers Average Precision Average Accuracy Average Recall Average Weighted sum
Specificity

GA-RBF SVM 93.7% 91.9% 95.0% 89.5% 92.3%
JRipper [45] 85.0% - 70.0% 90.0% -

AdaBoost + JRipper [45] 94.0% - 89.0% 78.0% =

ARCSOGD [48] - 45.5% 62.9% 54.2%
PSO-SVM [49] 90.2% 89.5% 80.7% - -

SVM-ACO [50] 86.0% 84.4% 84.9% - -

CFS-RF [51] 96.4% - - -
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Table 5. Comparison of three-class data results using SVM, MLPNN and RF models with and without GA feature weighting.

Classifiers Accuracy Precision Recall F-Measure
Linear SVM 76.8% 76.4% 75.6% 72.3%
RBF SVM 80.9% 80.1% 82.5% 75.8%
MLPNN 72.4% 71.9% 71.1% 70.3%
RF 75.2% 75.9% 77.1% 70.9%
GA-Linear SVM 85.7% 84.4% 83.1% 81.7%
GA-RBF SVM 89.8% 90.9% 91.2% 85.9%
GA-MLPNN 80.5% 79.8% 79.2% 78.4%
GA-RF 83.9% 82.7% 84.6% 82.7%
GA-RBF SVM
89.8 90.9 91.2
—
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Figure 5. Comparative result of the developed models using three-class dataset.

4.2. Evaluation of three-class dataset results

Using the three-class dataset, Table 5 presents the classification re-
sults for the RF, MLPNN, linear and RBF kernel SVM with and without
using the GA feature weighting process. Noticeably, using GA as a feature
weighting tool boosted the classifiers’ performances. The accuracy of the
developed RBF kernel SVM, linear SVM, MLPNN and RF models in
correctly classifying the unwanted power system events increased

significantly from 80.9%, 76.8%, 72.4% and 75.2%-89.8%, 85.7%,
80.5% and 83.9% respectively. Figure 5 presents the comparison result of
the GA-RBF SVM model with the result of RBF SVM, MLPNN and RF for
the three-class data. As shown in the comparison results in Figure 5, the
GA-RBF kernel SVM presented the best classification result.

Table 6 presents the comparison results of the GA-SVM model with
the results from related works in the literature. The 90.9% accuracy
achieved from the proposed GA-SVM model is slightly superior to the

Table 6. Comparison of three-class data results with results achieved from existing models using the same three-class data.

Classifiers Average Precision Average Accuracy Average Recall Average Weighted sum
Specificity

GA-RBF SVM 89.8% 90.9% 91.3% 85.9% 92.3%
AdaBoost + JRipper [45] 95.0% 99.0% 100% 95.5% -

CPM [9] - 90.4% - -

PSO-SVM [49] 86.5% 85.7% 83.1% - -

SVM-ACO [50] 80.9% 78.0% 77.4% - -

ARCSMC [48] - - 89.4% 78.4% 83.9%
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achieved accuracy using the common path mining (CPM) model pro-
posed by Pan et al. [9] and the sequential pattern mining (SPM) model
proposed by the authors in [10]. Similarly, the weighted sum results as
well as the classification error results in terms of recall and specificity
achieved using the proposed GA-SVM model is significantly higher than
the results achieved using the adaptive regularized cost-sensitive multi-
class online learning (ARCSMC) model by Li et al. [48].

For further validation of the GA feature weighting tool we used,
Table 6 also presents the comparison results of the proposed GA-SVM
model with PSO-SVM model proposed by Huang et al [49] and
SVM-ACO model proposed by Li et al. [50]. As shown in Table 6, the
PSO-SVM [49] performed better than the SVM-ACO [50] method.
However, the GA-RBF SVM outperformed the other methods except the
AdaBoost + JRipper ensemble [45]. The performance of the AdaBoost +
JRipper model [45] can be attributed to the fact that AdaBoost are highly
efficient if the weak learner is implemented efficiently [52].

5. Conclusions

In this paper, a hybrid approach for the classification of power
system unwanted events based on using a GA as the feature weighting
tool for the SVM classifier is presented. In the proposed GA-SVM
approach, two voluminous synchrophasor datasets are used as the
experimental basis, They were initially reduced using PCA before they
are weighted in their relevance and the dominant weights are heu-
ristically identified using the GA to boost classification results. The
weighted power system features were used to train the developed SVM
classifier model. Key ML performance metrics which include accuracy,
precision, recall, F-Measure and specificity are used to evaluate the
proposed GA-SVM model and other models considered in the experi-
ment. Results show that using a GA as the feature weighting tool for the
SVM modelled contributed to the performance enhancement of the
classification results on the binary class dataset and the three-class
dataset experimented on. Thus, it is evident that the proposed GA-
SVM model can be used for power system security assessment in real
world scenarios. Although the proposed GA-SVM approach accom-
plished outstanding power system classification results, there are some
limitations that future works can consider. Future work can consider
the application of the GA-SVM model in larger power systems with
several other practical event scenarios, disturbances and intrusions.
Also, faster feature weighting techniques can be considered in future
research.
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