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ABSTRACT Glaucoma has been credited to be the foremost cause of preventable loss of sight in the
world second only to cataract. Its effect on the eye is usually irreversible and can only be prevented by early
detection. In this paper, we developed a glaucoma detection technique. This technique includes a modified
U-Net model called ‘U-Net lite’ and an extreme gradient boost (XGB) algorithm. The novel U-Net lite
model is designed to have fewer parameters than the original U-Net model. The U-Net lite’s parameters are
40 times fewer than the original U-Net model which makes the proposed model faster and cheaper to train.
The proposed model is utilized to segment both the optic cup and the optic disc from the fundus images.
The extreme gradient boost algorithm is utilized to analyze extracted features from segmented optic cups and
discs and hence detect glaucoma. The proposedU-Net lite model was both trained and tested on theDRIONS,
DRISHTI-GS, RIM-ONE V2 and the RIM-ONE V3 databases. When tested for optic disc segmentation on
the four databases, the model achieved the following average dice-scores: 0.96 on RIM-ONE V3, 0.97 on
RIM-ONE V2, 0.96 on DRIONS, and 0.97 on DRISHTI-GS. The XGB algorithm achieved an accuracy
of 88.6% and an AUC-ROC of 93.6 % in detecting glaucoma from the RIM-ONE V3 and DRISHTI-GS
database. The proposed glaucoma detection technique achieves a state-of-the-art accuracy and is useful for
observing structural changes in an optic cup and optic disc.

INDEX TERMS Fundus image, glaucoma, segmentation, U-Net.

I. INTRODUCTION
Glaucoma is an eye ailment characterized by a growing dete-
rioration of the optic nerve head as well as ganglion cells
in the retina [1], [ 2]. It is a foremost source of preventable
loss of sight with no clear symptom at its preliminary stages.
About 50% of its victims are not usually aware of its pres-
ence [3]–[5]. Glaucoma develops because of an obstruction
to the flow of the aqueous humour in the eye canal. The
obstruction results to a continuous rise in the eye pressure
and consequently increasing the size of the optic cup as seen
in Fig.1. The enlarged optic cup causes a continuous loss
of fibres located at the optic nerve and this is perceived as
a gradual loss of vision in its victims. In the preliminary
stage of the disease, victims have no symptom or sign but
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as the disease advances, victims notice a narrowing of the
visual field beginning from the peripheral [2], [6] [7]. The
damaging action of the disease cannot be reversed and if
left unchecked may lead to a permanent loss of sight [8].
Therefore, a procedure that allows for speedy detection of the
disease is significant.

The diagnosis of glaucoma is typically conducted by
assessing variation in the structure of the optic nerve
head [9], [10]. One of the methods that have been utilized
to identify the presence of glaucoma is the optic Cup-to-Disc
Ratio (CDR).

The CDR is the ratio of the longitudinal diameter of the
optic cup to the longitudinal diameter of the optic disc [11].
The CDR method depends on the accurate segmentation of
the optic disc as well as the optic cup. Several techniques
have been utilized to segment the optic disc and the optic cup.
The mostly utilized technique involves (i) the pre-processing
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FIGURE 1. (a) A fundus image with a non-glaucomatous optic cup.
(b) A fundus image with an enlarged glaucomatous cup.

of fundus image (ii) determining the regions in the fundus
image which are of interest (iii) localizing the optic disc (OD)
and finally localizing the optic cup (OC). This technique has
been utilized in many studies [12]–[17] with little variation
in its implementation. However, the technique is computa-
tionally intensive especially when it is tested on large batches
of fundus images. This is because the technique must be
applied to each of the fundus images individually. Moreover,
the accuracy of the technique is substantially influenced by
the differing pixel intensities of the fundus images across the
databases. Therefore, the above-explained technique is not
robust to noise and presence of pathologies in the fundus
images.

The following are the contributions of this paper.
(1) A proposed segmentation model called U-Net lite. The
novel model has 40 times fewer parameters than the original
U-Net model which makes it faster and cheaper to train (1) A
segmentation algorithm that yields a high dice-score OC and
OD segmentation. (3) A glaucoma classification algorithm
based on the extreme gradient boost (XGB). The XGB clas-
sifier was trained with carefully engineered features from
the fundus images. This novel approach eliminates the chal-
lenges of varying CDR threshold values when using the CDR
method for glaucoma detection. Therefore, there is no need
to set a threshold value when using the model.

The rest of this paper is arranged as follows: related work
is discussed in section 2, the proposed experimental approach
is discussed in section 3, section 4 presents the achieved
experimental results, section 5 presents the discussion and
analysis of the achieved results, section 6 discusses the limi-
tation of the study, section 7 presents the conclusion, and the
last section presents the future work.

II. RELATED WORK
Modern advances in object recognition and image processing
have brought about the application of deep learning models
and systematic algorithms for medical images segmentation.
In modern computing, U-Net has been referred to as the gold
standard for many biomedical segmentation exercises and the
reason is not far fetched as the architecture has achieved high

scores in many segmentation exercises [18]–[37]. However,
a major downside of the U-Net architecture which is also
true of many deep learning architectures is the high cost of
computation and training. Alexander et al. [18] compared the
performance of U-Net models with E-net [19] and Box E-net
models [18]. The E-net model has been used for real time
semantic segmentation and was designed to have fair seg-
mentation performance but efficient processing performance.
The Box E-net is an improvement on the E-net. The improve-
ment was achieved by replacing some convolution layers
with box-convolution layers. Alexander et al. concluded that
although both the Box E-net and the E-net architectures are
15 times faster than the U-Net model, they are still about
2% less accurate than the U-Net model. Hence, there is a
need for a model that combines both speed and accuracy in a
segmentation process. Our proposed model is designed to be
40 times lighter than the original U-Net model while achiev-
ing a comparable accuracy performance with the original
U-Net.

Luo et al. [20] proposed the use of ‘Attention-Dense-U-
Net’ model to segment blood vessels from fundus images.
The proposed model incorporates a densely connected net-
work as well as an attention mechanism to the original U-Net
model. Although Luo et al. did not give information about
the model speed or the size of the model, it can be inferred
that the model would be about the same size and speed as the
original U-Net model. The huge size of the model translates
to a high computational cost and long training time. We used
a variant of the proposed model architecture to segment
blood vessels [21] and we achieved similar results to that
of Luo et al. For instance, Luo et al. achieved an accuracy
of 0.9663 and a sensitivity of 0.8075 on the DRIVE database
and we achieved an accuracy of 0.9615 and a sensitivity
of 0.8309 on the same database.

Zeng et al. [22] proposed the use of a network based on
U-Net to segment nuclei from histology images. The perfor-
mance of the U-Net model was compared with the perfor-
mance of other models which include the CellProfiler (CP)
model [23], Fiji [24] and CNN models [25]. The proposed
U-Net model outperformed the other models. Again, this
work validates the superiority of U-Net model in medical
segmentations.

Yahyatabar et al. [26] proposed the use of densely con-
nected U-Net models for lung segmentation. With layers of
their proposed U-Net model densely connected, the authors
still claim that the model is the lightest model for lung seg-
mentation in CR images. Although the proposed model is
very light, it achieved comparable results with other models.
This reveals that a carefully trained light model can achieve
comparable results with its heavier counterpart.

Luo et al. [27] proposed the use of Vessel-Net for retinopa-
thy screening. The proposed Vessel-Net model is built on a
U-Net model. The architecture of the proposed model
embraces three tiers of fundus information which are the
global stream (learnt by a Res-Net-50 model [28]), disc
region stream (learnt by a pre-trained U-net model) and the
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vessel-related stream (learnt by a Ladder-Net model [29]).
The authors recorded an area under curve (AUC) score
of 0.8464.

The U-Net model has also been used for a variety of
segmentation tasks which include iris segmentation [30],
left ventricle endocardial border segmentation [31], den-
tal panoramic image segmentation [32], stroke lesion seg-
mentation [33] , liver and spleen segmentation [34] and
even non-biomedical segmentation tasks like road crack
detection [35], detection of salt domes [36] and defect
segmentation [37].

The following methods have mostly been used to segment
the optic disc (OD) and the optic cup (OC) from fundus
images.

Maninis et al. [38] proposed a method that utilized transfer
learning technique to train convolutional neural networks
(CNN) [39]. CNN was built on a VGG-16 architecture [40].
The proposed method was utilized to segment the OD and
OC from fundus images. Maninis et al. recorded a dice score
of 0.96. Although the method proposed achieved a high dice
score, the drawback of this approach is that the size of the
architecture is large. There are about 1.85×107 parameters to
be trained which introduce a lot of computational complex-
ities. Our proposed method has only 7.8 × 105 parameters.
The dice score, as well as the Intersection-over-Union (IoU)
score, are metrics utilized to measure the goodness of a
segmentation process. A good segmentation processwill have
high dice and IoU scores.

Zilly et al. [16] utilized a technique that included the use
of boosted CNN, filtered entropy [41], normalized contrast
and standardized patches to segment the optic cups from
fundus images. The AdaBoost algorithm [42] was utilized for
the boosting operation. The proposed method was assessed
using the DRISHTI-GS database [43], [44] and the RIM-
ONE database [45]. The method achieved a dice and IoU
score of 0.85 and 0.87 respectively.

Improving on what was done by Zilly et al.,
Buhmann et al. [46] proposed a new method which does not
require the cropping of the disc location before segmenting
the optic cup. Thismethod includes a process that picks points
holding salient information on the fundus image by using
entropy sampling. This method eliminates the computational
complexity involved in the method proposed by Zilly et al.
The method achieved higher dice-score than Zilly et al. [16]
but a lower IoU score. The drawbacks of the methods pro-
posed by both Zilly et al. and Buhmann et al. are that the
methods require a lot of pre-processing and post-processing.
This is because the segmentation process involves randomly
selecting points of interest on the entropy maps and thereby
increasing computational cost. Our proposedmethod has very
little pre-processing and no post-processing.

Tabassum et al. [47] proposed a method that jointly seg-
mented the optic disc and the optic cup. The segmenta-
tion process was treated as a semantic pixel-wise labelling
problem. The method achieved a high dice score on the
DRISHTI-GS and RIM-ONE dataset. The method achieved

a dice score of 0.92 and an IoU score of 0.86 on the
DRISHTI-GS database. However, the drawback of the pro-
posed method is that it has a high number of parameters
needed to be trained which incurs a high training cost.
For instance, the authors reported that it takes 5.5 hours
to train the RIM-ONE dataset using the Intel(R) Xeon(R)
W-2133 CPU 3.60GHz processor, 32GB RAM, and Nvidia
2080TI GPU. Our proposed method uses a model that trains
the same dataset for 32.5 minutes using Kaggle’s 2 CPU
cores, 14 GB RAM, 1 NVIDIA Tesla K80 GPU.

Jiang et al. [48] proposed a joint segmentation of optic cup
and optic disc by using an end-to-end region-based convolu-
tional neural network. The proposed method assumes that the
shape of the optic cup and disc is elliptical. After segmenta-
tion of optic cups and discs, the authors detected glaucoma
using the vertical optic cup to disc ratio. When the pro-
posed method was tested on the ORIGA dataset, the authors
achieved an average overlapping error of 0.209 and 0.063 for
the optic cup and optic disc respectively. The drawback is that
the proposed method assumes an elliptical shaped optic cup
and disc which is not always the case.

Qin et al. [49] proposed a method for optic cup and
optic disc segmentation based on a modified fully convolu-
tional network (FCN) combined with the inception building
blocks as used in GoogleNet. The method was tested on the
REFUGE dataset. A dice score of 0.92 and IoU score of
0.90 was recorded for the optic cup segmentation process.
However, the drawback of the proposed method is that the
pre-processing may need adjustment on the parameters of the
Hough circle transformation algorithm to achieve optimum
results.

Shah et al. [50] proposed a parameter shared branched net-
work and a weak region of interest network for the accurate
segmentation of the optic cup and optic disc. The networks
employ the use of dynamic cropping and are trained using
a single neural network. The proposed networks were then
tested on the DRISHTI-GS database and a dice score of
0.96 was achieved for optic disc segmentation. The drawback
is that the proposed method involves the use of two networks,
and this adds to the overall computational cost.

Thakur et al. [51] proposed the use of an algorithm
they called a ‘Level Set Based Adaptively Regularized
Kernel-Based Intuitionistic Fuzzy C Means (LARKIFCM)’.
The algorithm involves the use of clustering to segment optic
disc and optic cup. The method achieved a dice score of
0.92 when tested on the DRISHTI-GS database. The draw-
back of the proposed method is that it is time consuming and
parameters of the algorithm depend on the dataset used as
input. The proposed method may not be suitable for large
datasets as tuning of parameters is needed for each dataset.

After a successful segmentation process, the CDR is
usually utilized to detect glaucoma. The CDR method
of detecting glaucoma was employed by Patel et al. [52].
In their work, a CDR threshold value of 0.5 was utilized
to classify fundus image to either the glaucomatous or the
non-glaucomatous class i.e. fundus images with CDR values
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less than or equal to 0.5 were considered non-glaucomatous
and CDR values higher than 0.5 were considered glaucoma-
tous. A total of 100 fundus images were used and an accuracy
of 0.78 was recorded.

Zhao et. al. [53] estimated the CDR value of optic nerve
heads by using a semi-supervised learning model. The pro-
posed method comprises two phases: a supervised learning
phase using a random forest regressor and a convolutional
neural network phase. The method was tested on 421 fun-
dus images and achieved a CDR error that is lower than
0.0563 and an area-under-curve (AUC) of 0.905.

In a study done by Virk et al. [54], 50 fundus images
were classified into either glaucoma or non-glaucoma
class. Virk et al. concluded that fundus images with CDR
values between 0.3 and 0.5 should be classified as
non-glaucomatous while those of above 0.5 should be classi-
fied as glaucomatous. Virk et al. recorded an accuracy of 80%
when these threshold values were utilized to detect glaucoma.

In another study done by Mohamed et al. [55], fundus
images from the RIM-ONE database were tested for glau-
coma. The testing algorithm included the CDR method and
a CDR threshold of 0.6 was utilized. Mohamed et al. con-
cluded that CDR values for non-glaucomatous fundus images
fall between 0.4 and 0.6 and those of glaucomatous fundus
images are higher than 0.6. It should be noted that the work
was carried out on only the RIM-ONE database and the use of
CDR threshold of 0.6 may only be suitable for this database.

After segmenting the optic cups and optic discs from fun-
dus images, Mvoulana et al. [56] employed the CDR method
to detect glaucoma. In their study, a CDR threshold value
of 0.63 was employed to classify fundus images to either
glaucomatous or non-glaucomatous. The threshold value
was computed by evaluating the CDR mean and standard
deviation of every fundus images in glaucoma and non-
glaucoma classes. Fundus images with CDR value greater
than 0.63 were classified glaucomatous.

Murthi et al. [57] used the least square fitting algorithm to
segment the optic cups and the optic discs from the fundus
images. After the segmentation process, the ellipse fitting
algorithm was utilized to smoothen the boundaries of the
disc and cup. Murthi et al. further utilized the CDR method
to detect glaucoma. A CDR threshold value of 0.65 was
utilized. For example, fundus images which have CDR values
of 0.68 were considered glaucomatous.

Khan et al. [58] separated the optic cups and the optic discs
from fundus images by utilizing the mean threshold morpho-
logical technique. Together with several attributes, a CDR
threshold value of 0.5 was used to recognize glaucomatous
fundus images.

Lotankar et al. [59] suggested a technique for detecting
glaucoma by extracting several attributes from the optic nerve
head. Attributes extracted from the optic nerve head included
the rim to disc area ratio, the cup to disc area ratio and the cup
to disc ratio. Lotankar et al. proposed that CDR values for
non- glaucomatous fundus images range from 0.2 to 0.4 and
0.5 to 1 for glaucomatous fundus images.

Roslin et al. [60] segmented the blood vessels in the
optic discs by using an edge detection algorithm which was
based on the Prewitt operators. In their method, the CDR
of each fundus image was measured. The authors proposed
that the phases of glaucoma development can be studied
from the CDR values of the fundus images. To classify fun-
dus images into glaucomatous or non-glaucomatous, a CDR
threshold value of 0.3 was utilized. Fundus images that
have CDR threshold values of 0.3 or less were labelled
non-glaucomatous and fundus images which have CDR
threshold values that are higher than 0.3 were labelled
glaucomatous.

The major drawback in the use of CDR to detect glau-
coma is that different CDR threshold values have been
utilized by the authors who employed this method [61].
Also, the CDR threshold values utilized depended largely
on the dataset and much more on the judgement of the
authors. These factors have made the use of CDR thresh-
old method in detecting glaucoma a subjective and less
accurate approach especially when being used on fun-
dus images from different databases. In our proposed
method, we eliminate the challenges of varying CDR thresh-
old values when using the CDR method for glaucoma
detection.

III. PROPOSED EXPERIMENTAL APPROACH
A. IMAGE DATABASE
The experiment performed in this work makes use of four
publicly available databases. The databases consist of fundus
images and their corresponding segmented optic discs and
optic cups for model training and testing. The databases are
RIM-ONE v2 [45] , RIM-ONE v3 [45], DRIONS [62] and
DRISHTI-GS [43], [44].

The RIM-ONE database was exclusively developed to
focus on optic nerve head segmentation. The fundus images
are of high resolution and were captured using a Nidek AFC-
210 fundus camera. The camera has a body of Canon EOS
5D Mark II and has a resolution of 21.1 megapixels. The
version 2 of the database (RIM-ONE v2) has 455 images
including 318 training images and 137 testing images. How-
ever, the version has only segmented optic discs ground truths
and no optic cups ground truths. The version 3 (RIM-ONE
v3) has 159 images including 127 images for model training
and 32 images for testing. The ground-truth images were
provided by two ophthalmologists.

The DRIONS database consists of 110 fundus images. The
fundus images belong to subjects with glaucoma and eye
hypertension diseases. The images were selected from an
eye database that belongs to the Ophthalmology Service at
Miguel Servet Hospital, Spain.

The DRISHTI-GS database includes 50 fundus images.
The images are of high- resolution with a dimension of
2896 × 1944. The ground-truth images were provided by
4 experts. The database consists of both the cup and disc
ground-truths.
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FIGURE 2. The architecture of the proposed U-Net lite model.

B. NETWORK ARCHITECTURE
The technique adopted in this research is a combination of
two phases. The first phase consists of a segmentation process
and the second phase is a detection process. The segmentation
process is done using a U-Net lite model while the detection
process is built using an extreme gradient boost (XGB).

The original U-Net model [63] is a convolutional network
that has been widely utilized for biomedical image segmen-
tation. It was conceived as an improvement over the Fully
Convolutional Network [39]. The network has two layers: the
down-sampling encoding layer and the up-sampling decoding
layer. The encoding layer is made of two batches of 3 × 3
convolutional layers connected to an activation layer. The
activation layer (rectified linear unit ReLU) is followed by a
2× 2 max-pooling layer. This configuration is then repeated
in successions. The decoding layer concatenates the up-
sampled feature maps with the output of the encoding layer.
The upsampling was done using 2 × 2 convolutional layers.
Although the architecture has been widely utilized [64]–[67],
it is a cumbersome model with lots of parameters to be
trained.

In this work, the segmentation process was done using the
proposed U-Net lite model. The model architecture is shown
in Fig.2.

The proposed U-Net lite model has more convolutional
layers and is designed to have the same size of filters
(i.e. 3 × 3) in both the downsampling encoding layer and
the upsampling decoding layer which is a major difference
when compared to the original U-Net. The kernels are ini-
tialized to the ‘glorot uniform’ and the bias of the ker-
nels are initialized to the ‘he-normal’. The output layer of
the proposed model has a filter size of 1 × 1. The archi-
tecture of the proposed model has 40 times fewer param-
eters than the original U-Net. The original U-Net model
has about 3.1 × 107 parameters while the proposed model
has 7.8 × 105 parameters. Our trial showed that models
with huge training parameters tend to quickly over-fit. Each
layer of the U-Net model is batch normalized and this
helps to bring the average activation of the layers closer to
zero [68].

The Leaky ReLU activation is utilized because it does not
saturate quickly and helps the model to converge faster [69].
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The output of the proposed model was connected to a ‘tanh’
activation layer.

The proposed U-Net model is different from other U-Net
models in the configuration of its encoding and decoding
layers. The widths of the convolutions are greatly reduced,
and this process reduces over-fitting. The kernels were also
carefully initialized, and this helps the training process to
be faster. By using batch normalization with no drop-out,
we improved the performance of the model greatly. Further-
more, the use of ‘tanh’ instead of the traditional ‘sigmoid’ at
the output of the model improved the rate of convergence of
the model.

The detection process includes an XGB classifier trained
with extracted features from the segmented discs and cups.
To the best of our knowledge, the proposed pipeline has never
been used for a glaucoma detection process. The extracted
features were normalized before feeding them into the clas-
sifier.

C. SYSTEM WORKING PROCEDURE
The proposed system pipeline is shown in Fig.3.

FIGURE 3. CDR value estimation and training of classifiers.

In pursuance of an accurate OC segmentation, the fundus
images are cropped based on the location of the OD (the OD
location was acquired from the OD segmentation process).
This is done to accentuate the boundary of the OC. The
cropped fundus images are scaled down using spline interpo-
lation of the binomial order and resized to 256 x 256 pixels.
The resizing is necessary to enhance the training speed and
allow for more images per batch while training. Prior to
passing the re-sized fundus images into the U-Net lite model,
the contrast of the images is further refined by stretching out
the most frequent intensity values in the images. This process
enhances the training of the model and allows it to learn
better. The scikit-image histogram-equalization is utilized for
this process.

The OD segmentation process is like that of the OC except
that there is no cropping of the fundus image (as shown by

the dotted red jumper arrow in Fig.3). The proposed segmen-
tation process is further described by the following algorithm.

1. Cropping of the fundus images based on the location of
the OD. This procedure is needed only for the OC segmenta-
tion and not needed for the OD segmentation.

2. Applying spline interpolation to the RGB fundus images
using the binomial order and nearest mode of filling.

3. Resizing the images to 256× 256 pixels.
4. Applying histogram equalization to the images
5. Rescaling of images. All values of images are set to be

between 1 and 0.
6. Training the proposed model with the scaled images.
The outputs of the segmentation process (i.e. segmented

optic cups and discs) are further post-processed to detect
glaucoma. The post-processing steps are described as:

Step 1: The segmented optic cups and optic discs are
masked at 90◦. These are the vertical cup and disc features.
Step 2: The maximum values of the non-zero cup and disc

features are extracted.
Step 3: The vertical CDR values are acquired by dividing

the vertical optic cup length by the vertical optic disc length
as shown in equation 2

CDR = (Vertical cup length)/(vertical disc length (1)

Step 4: Further extraction of the optic cup and disc features
from the segmented cups and discs. The extracted features
consist of the vertical separation between the cup and disc
estimated at a minimum of 18◦ interval. This is done to catch
the expansion in cup size and the minuscule loss of optic
nerves along the optic cup fringe. A total of ten (10) vertical
separations (labelled T0-T9) is acquired. This is displayed
in Fig.4. The decision to use 10 vertical separations is taken
after different numbers of vertical separations are tested. The
numbers of vertical separations tested are 5,10,15 and 20. The
T values of 5, 10,15 and 20 vertical separations for a fundus
image are shown and discussed in the result section.

FIGURE 4. Distance between the optic cup and the optic disc evaluated
along the optic cup’s peripheral.
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FIGURE 5. (a) The horizontal, diagonal and vertical opti disc lengths.
(b) The horizontal, diagonal and vertical optic cup lengths.

Step 5: The vertical cup and its disc length, the horizontal
cup, and its disc length, as well as the diagonal cup and its disc
length, are acquired and utilized to train an XGB classifier.

The vertical, horizontal, and diagonal lengths are estimated
as shown in Fig. 5 (a) and 5 (b) respectively.

D. MODEL TRAINING
The U-Net lite model was trained with the four databases
discussed in section 2.1. After trying several gradient descent-
based optimization algorithms [70], the stochastic gradient
optimizer was used to compile the model. The model was
compiled using a learning rate of 1e−2 for the optic disc
segmentation and 1e−3 for the optic cup segmentation. The
Nesterov was set to be true and momentumwas set to be 0.95.
The loss function utilized in (3) has the same value as the
dice-score.

f (X ,Y ) =

2
h,w∑
i,j
xi,jyi,j

h,w∑
i,j
x2i,j +

h,w∑
i,j
y2i,j

(2)

C (X ,Y ) = −logf (X ,Y ) (3)

where the likelihood that the pixels predicted for the fore-
ground is X = (xi,j) and the given output is Y = (yi,j), and
h,w are the height and width respectively.
A comparative metric to dice-score is the IoU score. The

IoU (5) is a metric utilized in many segmentation tasks to
quantify the overlay that exists between the ground truth and
the output of a model. As seen in (5), it quantifies the pixels
present in both the ground truth and the model’s output and
divides the shared pixel by all the pixels in the ground truth
and the model’s output. Dice-score (4) is fundamentally the
same as IoU, except that it awards more score to each correct
pixel in the model’s output by increasing the pixels shared by
the ground truth and model’s output by a factor of 2.

D (X ,Y ) =
2 |X ∩ Y |
|X | + |Y |

(4)

I (X ,Y ) =
|X ∩ Y |
|X ∪ Y |

(5)

The model is trained over 65 epochs for both optic cup and
optic disc segmentation. The model is trained using Kaggle’s
2 CPU cores, 14 GB RAM, 1 NVIDIA Tesla K80 GPU.
A batch size of 8 and an image size of 256 by 256 is utilized.
No kind of data augmentation is used for the training process.

IV. RESULTS
This section evaluates the performance of the proposed seg-
mentation model as well as the trained classifiers. Table 1 to
Table 4 shows the average results of the proposedmodel when
evaluated on the testing images in the databases. In Fig. 6 to
Fig. 17, the fundus images acquired from the database are
referred to as ‘Database image’, ‘Model’s segmentations’ are
the output of the proposed model and ‘Ground truths’ are the
images available as ground-truths in the databases.

TABLE 1. Optic disc segmentation performance for RIM-ONE v2 database.

TABLE 2. Optic disc and cup segmentation performance for RIM-ONE v3
database.

TABLE 3. Optic disc and cup segmentation performance for DRISHTI-GS
database.
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TABLE 4. Optic disc segmentation performance for DRIONS database.

FIGURE 6. Model’s best OD segmentation (i) Database image. (ii)Model’s
OD segmentation, (iii) Ground truth OD segmentation.

FIGURE 7. Model’s worst OD segmentation (i)Database image. (ii)Model’s
OD segmentation, (iii) Ground truth OD segmentation.

FIGURE 8. Model’s best OD segmentation (i) Database image. (ii)Model’s
OD segmentation, (iii) Ground truth OD segmentation.

A. RIM-ONE DATABASE
The proposed model was tested on two versions of the
RIM-ONE database: version 2 and version 3. However,
RIM-ONE v2 database does not have ground-truths for optic
cups. The average performance of the proposed model on
RIM-ONE v2 database is shown in Table 1. The proposed
model’s best performance achieved a dice-score of 0.99 and
an IoU score of 0.97. This is shown in Fig. 6. The worst
performance achieved a dice-score of 0.81 and an IoU score
of 0.65. The model’s worst performance on the database is
shown in Fig. 7.

FIGURE 9. Model’s worst OD segmentation (i) Database image.
(ii)Model’s OD segmentation, (iii) Ground truth OD segmentation.

FIGURE 10. Model’s best OC segmentation (i) Database image.
(ii)Model’s OC segmentation, (iii) Ground truth OC segmentation.

FIGURE 11. Model’s worst OC segmentation (i) Database image.
(ii)Model’s OC segmentation, (iii) Ground truth OC segmentation.

FIGURE 12. Model’s best OD segmentation (i) Database image.
(ii)Model’s OD segmentation, (iii) Ground truth OD segmentation.

The performance of the proposed model on RIM-
ONEv3 is shown in Table 2. We compared our result with
that of Sevastopolsky [71], Zilly1 [46], Maninis [38] and
Al-Bander [72] using the dice-score and IoU score as our
assessment. The best and worst performance of the proposed
model on the database is shown in Fig.8, Fig.9, Fig.10 and
Fig.11 for both optic disc and optic cup segmentation.

The best optic disc segmentation as seen in Fig.8 has a dice-
score of 0.99 and an IoU score of 0.96. The worst optic disc
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FIGURE 13. Model’s worst OD segmentation (i) Database image.
(ii)Model’s OD segmentation, (iii) Ground truth OD segmentation.

FIGURE 14. Model’s best OC segmentation (i) Database image.
(ii)Model’s OC segmentation, (iii) Ground truth OC segmentation.

FIGURE 15. Model’s worst OC segmentation (i) Database image.
(ii)Model’s OC segmentation, (iii) Ground truth OC segmentation.

FIGURE 16. Model’s best OD segmentation (i) Database image.
(ii)Model’s OD segmentation, (iii) Ground truth OD segmentation.

segmentation as seen in Fig.9 has a dice-score of 0.89 and an
IoU score of 0.77.

The best optic cup segmentation as seen in Fig.10 has
a dice-score of 0.98 and an IoU score of 0.91. The worst
optic cup segmentation as seen in Fig.11 has a dice-score
of 0.30 and an IoU score of 0.15.

B. DRISHTI-GS DATABASE
The proposed model was tested on the DRISHTI-GS
database. The performance of the proposed model in this

FIGURE 17. Model’s worst OD segmentation (i) Database image.
(ii)Model’s OD segmentation, (iii) Ground truth OD segmentation.

database is shown in Table 3. For the optic disc segmentation,
the best performance of the proposed model has a dice-score
of 0.99 and an IoU score of 0.95. The best optic disc per-
formance of the proposed model is shown in Fig. 12. The
worst optic disc performance has a dice-score of 0.95 and an
IoU score of 0.84. The worst optic disc performance is shown
in Fig. 13.

In Table 3, it will be seen that the method used by
Thakur et al. has high IoU scores. However, the major draw-
back of the method is that the parameters of the model must
be set by the user and the values of those parameters vary
across different databases. Hence, the parameters cannot be
generalized for all databases.

For the optic cup segmentation, the best performance of
the proposed model has a dice-score of 0.99 and an IoU score
of 0.89. The best optic cup segmentation performance of the
proposed model is shown in Fig. 14. The worst optic cup
segmentation has a dice-score of 0.92 and an IoU score of
0.61. The worst optic cup performance is shown in Fig.15.

C. DRIONS DATABASE
The model was tested on the DRIONS database. The perfor-
mance of the model in this database is shown in Table 4. The
DRIONS database has ground-truths only for the optic discs.
The best performance of the proposedmodel for the optic disc
segmentation has a dice sore of 0.99 and an IoU score of 0.94.
The best optic disc performance of the proposed model is
shown in Fig. 16. The worst optic disc segmentation perfor-
mance has a dice-score of 0.95 and an IoU score of 0.82. The
worst optic disc performance of the proposed model is shown
in Fig. 17.

It should be noted that the proposed model has a
higher dice score than IoU score in all databases tested
(Tables I-IV). This is because the dice metric gives more
incentive to true positives detected while the IoU metric tend
to penalize wrong classifications significantly. This means
that the proposed model does generally well in the segmenta-
tion process but can be adversely affected by fundus images
which have strong blood vessels occlusion as seen in Fig.7,
Fig. 11, and Fig.15

D. CLASSIFIERS PERFORMANCE
The trained classifier is utilized to detect glaucoma from
segmented optic discs and optic cups. A popular method of
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detecting glaucoma from segmented optic disc and cup is
the CDR (already discussed in section 1 and section 2.3).
We compared the performance of CDR for glaucoma detec-
tion against some classifiers. The RIM-ONE v3 and the
DRISHTI-GS databases are utilized for the glaucoma detec-
tion process because they both have the optic disc and optic
cup ground-truths. Furthermore, out of the four databases in
view, only the RIM-ONE v3 and the DRISHTI-GS databases
have each fundus image labelled appropriately as ‘glaucoma-
tous’ or ‘non-glaucomatous’.

Table 5 shows the performance in detecting glaucoma of
different CDR threshold values when tested on fundus images
from the RIM-ONE v3 and the DRISHTI-GS databases.
The metrics utilized for comparison are Precision, Accuracy,
Recall, and Area under the Receiver Operating Characteristic
Curve (AUC_ROC).

TABLE 5. Performance of different CDR threshold values on fundus
images from the RIM-ONE v3 and DRISHTI-GS databases.

From Table 5, it is obvious that the goodness of the CDR
method for glaucoma detection is substantially influenced by
the CDR threshold value in use. If a low CDR threshold value
like 0.300 is utilized, the detection process will have a high
recall but a very low precision i.e. although all the glauco-
matous samples are recognized, numerous non-glaucomatous
samples are wrongly recognized as glaucomatous. The oppo-
site is also valid for a very high CDR threshold value. This is
seen in the CDR value of 0.700 (high precision, low recall).
The AUC_ROCmetric is a summary of the trade-off between
recall and precision. Therefore, a better model will have a
higher AUC_ROC value. The model proposed must have an
AUC_ROC value that is higher than 0.874.

To train the classifiers, vertical separations are extracted
from the optic disc and cup as discussed in section III. The
effect of different vertical separations is tested on a fundus
image. The numbers of vertical separations tested are 5,10,
15 and 20. The vertical separations aremeasured at an interval
of 72◦, 36◦, 24◦ and 18◦ respectively. The result of this test is
presented in Table VI.

From Table 6, taking just 5 vertical separations (measured
at 72◦) does not give an accurate picture of the varying
distance between the optic cup and disc. Taking 15 and 20 ver-
tical separations result in several duplications of themeasured
distance. This is because the intervals (24◦ and 18◦) are small
and no notable change occurred in the optic cup and disc.
The optimum number of vertical separations is therefore 10.
Although the result shown is just for a fundus image, the same
phenomenon applies to all fundus images.

TABLE 6. The vertical distance between an optic cup and optic disc
measured in pixels.

An XGB classifier, a logistic regression, a support vector
machine (SVM), a random forest classifier and a k-nearest
neighbour (KNN) classifier were trained with all the obtained
optic cup and optic disc attributes. This is done to assess the
classifiers and afterwards pick the best performing classifier.
The classifiers are evaluated using 5 folds cross-validation.
The performance of each classifier is shown in Table 7.

Table 7 displays the results of the 5 classifiers tested on
fundus images from both the RIM-ONEv3 and DRISHTI-GS
databases. The XGB classifier has the highest AUC-ROC
and precision average value and has an accuracy of up to
0.996 in one of the cross-validation sets. All the classifiers
tested accomplish a higher AUC-ROC value than the CDR
technique and the XGB classifier has the highest AUC-ROC.
It can then be concluded that the XGB classifier has a superior
classification capacity than the CDR technique.

We further compared our technique with other methods
of detecting glaucoma. Other methods that have been used
recently are:

a. GIST features extraction combined with the Support
Vector Machine (SVM) classifier [73]

b. Combination of GIST and Pyramid Histogram of Ori-
ented Gradients (PHOG). [73]

c. CDR combination with Super-Pixel identification tech-
nique. [74]
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TABLE 7. Performance of the Classifiers on both the rim-one v3 and the
drishti-gs database.

d. Wavelet Energy features extraction and the application
of z-score. [75]

e. GIST features combined with radon [76].

Table 8 shows the performance of the XGB classifier against
the methods above when tested on the DRISHTI-GS database

V. DISCUSSIONS
This work proposes a technique for detecting glaucoma. The
first phase of the technique includes a segmentation process.
The segmentation process is done using U-Net lite model.
The benefits of our model include the following: the proposed
model architecture has fewer parameters to be trained. The
original U-Net architecture has about 3.1 × 107 parameters
while the proposed U-Net lite has about 7.8 × 105 which
is about 40× less the size of the original. The modified
architecture, therefore, has fewer parameters to be trained.

TABLE 8. Modified unet +xgb compared with other methods when tested
on the drishti-gs database.

The proposed model also requires less training epochs. For
instance, the original U-Net model requires about ten (10)
hours to train on a Nividia Titan GPU [40]. Also, Sevastopol-
sky [48] trained his model on the RIM-ONE v3 database
for about 382 epochs (this is about 2.8 hours of train-
ing) using the platform provided by Amazon web service,
Zilly et al. [46] trained their model for about 55 minutes
and Maninis et al. [38] trained their model for 200 epochs
and 3.1 hours. Our proposed model was trained on the same
database for 65 epochs and 32.5 minutes using Kaggle’s
2 CPU cores, 14 GB RAM, 1 NVIDIA Tesla K80 GPU.
Our proposed model was trained for 100 epochs, 45 minutes
on both the DRISHTI-GS and the DRIONS database. The
much less training time of our proposed model translates to a
cheaper cost of model training.

The second phase of the proposed pipeline deals with
the glaucoma detection process. Features extracted from the
fundus images were used to train an XGB classifier, SVM,
logistic regression, KNN and a random forest classifier. The
XGB classifier has a higher AUC when compared with
the other classifiers. Furthermore, the number of features
extracted from the fundus images was varied and the effect
studied. It was found out that extracting 5 features (or vertical
separations) did not give a full view of the changing geometry
of the optic cup and disc and extracting more than ten (10)
features only resulted into duplication of data. Literatures
studied show that an XGB classifier has never been used
for a glaucoma detection process. The use of a trained XGB
classifier replaces the use of the traditional CDR method for
glaucoma detection from the segmented optic disc and optic
cup. As discussed earlier (section 1), the traditional CDR
method is very subjective, and the threshold value utilized
depends on the author. The CDR threshold value that has been
chosen by different authors ranges from 0.3 to 0.6. The pro-
posed framework achieved higher accuracy and AUC-ROC
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when compared with other methods of glaucoma detection
(other methods of glaucoma detection include methods that
use the CDR threshold technique and methods that do not use
the CDR threshold technique).

VI. LIMITATION OF STUDY
In as much as the model achieves state-of-the-art results
in the segmentation process, it is still affected by the poor
image quality. This is truer about the optic cup segmenta-
tion. In some cases, the optic cups are extremely difficult
to identify (e.g. Fig.10) in the ground-truth images and this
makes the model to output a very loose approximate of the
optic cup location. Also, the presence of other ocular diseases
such as diabetic retinopathy is not accounted for in the glau-
coma detection process. Hence, optic discs and cups labelled
as ‘normal’ might be influenced by other visual sicknesses
asides glaucoma. The impact of which is not measured in this
study.

VII. CONCLUSION
In this work, we developed a glaucoma detection model that
includes two stages. The first stage includes a segmentation
process, and the second stage includes a glaucoma detec-
tion process. The proposed method successfully achieved
the following: (1) A segmentation model that consists of a
modified U-Net model which has 40x less parameters than
the original U-Net model. This makes the training of the
proposed model to be fast and cost-effective. (1) For the optic
disc segmentation, the model achieves an IoU score of 0.97
and a dice-score of 0.97 on the RIM-ONE v2 database, an IoU
score of 0.90 and a dice-score of 0.96 on the RIM-ONE
v3 database, an IoU score of 0.90 and a dice-score of 0.97 on
the DRISHTI-GS database, an IoU score of 0.90 and a dice-
score of 0.96 on the DRIONS database. (3). The proposed
architecture achieves an AUC-ROC score of 0.936, an accu-
racy of 0.883, a precision of 0.893 and a recall of 0.883 when
used to detect glaucoma on both the RIM-ONE v3 and the
DRISHTI-GS database.

In summary, the proposed method offers very light archi-
tecture and achieves desired results in both the segmentation
process and the glaucoma detection process.

FUTURE WORK
The study will be done by utilizing more openly accessible
databases. This will help the model to train better. Further-
more, more glaucoma detection techniques such as the ISNT
ratio and area covered by blood vessels will be utilized.
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