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ABSTRACT: Water is critical for all lives to thrive. Access to
potable and safe water has been argued to rank top among the
prerequisites for defining the standard of living of a nation.
However, there is a global decline in water quality due to human
activities and other factors that severely impact freshwater
resources such as saltwater intrusion and natural disasters. It has
been pointed out that the millions of liters of industrial and
domestic wastewater generated globally have the potential to help
mitigate water scarcity if it is appropriately captured and
remediated. Among the many initiatives to increase access to
clean water, the scientific community has focused on wastewater
remediation through the utilization of bioderived materials, such as
nanocellulosics. Nanocellulosics, derived from cellulose, have the advantages of being ubiquitous, nontoxic, and excellent adsorbents.
Furthermore, the surface properties of nanocellulosic materials can easily be modified. These advantages make them promising
materials for water remediation applications. This perspective highlights the most important new developments in the application of
nanocellulosics in water treatment technologies, such as membrane, adsorption, sensors, and flocculants/coagulants. We also identify
where further work is urgently required for the widespread industrial application of nanocellulosics in wastewater treatment.

1. INTRODUCTION

Safe, potable, and usable water is an invaluable commodity and
a necessity for ensuring the global pursuit of a sustainable
future, for both the current and future generations.1 However,
the rising inaccessibility and scarcity of safe, usable, and
affordable water are becoming common threats worldwide. For
example, a 2019 report stated that more than half a billion
people worldwide do not have access to safe and potable water.
This water distress cuts across urban and rural societal strata.2

The United Nations has raised the alarm that the water crisis is
quickly becoming a global phenomenon, and no continent or
nation is immune or excluded from this threat.3 The World
Economic Forum has opined that the scarcity of potable and
usable water tops among the challenges currently confronting
humanity.4 There is no substitute for water. It is indispensable
for life and all life entails.5 Therefore, a discourse on water, its
scarcity, conservation, management, pollution, remediation,
and purification could not be more important in light of the
current environmental concerns. Studies have shown that
rising water scarcity is a threat to global food security,
especially impacting irrigated agricultural systems, and may
result in the nonsustainability of certain food crops.6−8

Moreover, access to safe drinking water has been highlighted
as one of the significant challenges that the United States
Armed forces will be facing in the battle field in the near
future.9

Rising water scarcity is a complex problem that impacts and
cascades through almost every known human activity and
endeavor. Even though the Food and Agriculture Organization
of the United Nations has stated that the earth’s available
freshwater resources are more than enough to satisfy the needs
of humanity,10 this seems not to be the case. As shown in
Figure 1, the alterations in the natural environment through
various human activities (e.g., drainage and/or filling-up of
natural water systems/ecosystems such as lakes and wetlands
for urbanization),11,12 coupled with other irrepressible environ-
mental interferences such as saltwater intrusions,13,14 disasters
(e.g., flooding and hurricanes),15,16 evaporation from water
reservoirs (estimated to exceed the combined consumption of
both industrial and domestic usage yearly),17,18 poor water
management, pollution, and contamination (chiefly from man-
made inventions, e.g., plastic debris and toxic compounds),19,20

contribute significantly to the rising stress and degradation of
earth’s freshwater resources (i.e., underground and surface
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freshwaters), which are the primary sources for the production
and provision of potable, safe, and usable water for domestic,
industrial, and agricultural activities.5,21

Pollution has been recognized as one of the major culprits in
global freshwater degradation.5,22−24 For example, Citarum
River, in the west of Java (Indonesia) with more than 8 million
people in its catchment zone, has been dubbed a “rotten river”
and is considered one of the most polluted freshwater sources
on earth. This river has an estimated coliform bacteria
(stemming mainly from fecal matter) level exceeding 4000
times the acceptable limits and heavy metal pollution
exceeding 1000 times the accepted international levels.25

One recent study reported that large amounts of mixed organic
pollutants (e.g., polycyclic aromatic hydrocarbons, polychlori-
nated biphenyls, and bis-chlorophenyl-trichloroethane) stem-
ming from industrial and municipal wastewaters generated in
Jakarta, Indonesia, are discharged into open waters without
being treated, thereby creating serious water pollution and
degradation.26 A related report demonstrated that water
pollution resulting from metals/metalloids in consumable
waters and vegetables has become a health risk for South
Africans and Mozambicans living along the Olifants river
catchment area.27 It was shown that pesticides used in
agricultural activities largely contributed to water quality
degradation in many countries. Water quality significantly
impacts the wellbeing of humans and other living components
of the environment.28−31 These impacts cascade and permeate

almost every microcosm of societyfrom dental clinics32 to
the outbreak of microsporidial keratoconjunctivitis.33 Loss of
water integrity places an overwhelming demand on health
resources, facilities, and budgets.
In the last century, the demand for safe and potable water

has quickly exceeded its dwindling availability, even as
humankind rigorously pursues economic advancement and
industrialization.5,34 As the comity of nations seeks to fulfill
Sustainable Development Goal 6, which aims to achieve
universal safe water by the year 2030,35 the scientific
community has made extensive efforts for the development
of technology for “optimal” capturing and recycling of
degraded water, such as domestic and industrial wastewaters
(Figure 2).36−47

Recent advances in nanotechnology have proposed different
methods to decontaminate polluted waters.48,49 Nanotechnol-
ogy provides limitless opportunities for addressing global water
challenges;50,51 the use of nanocellulosics or nanocellulose
(NC)-based materials is one such application for remediating
degraded water. In addition to being derived from cellulose
(the most abundant polymeric system on earth), nano-
cellulosics are ubiquitous, are nontoxic, have easily modifiable
surface properties, are exceptional adsorbents, and have good
chirality, which makes them ideal materials for water
remediation purposes.52,53

This perspective highlights the most important new
developments in the application of nanocellulosic materials

Figure 1. Selected sources are contributing to the immense freshwater stress globally. Photography courtesy: S.S.R. who is the first author of this
work.

Figure 2. Pictorial representation of selected efforts and contributions of the scientific community in mitigating the rising global water crisis.
Photography courtesy: S.S.R. who is the first author of this work.
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in water treatment technologies, giving a short overview on the
key research challenges, as well as important references for
future in-depth study. In addition, a brief description of current
challenges in employing common nanomaterials in water
remediation and treatment processes has been provided.

2. CHALLENGES IN EMPLOYING THE MOST
COMMON NANOMATERIALS IN WATER
REMEDIATION AND TREATMENT PROCESSES

Applications of nanobased materials in the reclamation,
treatment, and purification of polluted and degraded waters,
such as wastewaters (domestic and industrial), saline waters,
and storm waters, have increased recently.54−56 Recently, a
number of nanomaterials such as titanium dioxide (TiO2),
silver (Ag), zinc oxide (ZnO), carbon nanotubes, and ferrous
oxide (FeO) have been used for these processes;57−62

however, there are growing concerns about their associated
negative health and environmental impacts as they accumulate
in living and nonliving systems, thereby triggering unpredict-
able environmental changes in natural systems.63 In this
context, Table 1 summarizes the most important and recent
studies associated with the negative impacts of nanomaterials
as they accumulate in living and nonliving systems.
Over the years, concerns have been raised about the

possibilities of Ag, TiO2, ZnO, and other NPs employed in
water remediation processes becoming next-generation wastes,

creating environmental problems.69−71 For example, it was
reported that TiO2 NPs employed in water treatment
processes may react with other metals (e.g., biogenic metals)
that are ubiquitous in the environment, creating a toxic joint
mechanism that can become unpredictable and catastrophic. It
was further argued that copper ions (Cu2+) may react with
exposed TiO2 and cause acute toxicity in aquatic organisms
(e.g., Daphnia magna and Gammarus fossarum).72 Similarly, it
has been shown that Ag NPs can be extremely toxic and
hazardous to humans and the environment.68,73 As demon-
strated in Figure 3, the report showed that the entrainment of
Ag NPs into the environment resulted in multiplier effects that
resulted from its dissolution, aggregation, oxidation, and
sulfidation, which may limit or exacerbate the toxicity levels
in the given natural system.68 It was argued that the dissolution
and leaching of ZnO NPs employed in water remediation
played a significant role in the toxicity level for aquatic
organisms (e.g., Escherichia coli).74 Hence, these concerns
about NP toxicity have resulted in the scientific community
seeking eco-friendly alternatives that are efficient and
sustainable. One such nanomaterial with these attributes is
obtained from the most abundant and ubiquitous natural
polymer−cellulose. In the quest to meet the sustainable
development goals, nanocellulosics (NC-based materials) have
gained considerable global interest. To the best of our
knowledge, there is no known report(s) on the environmental

Figure 3. Entrainment of Ag NPs into the natural environment poses hazardous challenges as a result of their reactions with other chemical
compounds, thereby impacting natural environments.73 Reprinted with permission from Tortella, G. R.; Rubilar, O.; Durań, N.; Diez, M. C.;
Martińez, M.; Parada, J.; and Seabra, A. B. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the
environment. J. Hazard. Mater. 2020, 390, 121974. Copyright 2020, Elsevier Science Ltd.
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impact associated with the use of nanocellulosics in water
remediation and treatment processes.

3. NANOCELLULOSICS: A BRIEF BACKGROUND

Even though the knowledge and application potentials of
nanoscale cellulosic materials, generally referred to as nano-
cellulosics, have been known for more than a century,75,76 it
was not until a decade and a half ago that study of nanoscale
properties and characteristics became possible.53 Nano-
cellulosic materials include nanofibrillated cellulose (NFC),
cellulose nanowhiskers, and cellulose nanocrystals (CNCs).
Figure 4 shows the bulk and microscopic morphologies of
various nanocellulosic materials. The fascinating properties of
nanocellulosics include (i) biodegradability, (ii) biocompati-
bility, (iii) transparency, (iv) low thermal expansibility
coefficient, (v) unlimited reactive sites for functionalization,
(vi) ease of surface modification, (vii) renewability and
sustainability, (ix) inherent electrical conductivity, (x) excep-
tional barrier properties for oxygen and mineral oils, and (xi)
exceptional weight-to-strength ratio (eight times that of
stainless steel and more unyielding than Kevlar).77−82 With
an assortment of potential applications, nanocellulosics are
proving to be the material of yesterday, today, and
tomorrow.83,84

In August 2012, the US Forest Products Laboratory under
the Department of Agriculture unveiled the first of its kind NC
facility for studying the potentials of biomass nanomaterials in
the United States.86 In Canada, in 2011, a new facility for the
development and applications of CNC was established to keep
up with the emerging trends in bioderived nanomaterials from
woody resources.87 More recently, the environment ministry of
the Japanese government demonstrated a novel super
automobile that was designed and fabricated entirely from
nanocellulosics and dubbed “the NC vehicle project”, which
demonstrated the matchless opportunities that biomass
presents in the quest for sustainable development and
reduction of CO2 emissions.88 A recent report described a
pilot fabrication of a laminated nanocomposite material
consisting of NC and Kevlar that could be used for various
military applications.89 The NC material was locally derived
from rice straw. The study concluded that reinforcement of
Kevlar with NC optimized the mechanical properties of the
developed material by offering higher strength with nearly no
weight changes, thereby demonstrating the potential of the
developed material for application in strong and lightweight
military gears.89

Various resources, methodologies, techniques, and processes
have been reported in the literature on the derivation,
preparation, characterization, and properties of nanocellulosics,

Figure 4. Bulk and microscopic morphologies of various nanocellulosic materials. (A) Bacterial NC (BNC) and its morphology as observed under
scanning electron microscopy; (B) cellulose nanofibril (CNF) hydrogel and its morphology as observed under TEM; (C) CNC suspension and its
observed morphology under TEM.85 Photography courtesy: Wang, X.; Wang, Q.; and Xu, C. Reprinted with permission from Wang, X.; Wang, Q.;
and Xu, C. Nanocellulose-based inks for 3d bioprinting: Key aspects in research development and challenging perspectives in applicationsa mini
review. Bioengineering 2020, 7, 40. Copyright 2020, the authors under the creative commons license 4.0.

Table 2. Overview of Current Preparation/Synthesis Methods for Nanocellulosic Materials

type of
nanocellulosic preparation/synthesis methods refs

CNF/CNCs acid hydrolysis of cellulose pulp in the presence of either mineral or organic acid 97 and 98
enzymatic hydrolysis employing the cellulose enzyme. Although an environmentally friendly route, it is very expensive
subcritical water extraction. Also, an environmentally friendly method but nanocellulosics obtained from this method demonstrate
instability in suspension

transition metals catalysis such as Fe(III), Co(II), etc., have been used for effective hydrolysis for obtaining nanocellulosic materials
from cellulose pulp, thereby reducing the use of acids

ionic liquid hydrolysis methodology. Notwithstanding the noteworthy efficiency in using this process for NC production, they,
however, come with drawbacks such as toxicity, high-cost implications, and high chemical footprints

deep eutectic solvents hydrolysis. Similar to ionic liquids; however, it eliminates some noted drawbacks associated with the use of ionic
liquids for cellulose pulp hydrolysis which includes lower-cost implications and simplicity

BNC fermentation process. However, it comes with challenges such as the long cultivation period 99−101
bioreactor process
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which are outside the scope of this perspective. Hence, we refer
to cited literature for further reading.90−92 It is important to
note that although nanocellulosics can be prepared from a
variety of biomass resources such as woody biomass (e.g.,
coniferous, eucalyptus, cannabis trees, and even from the
volumes of waste toilet papers used daily for sanitation),
bacteria, and algae, different cellulosic sources offer different
nanocellulosic functionalities and properties.90,93−96 We
believe that the biomass utilization industries (e.g., paper
industry/mills) will play a significant role in the global
development of nanocellulosics in the future. Table 2
summarizes the commonly used synthesis/preparation routes
for nanocellulosic materials.

4. NANOCELLULOSICS: EFFICIENT AND BENIGN
WATER REMEDIATION AND TREATMENT SYSTEMS

Nanocellulosics have vast application potential in almost every
field, including composite fabrications, display systems in
electronics, energy storage systems, environmental remedia-
tion, and water treatment technologies and/or pro-
cesses.102−104 In this section, we demonstrate the selected
recent advancements in using nanocellulosics (micro/nano-
scale) to remediate and/or treat degraded waters.

4.1. Membranes. It is well known that membrane
technology ranks the top among the most energy-efficient
technologies for the decontamination of degraded waters. The
membrane technology is based on either pressure-driven
concepts such as microfiltration techniques (e.g., for particulate
matter elimination) or osmotic movement (e.g., for salinity
treatment salt removal). Regardless, membrane treatment
processes remain the most favored and dominant industrial
methods owing to the ease in their scalability, low-cost
operations, versatility, ease of integration into the existing
technologies, low chemical footprint, efficiency, and perform-
ance.5 However, factors such as material configuration (e.g.,
pore size > 10 nm and bonding sites), hydrodynamics (e.g.,
mass flow rate and permeability), wettability and adhesive
properties, mechanical properties, chemical and thermal
stability during use, ease of large-scale processing, and cost
implication are critical when selecting materials for membrane
application in water treatment.105 Considering the fact that
fibrillated nanocellulosics have a cross-sectional dimension of
∼2−10 nm, a length of a few micrometers, a high surface area
of 750 m2/g, and a Young’s modulus of 100 GPa with excellent
wettability and surface functionality, they are excellent
candidates for the fabrication of separation membranes for
water purification.106 As demonstrated in Figure 5, fibrillated
nanocellulosics can be used for developing efficient pressure-

Figure 5. Cross sections of potential design for various types of fibrillated nanocellulosic membrane systems for both pressure-driven membranes
and reverse osmosis: conceptualized design suited for (i) microfiltration, (ii) ultra- and nanofiltration, and (iii) reverse osmosis.106 Reprinted with
permission from Sharma, P. R.; Sharma, S. K.; Lindström, T.; and Hsiao, B. S. Nanocellulose-enabled membranes for water purification:
Perspectives. Adv. Sustain. Syst. 2020, 4 (5), 1900114. Copyright 2020, Wiley-VCH Verlag.

Figure 6. Schematics demonstrating how a common TP can be used as an exceptional separation membrane for oil and water separation using NC-
based coating.109 Photography courtesy: Roy, S.; Zhai, L.; Van Hai, L.; Kim, J. W.; Park, J. H.; Kim, H. C.; and Kim, J. Reprinted with permission
from Roy, S.; Zhai, L.; Van Hai, L.; Kim, J. W.; Park, J. H.; Kim, H. C.; and Kim, J. One-step nanocellulose coating converts tissue paper into an
efficient separation membrane. Cellulose 2018, 25 (9), 4871−4886. Copyright 2018, Springer.
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driven and/or osmotic-based membranes for water treatment
and/or decontamination.106

Derami et al.107 developed a facile and inexpensive
polydopamine and bacterial-derived NC (BNC) hybrid
membrane system for effective wastewater treatment. They
argued that this membrane was not only versatile but also
biocompatible, biodegradable, industrially scalable, and
efficient for the removal of a variety of pollutants, such as
heavy metallic ions (e.g., lead and cadmium ions) and organic
dyes (e.g., methylene orange). Although the membrane had
limitations, that is, it was inefficient in the removal of
negatively charged pollutants, it demonstrated robustness in
terms of recyclability and retention of its separation
capabilities, with no degradation, even after 10 cycles of
filtration and regeneration.107 Thus, this developed membrane
was a very promising material for cheap water treatment
processes using NC-based materials. Another paper described
a layer deposition technique employing the vacuum drying
method that has been used in the fabrication of NC/filter
paper (NC/FP) as composite filtration membranes.108 The
study showed that sources of NC had a significant influence on
the overall performance of the NC/FP composites. The high
length-to-diameter (100−400 and 3−15 nm, respectively)
ratio affected the efficiency of the embedment of the NC fibrils
into the FP substrate, thereby making it effective for the
filtration (even reaching ultrafiltration capabilities) of partic-
ulate matter from contaminated water. The authors concluded
that through minor adjustments, membranes with different
properties and capabilities can be fabricated for particular
applications, thereby exhibiting great potential in the design of
efficient and simple water filtration systems.96 In another study,
Roy et al.109 successfully converted tissue paper (TP) to an
efficient separation membrane by applying a novel super-
hydrophobic coating prepared from NC. As claimed, a novel,
eco-friendly, and benign superhydrophobic coating was
developed using a simple one-step approach employing
cellulose nanofibers (CNFs) and octadecylamine via a
glutaraldehyde (GA) coupling mechanism in the presence of
deionized water and alcohol. After the application of the
developed coating to the TP, it was determined that the
enhanced TP became a highly efficient separation membrane
for oil and water mixtures.109 As shown in Figure 6, this novel
approach provides opportunities for developing a variety of
low-cost separation membranes, especially in low-income
nations. The exceptional capability of this simple coating
system was tested on other substrates such as a normal kitchen
dishwashing sponge (made from polyurethane), and the
sponge exhibited exceptional adsorbing capability.109

Yang et al.110 reported that antifouling challenges, a well-
known problem in membrane technology (costing 20−50% of
the operational cost on average), can be mitigated through
surface modification resulting from surface charges aiding in
self-cleaning. The study is based on the argument that
understanding the relationship between electrostatic repulsion
and fibrillated nanocellulosics is the key to mitigating the
antifouling of these membrane systems. Hence, from the
degree of oxidation (DO), dimensions, and zeta potential
values of the NC fibers, it was observed that at a DO of 1.80,
these nanocellulosic fibers displayed the highest flux recovery
(≈98 ± 2%) after a modest hydraulic flush. This was in
contrast with that of commercially available separation
membranes, such as polyvinylidene fluoride (PVDF), which
displayed serious fouling with low flux recovery. The report

concluded that due to the presence of surface charges, the use
of nanocellulosic fibers has advantages such as reusability, ease
of recyclability, longer lifespans, and higher cost efficiency
compared to other conventional polymer-based membrane
materials such as PVDF, polyethersulfone, polysulfone, and
polyacrylonitrile.110

Researchers at Princeton University have developed an
efficient and cost-efficient hydrophobic “nanowood” mem-
brane with high porosity (≈89 ± 3%).111 The pore size
distribution of the inherent crystalline nanofibrils combined
with the xylem vessels and channels was responsible for the
facilitation of water vapor transportation.111 Entirely fabricated
from woody resources, this innovative material demonstrated
superior characteristics and better potential for membrane
distillation in water desalination compared with conventionally
available membranes derived from fossil resources. With an
excellent water flux and exceptional thermal efficiency
exceeding 60%, the developed material is a promising
alternative to petroleum-derived membranes. It was revealed
that unlike the complex fabrication methods employed to
create conventional membranes such as polypropylene and
polytetrafluoroethylene, this “nanowood” membrane was
manufactured using a top-down approach that is easily scalable
for industrial deployment. However, pore size distribution
caused issues; the report argued that this could be eliminated
using microtomes and by carefully selecting a woody material
source that meets the pore size criteria/demand. It was further
suggested that future perspectives should consider re-engineer-
ing nanocellulosic fibers through electrospinning to optimize
the capabilities of the material.111

4.2. Adsorbents. There is a growing trend in the
application of nanobased materials as adsorbents for water
treatment purposes.112,113 This has been attributed to the
higher adsorption capacities, improved binding affinities,
advanced interfacial phenomena, and large surface area of
nanoscale materials compared to their macroscale counter-
parts. This is in addition to the capability to fine-tune and
modify their surfaces.5,114 Due to the easy and simple
approach, adsorption is considered the most significant process
in water treatment; this is the reason for the popularity of
nanoscale materials in the removal of a vast array of pollutants,
ranging from heavy metals to organic matters to pesticides.115

Generally, the benchmark for considering a material for
adsorbent applications includes economy, robustness during
long usage, maintenance of adsorption capacity integrity even
after heavy usage, good surface area, ease of recyclability, and
low environmental footprint. Because of the limitations and
challenges faced by conventional industrial adsorbents,
enumerated by Mahfoudhi and Boufi114 and Hokkanen et
al.,116 recent efforts are being directed toward more sustainable
and effective alternatives such as NC for water treatment
purposes.117 Table 3 summarizes the most important studies
demonstrating the increasing research on NC/NC-based
materials/systems as adsorbents for the removal of various
pollutants.
Sharma et al.118 demonstrated the efficient removal of

cadmium(II) ions from contaminated water using NC derived
from spinifex (genus Triodia), an underutilized grass that is
abundant and widely distributed across almost all continents.
By employing a nitro-oxidation technique, an NC material with
low crystallinity (∼50%), high surface charge (−68 mV), and
good hydrophilicity was developed. The study established that
the highest efficiency exhibited by the nanocellulosic
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suspension was approximately 2550 mg g−1, which is
substantially higher than that by any adsorbents reported in
the literature, thereby demonstrating the potential for
harnessing spinifex for water remediation.118

Another study reported the use of a simple, recyclable, and
benign bioadsorbent for the removal of highly toxic mercury
ions (Hg+) from contaminated water via the application of
surface-tailored NC aerogels.125 As demonstrated in Figure 7,
the superficially prepared NC aerogel was obtained by freeze-
drying bamboo-derived 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO), which was oxidized into NFC in the presence of
mercaptopropysiloxane sols. As a result of the abundant thiol
groups affixed on the surfaces, mercury ions were very
efficiently removed (>90% efficiency). In addition, despite

variations in pH values over a wide initial concentration range
of 0.01−85 mg L−1, the decrease in the adsorption capacity of
the fibrillated NC system was negligible. The report concluded
that following an observed Langmuir isotherm and pseudo-
second-order kinetics, a maximum adsorption capacity of 718.5
mg g−1 was achieved, thereby demonstrating the promising
application potential of this nanocellulosic material. This is in
addition to other added advantages such as flexibility and ease
of recyclability.125

Pervasive empty fruit bunches (EFBs) discarded from
processed palm-oil seeds in Indonesia have been used for the
production of superadsorbent NC material for water treatment
(Figure 8). Septevani et al.126 claimed that after preparing the
fine-sized fibers of EFB, they were treated via chemical

Figure 7. Diagrammatic representation of a facile, robust, recyclable, and efficient NC aerogel for the efficient removal of hazardous mercury ions
from contaminated water.125 Photography courtesy: Geng, B.; Wang, H.; Wu, S.; Ru, J.; Tong, C.; Chen, Y.; Liu, H.; Wu, S.; and Liu, X. Reprinted
with permission from Geng, B.; Wang, H.; Wu, S.; Ru, J.; Tong, C.; Chen, Y.; Liu, H.; Wu, S.; and Liu, X. Surface-tailored nanocellulose aerogels
with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water. ACS Sustain. Chem. Eng. 2017, 5 (12), 11715−
11726. Copyright 2017, the American Chemical Society.

Figure 8. Preparation of superadsorbent NC materials from EFB, incorporated with activated carbon from black liquor obtained during the EFB
pretreatment process. The presence of sulfonated active sites as a result of acid hydrolysis was momentous in the heavy metal adsorption
capacity.126 Photography courtesy: Septevani, A. A.; Rifathin, A.; Sari, A. A.; Sampora, Y.; Ariani, G. N.; Sudiyarmanto; and Sondari, D. Reprinted
with permission from Septevani, A. A.; Rifathin, A.; Sari, A. A.; Sampora, Y.; Ariani, G. N.; Sudiyarmanto; and Sondari, D. Oil palm empty fruit
bunch-based nanocellulose as a superadsorbent for water remediation. Carbohydr. Polym. 2020, 229, 115433. Copyrright 2020, Elsevier Science
Ltd.
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explosion to obtain high-content cellulose systems that were
further hydrolyzed in acidic media and neutralized. Activated
carbon, obtained from the lignin content of the EFB, was
added to the NC to develop a superadsorbent material. The
NC-based superadsorbent material obtained by the treatment
with sulfuric acid was denoted as NCS and that obtained by
phosphoric acid treatment was denoted as NCP. The study
reported that NCS exhibited superior heavy metal ion
adsorption, especially for lead ions (Pb2+), as compared to
NCP at an initial metal concentration of 100 ppm.
It was concluded that these EFB-NCs functionalized by

sulfuric and phosphoric acids enabled the modification of EFB-
NC surfaces. The incorporation of the activated carbon
obtained from the lignin liquor (obtained during the
pretreatment of the EFB fibers) demonstrated the possibility
of developing superadsorbent materials from almost any
lignocellulosic material for water remediation.126 Kumar et
al.127 demonstrated the possibility of fabricating a quick and
recyclable polyaniline (PANI)-impregnated NC (PANI−NC)
composite-based system with improved efficiency for chro-
mium metal removal and the decontamination of wastewaters.
The two-step process involved in the fabrication of the PANI−
NC included the polymerization of monomeric aniline using
ammonium persulfate, after which the NC was impregnated in
the PANI matrix. The developed system was fabricated in
various forms (i.e., powder and globular). This material
exhibited dual advantages: efficient removal (almost 100%)
of industrial dyes and ability to remove more than 95% of
chromium metal ions from the industrial wastewater; hence, it
acted as a multifunctional adsorbent.127

4.3. Flocculants and/or Coagulants. An important step
in water treatment processes is the removal of particulate
suspensions. This is generally achieved through the neutraliza-
tion of charged particulate suspensions (coagulation) and the
aggregation/agglomeration of suspended particulate matter
(flocculation).5 In pursuit of sustainable development goals,
more research is focused on finding new ways to “go green”

through developing efficient alternatives that are benign,
sustainable, and efficient in water treatment, while mitigating
the limitations of unsustainable and conventional systems, such
as synthetic polymers from fossil resources and inorganic
coagulants such as aluminum and iron-based alum.5,19,128 In
the last decade, cellulosic nanomaterials have found increasing
use as efficient coagulation and flocculation systems. For
example, an anionized NC system has been developed as an
alternative coagulation−flocculation agent for municipal
wastewater treatment.129 The bleached wood pulp was
disintegrated in deionized water to produce the anionic
cellulosic nanomaterial. This functionalized nanocellulosic
system demonstrated good efficiency in the coagulation−
flocculation treatment of municipal wastewater samples,
although it fell short of ineffectual turbidity reduction when
compared to the conventional systems currently in use.
However, it exhibited a comparable performance in chemical
oxygen demand (COD). In addition, the developed biosystem
was very robust and shows high levels of stability under
prolonged usage and changing pH values.129 Another paper
reported the use of cationic NC as an efficient flocculant for
municipal activated sludge.130 Kraft pulp was used as a source
of the cellulose material, which was disintegrated using
deionized water while fabricating cellulose nanofibers. The
study claimed that the developed cationic NC demonstrated
good flocculation performance and its efficiency was
comparable to that of conventionally used polymeric systems
from fossil resources; however, an increase in alkalinity of the
municipal wastewater sludge decreased the performance of this
system. This was attributed to the possible cleavage of C-5 and
O-5 bonds of the NC, which degraded its efficiency. As the
optimal operating pH for activated wastewater sludge falls
between 6.5 and 7.5, this cationic NC flocculant can operate
efficiently under these environmental conditions.130

Another study131 reported the synthesis of bamboo pulp, an
efficient and hydrophobic cellulose-graf t-sodium silicate-
polyacrylamide (BPC-g-Si-PAM) flocculant and dewatering

Figure 9. Schematics representing the naked-eye observation of the fluorescent activity of SNC−DETA−EA in the presence of copper ions.
Distinguishable selectivity for Cu2+ and reversibility of the activity are evident.134 Photography courtesy: Ram, B.; Jamwal, S.; Ranote, S.; Chauhan,
G. S.; and Dharela, R. Reprinted with permission from Ram, B.; Jamwal, S.; Ranote, S.; Chauhan, G. S.; and Dharela, R. Highly selective and rapid
naked-eye colorimetric sensing and fluorescent studies of Cu2+ ions derived from spherical nanocellulose. ACS Appl. Polym. Mater. 2020, 2, 5290−
5299.
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system, for the treatment of municipal wastewater sludge. The
developed NC system exhibited good performance, especially
for kaolin suspension and machining wastewater when
compared to conventional polyacrylamide, especially in the
removal of total suspended solids, COD, ammonia nitrogen,
total iron, total phosphorus, and total zinc, with efficiencies
exceeding 70%.131 In addition to demonstrating the promising
features of biobased and ecological flocculation and coagu-
lation system, Koshani et al.132 highlighted the important
developments in NC-based flocculants and dispersants, with
some still at the pilot scale and others already at the industrial
level.
It remains evident from the applications of NC for

flocculation−coagulation that there is a need to improve the
efficiencies of these systems, especially in media with changing
pH values. The nanocellulosic materials/systems for water
remediation and treatment processes should be further
optimized and improved before being used as effective
alternatives to conventional materials and/or systems currently
in use.
4.4. Sensors. Because of their inherent electrical properties,

good optical transparency, and capability to exhibit piezo-
electric characteristic, the application of nanocellulosic-based
materials as sensors for water and biological systems has been
proposed. This is an emerging area, and this section highlights
the most important new developments in the application of
nanocellulosic-based materials as chemical sensors. A bio-
composite plasmonic sensor for detecting cyanide ions (CN−)
was fabricated via in situ embedding of stabilized Cu NPs
within a nanocellulosic film without any surfactants and/or
capping agents, thus presenting neat and well-ordered Cu NPs.
The fixation of the Cu NPs into the NC film prevented any
form of particle aggregation that may arise, thus enhancing
good dispersion. This developed bionanocomposite demon-
strated suitable optical sensing for CN− at low detection limits
of about ∼0.015 μg mL−1 in water.133 It was further reported
that spherical NC (SNC) was modified with diethylenetri-
amine (DETA) and/or ethanolamine (EA) (i.e., SNC−DETA
and SNC−DETA−EA) to develop a highly selective and rapid
sensor for Cu ions (Cu2+), visible with the naked eyes, via
colorimetric sensing and fluorescence.134 The study demon-
strated that the SNC−DETA−EA exhibited a distinctive
structure−property relationship through these well-defined
selective colorimetric and fluorometric sensing characteristics
toward Cu2+. Therefore, it was possible to observe the
fluorescent quenching behavior upon the addition of Cu2+

ions even at low concentrations with the naked eye (Figure 9).
Moreover, this biocomposite sensor demonstrated good
tolerance to pH variations, in addition to the added advantages
of recyclability and reversibility.134

To detect GA in water, Wu et al.135 developed a fluorescent
aerogel by chemically cross-linking NC and amino-modified
carbon dots. The cross-linking reaction was conducted in the
absence of organic solvents or toxic cross-linking reagents or
fluorescent sources. The results showed the parts per million
level of detection of GA in water. Furthermore, the developed
fluorescent aerogel displayed a considerable selection of
fluorescence quenching toward specific gaseous and liquid
molecules such as nitric oxide and aldehyde species.

5. LIMITATIONS AND CHALLENGES IN
ADVANCEMENTS OF CELLULOSE
NANOMATERIALS IN GLOBAL WATER
REMEDIATION

Regardless of the potentials and possibilities cellulose nano-
materials present for the production of low-cost, cheap, and
safe water, the lack of serious funding still hampers
technological transfer and localization.136−138 In addition,
most poor countries, where access to clean water is a large
issue, do not have a national nanotechnology plan or strategy
and the national yearly budgets of countries do not reflect any
sort of commitment for harnessing these technological
advancements.5,139 In addition, according to the study of
Piccinno et al.,140 factors such as solvents and heat and
electricity consumption are critical contributory components in
developing nanotechnology optimally; this poses a serious
challenge for countries, where electricity generation is a
problem, in optimizing the technology and processes required
for the industrial use of NC to meet local demands. There are
also concerns that the modification of nanocellulosic materials
may make them resistant to biodegradability,114 which is one
of the primary disadvantages NC presents; we believe that any
form of modification of cellulose-based nanomaterials and/or
systems must take the environment into consideration.
Another possible challenge that may hamper the advance-

ments in NC utilization in ameliorating the rising water crisis is
religious and local belief systems. For example, wastewater
recycling and reuse aid in producing potable and usable water;
however, religious beliefs in certain countries make people
hesitant to such technologies.141−144

6. CONCLUSIONS

The requirement for potable safe water will continue to
increase in the coming years. The need to harvest degraded
waters for mitigating global water scarcity cannot be over-
looked. In this perspective, we have shown that the earth’s
freshwater resources are under pressure, and no continent or
country is safe from the raging water crisis. Recently, a number
of nanomaterials have been extensively used in the reclamation,
treatment, and purification of polluted and degraded waters;
however, there are growing concerns about their associated
negative health and environmental impacts as they accumulate
in living and nonliving systems, thereby triggering unpredict-
able environmental changes in natural systems. Here, we have
demonstrated that nanoscale cellulosic materials/systems are
benign, sustainable, and ubiquitous biomaterials for global
water remediation and that the scientific community has made
efforts to resolve the challenges of the rising global water
scarcity and degradation. However, there are still knowledge
gaps that need to be investigated, for example, understanding
the interfacial reactions of NC systems and materials in
changing pH to optimize NC system resilience and robustness.
We also highlighted the vast and untapped opportunity that
the TP presents to be used as nanocellulosic materials for
water remediation. Furthermore, we believe that as nanobased
cellulosic materials/systems gain research interest, however, in
the context of material properties, enhancements, such as
surface modifications, of cellulose nanomaterials may result in
the deterioration of its biodegradability. Therefore, there is an
emerging need to assess and evaluate emerging data to
understand the potential environmental risks of nanocellulose
production, its ability to be used on an industrial scale, and its
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future use so as to ensure that the potential and efficient
material will not become the source of our destruction.
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Metals from Aqueous Solutions by Succinic Anhydride Modified
Mercerized Nanocellulose. Chem. Eng. J. 2013, 223, 40−47.
(117) Xue, Y.; Mou, Z.; Xiao, H. Nanocellulose as a Sustainable
Biomass Material: Structure, Properties, Present Status and Future
Prospects in Biomedical Applications. Nanoscale 2017, 9, 14758−
14781.
(118) Sharma, P. R.; Chattopadhyay, A.; Sharma, S. K.; Geng, L.;
Amiralian, N.; Martin, D.; Hsiao, B. S. Nanocellulose from Spinifex as
an Effective Adsorbent to Remove Cadmium(II) from Water. ACS
Sustainable Chem. Eng. 2018, 6, 3279−3290.
(119) Suopajar̈vi, T.; Liimatainen, H.; Karjalainen, M.; Upola, H.;
Niinimak̈i, J. Lead Adsorption with Sulfonated Wheat Pulp Nano-
celluloses. J. Water Process Eng. 2015, 5, 136−142.
(120) Zhang, H.; Lyu, S.; Zhou, X.; Gu, H.; Ma, C.; Wang, C.; Ding,
T.; Shao, Q.; Liu, H.; Guo, Z. Super Light 3D Hierarchical
Nanocellulose Aerogel Foam with Superior Oil Adsorption. J. Colloid
Interface Sci. 2019, 536, 245−251.
(121) Gu, H.; Zhou, X.; Lyu, S.; Pan, D.; Dong, M.; Wu, S.; Ding,
T.; Wei, X.; Seok, I.; Wei, S.; Guo, Z. Magnetic Nanocellulose-
Magnetite Aerogel for Easy Oil Adsorption. J. Colloid Interface Sci.
2020, 560, 849−856.
(122) Korhonen, J. T.; Kettunen, M.; Ras, R. H. A.; Ikkala, O.
Hydrophobic Nanocellulose Aerogels as Floating, Sustainable,
Reusable, and Recyclable Oil Absorbents. ACS Appl. Mater. Interfaces
2011, 3, 1813−1816.
(123) Anirudhan, T. S.; Deepa, J. R.; Binusreejayan. Synthesis and
Characterization of Multi-Carboxyl-Functionalized Nanocellulose/

Nanobentonite Composite for the Adsorption of Uranium(VI) from
Aqueous Solutions: Kinetic and Equilibrium Profiles. Chem. Eng. J.
2015, 273, 390−400.
(124) Zhang, X.; Elsayed, I.; Navarathna, C.; Schueneman, G. T.;
Hassan, E. B. Biohybrid Hydrogel and Aerogel from Self-Assembled
Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for
Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 46714−
46725.
(125) Geng, B.; Wang, H.; Wu, S.; Ru, J.; Tong, C.; Chen, Y.; Liu,
H.; Wu, S.; Liu, X. Surface-Tailored Nanocellulose Aerogels with
Thiol-Functional Moieties for Highly Efficient and Selective Removal
of Hg(II) Ions from Water. ACS Sustainable Chem. Eng. 2017, 5,
11715−11726.
(126) Septevani, A. A.; Rifathin, A.; Sari, A. A.; Sampora, Y.; Ariani,
G. N.; Sudiyarmanto; Sondari, D. Oil Palm Empty Fruit Bunch-Based
Nanocellulose as a Super-Adsorbent for Water Remediation.
Carbohydr. Polym. 2020, 229, 115433.
(127) Kumar, N.; Kardam, A.; Jain, V.; Nagpal, S. A Rapid, Reusable
Polyaniline-Impregnated Nanocellulose Composite-Based System for
Enhanced Removal of Chromium and Cleaning of Waste Water. Sep.
Sci. Technol. 2020, 55, 1436−1448.
(128) Abiola, O. N. Polymers for Coagulation and Flocculation in
Water Treatment. In Polymeric Materials for Clean Water; Das, R., Ed.;
Springer Nature Switzerland: AG, 2019; pp 77−92.
(129) Suopajar̈vi, T.; Liimatainen, H.; Hormi, O.; Niinimak̈i, J.
Coagulation−Flocculation Treatment of Municipal Wastewater Based
on Anionized Nanocelluloses. Chem. Eng. J. 2013, 231, 59−67.
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