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Abstract—A new approach to solving a more general formula-
tion of the inverse Frobenius-Perron problem, which requires the
construction of a one-dimensional ergodic map with prescribed
invariant probability density function and power spectral density,
is presented. The proposed approach relies on a novel technique
for generating distinct maps with the same invariant density,
and which facilitates selection of the structural characteristics
of each map in advance. We consider a new class of maps
constructed with this technique, the piecewise monotonic hat
maps, and present an algorithm for selecting the map parameters
to achieve simultaneous and independent prescription of the
invariant density and multimodal power spectrum characteris-
tics. This approach to solving the generalized inverse Frobenius-
Perron problem is demonstrated by constructing several ergodic
maps with the beta invariant density as well as unimodal and
bimodal power spectra with distinct mode center frequencies and
bandwidths. We conclude that the proposed approach provides
a means for generating more realistic models of systems and
processes as compared to existing methods.

I. INTRODUCTION

The problem of constructing a dynamical system model with
prescribed statistical properties, which is colloquially referred
to as the inverse Frobenius-Perron problem (IFPP) [1], is
widely encountered in fields as diverse as physics, biology,
economics and engineering. Solutions to the IFPP have been
used to model phenomena such as the motion of fluids [2] and
neural processes pertaining to the human olfactory system [3],
and have led to the design of more robust rotary drill heads
[4], more efficient and flexible digital radio-frequency memory
systems [5] and improved waveforms for radar systems [6].

The conventional formulation of the IFPP requires the
construction of an ergodic map, which corresponds to the
evolution rule of a one-dimensional dynamical system model,
such that the map has a prescribed invariant probability density
function (PDF) [1]. Several solutions to this problem have been
proposed [7]–[11]; however, with modern simulation environ-
ments striving to provide more realistic system and process
models, there is growing interest in solving a more general
formulation of the IFPP, where both the invariant density
and the power spectrum of map trajectories are prescribed.
The synthesis of structurally distinct maps sharing the same
invariant density is also valuable from a theoretical perspec-
tive, as these maps reveal how certain statistical characteristics
may emerge in systems. Hence, the development of analytical

solutions to the IFPP which accommodate the simultaneous
and general prescription of both an invariant density function
and power spectral density is of relevance.

In this paper, we present a novel approach to solving the
general formulation of the IFPP. We present a technique for
generating distinct maps which share the same prescribed
invariant density, and where the structural characteristics of
each map (namely, the number of branches, branch support
and branch completeness) are selected in advance. The tech-
nique uses monotonic random variable transformations, and
accommodates a large class of invariant density functions; fur-
thermore, the freedom to select the map structure provides the
capability to manipulate the power spectrum of the map while
the invariant density remains fixed. We investigate a new class
of maps, referred to as piecewise monotonic hat maps, that are
generated with the technique. The power spectra of these maps
correspond to a superposition of spectral modes, where the
structural parameters of the map accommodate the selection of
each spectral mode’s characteristics – i.e., its center frequency
and bandwidth. We present an algorithm for selecting map
parameters to simultaneously and independently prescribe the
invariant density as well as these spectral characteristics. The
proposed approach is demonstrated by constructing several
ergodic maps which share the beta invariant density and
possess distinct unimodal and bimodal power spectra, which
are verified by numerical experiments.

The remainder of this paper is set out as follows. In section
II, an overview of relevant literature on existing solutions to
the IFPP is presented. The necessary mathematical background
is presented in section III, whereas the technique for generat-
ing distinct maps with the same invariant density is presented
in section IV. The class of piecewise monotonic hat maps, and
the algorithm for selecting map parameters to realize a pre-
scribed invariant density function and spectral characteristics,
are presented in section V. Numerical experiments involving
the generation of hat maps are presented in section VI, and
the paper is concluded in section VII.

II. OVERVIEW OF LITERATURE

Baranovsky [7] proposed a solution to the more general
formulation of the IFPP for shifted piecewise linear and com-
plete maps (complete refers to each branch spanning the entire



range of the map, in contrast to incomplete maps). Whereas
the solution provides the flexibility to specify the invariant
density (via topological conjugation), the power spectrum is
restricted to being unimodal. The analysis indicates that this
spectral limitation is characteristic of the maps considered,
which limits their usefulness in solving the general IFPP.

Friedman [8] investigated the piecewise linear and incom-
plete Markov maps, and proposed a graph-theoretic approach
to solving the conventional IFPP for these maps. In related
work, Gora [9] proposed a solution to the IFPP for the class
of piecewise linear semi-Markov maps; in this solution, the
Frobenius-Perron (FP) operator of the map is represented as
a matrix, referred to as the FP matrix. Both solutions [8], [9]
are restricted to piecewise constant invariant densities, which
is a consequence of the piecewise linear nature of the maps.
Neither of these solutions addresses the power spectrum.

Isabelle [12] characterized the power spectrum of piecewise
linear and incomplete Markov maps, thereby revealing its
relationship with the eigenvalues of the N × N FP matrix.
The power spectrum is a superposition of 2N spectral modes,
where N of the spectral modes each corresponds to one of
the eigenvalues; the argument of the eigenvalue is equal to
the mode center frequency, whereas the eigenvalue magnitude
is inversely proportional to the mode bandwidth. McDonald
[10] generalized the solution of Gora [9] to achieve a bimodal
power spectrum, where the mode bandwidths, but not arbi-
trary mode center frequencies, are selectable. The proposed
technique involves the synthesis of a doubly stochastic FP
matrix with prescribed real eigenvalues, and the subsequent
construction of the map from the FP matrix. This approach was
later generalized in [11] to the case of 3× 3 FP matrices with
prescribed complex eigenvalues, thereby providing freedom
to select the characteristics of two of the spectral modes.
However, both these solutions are restricted to piecewise
constant invariant densities, and neither provide full control
over the characteristics of all the spectral modes.

III. MATHEMATICAL BACKGROUND

Let Ω , [0, 1]. Consider a random variable X which induces
the probability space ΦX = (Ω,B, PX), where B denotes
the Borel σ–algebra on Ω, and where PX is a probabil-
ity measure. We consider probability measures that satisfy
PX(B) = 0⇔ µ(B) = 0, where µ denotes the Borel measure
and B ∈ B; this implies that PX is absolutely continuous with
respect to µ, and that the distribution function FX associated
with the measure PX is strictly increasing over Ω. Absolute
continuity implies the existence of a PDF fX ∈ L1(Ω),
where ||fX ||1 = 1, such that the density function satisfies
PX(B) =

∫
B
fX(x)dµ(x) and fX > 0 almost everywhere.

The proposed technique for constructing maps uses random
variable transformations. In what follows, a class of surjective
and piecewise monotonic Borel maps, which are used to
transform the random variable X , is defined. A surjective
Borel map S : Ω → Ω is piecewise monotonic [13] if
there exists a partition 0 = x0 < x1 < . . . < xN = 1
of the unit interval such that, for each n = 1, 2, . . . , N

Fig. 1. Example of a piecewise monotonic map S.

(finite N ), (i) the branch function Sn , S|(xn−1,xn) is a Cr

function for some r ≥ 1, and extendable to a Cr function
on [xn−1, xn], and (ii) |S′n(x)| > 0. Using Villani’s lemma
[14], it can be shown that any such map is nonsingular; i.e.,
µ(B) = 0 ⇒ µ(S−1(B)) = 0. An example of a map from
this class is plotted in Fig. 1.

Now consider the function Y = S ◦ X . Since S is a
Borel function, Y is measurable on B; hence, Y is a random
variable on the induced space ΦY = (Ω,B, PY ), where PY
is a probability measure. Also, since S is nonsingular, PY
can be associated with a PDF fY . Let N(y) be defined as
N(y) , {n : y ∈ S((xn−1, xn))}. The two density functions
fX and fY are related by the expression (see, e.g., [13], [15])

fY (y) =
∑

n∈N(y)

fX ◦ S−1n (y)

|S′n ◦ S−1n (y)|
, (1)

for almost all y ∈ Ω. Since fX > 0 almost everywhere, it
is deduced from (1) that the distribution function FY (y) is a
strictly increasing and continuous map from Ω onto itself.

Whereas (1) is well-known, an analogous expression that
relates the distribution functions FX and FY may be derived.
Let y′m , sup{S((xm−1, xm))}, and M(y) , {m : y ≥ y′m}.
The expression relating FY and FX is given by

FY (y) =
∑

n∈N(y)

An(y) +
∑

m∈M(y)

Bm, (2)

where

An(y) , (−1)dn [FX ◦ S−1n (y)− FX(xn−1+dn)], (3)
Bm , FX(xm)− FX(xm−1), (4)

and where dn , 0 if S′n(x) > 0, and dn , 1 otherwise.
This section is concluded by presenting a result regarding

the existence of strictly monotonic transformations between
random variables that induce the probability spaces ΦX and
ΦY (see, for instance, [16]). Assume that P (B) = 0 ⇔
µ(B) = 0 for both P , PX and P , PY , where B ∈ B. Both
distribution functions FX and FY are then strictly increasing
and continuous surjective functions; hence, these functions are



invertible. Let X denote an arbitrary random variable which
induces ΦX ; it follows that a strictly increasing transformation
} : Ω→ Ω exists, where } , F−1Y ◦FX , such that the random
variable Y = } ◦ X induces ΦY . Furthermore, the inverse
function }−1 = F−1X ◦FY exists, and, for an arbitrary random
variable Y that induces ΦY , there exists a random variable
X = }−1 ◦ Y which induces ΦX . We observe that both the
transformations } and }−1 only depend on the underlying
probability spaces (i.e., the distribution functions), and not the
particular random variables X and Y .

IV. NOVEL TECHNIQUE

We propose a novel technique for constructing distinct maps
S̃ : Ω → Ω each having at least one invariant PDF equal to
a prescribed density f∗, where f∗ > 0 almost everywhere.
Let fX = f∗, such that the probability measure PX of ΦX
corresponds to the required invariant measure. Let X induce
ΦX . A sufficient condition for a candidate map S̃ to have at
least one invariant density fX is that the random variable S̃◦X
induces the probability space ΦX ; this follows from the fact
that both X and S̃ ◦X then have the PDF fX .

The proposed technique first requires the selection of an
arbitrary map S : Ω → Ω from the family of piecewise
monotonic maps (we refer to this as map pre-selection).
The function Y = S ◦ X is then a random variable which
induces some probability space ΦY . We now consider a second
transformation τ : Ω → Ω, and require that the function
τ ◦ Y corresponds to a random variable which induces the
probability space ΦX . It was stated in section III that there
always exists a monotonic transformation }−1 from an arbi-
trary random variable which induces ΦY to another random
variable which induces ΦX . Therefore, we select τ , }−1,
such that }−1 = F−1X ◦FY transforms the random variable Y
to some random variable }−1 ◦ Y which induces ΦX . Hence,

S̃ = }−1 ◦ S = F−1X ◦ FY ◦ S (5)

has at least one invariant probability density fX .
Several observations regarding the map S̃ defined by (5)

are relevant. First, the expression for S̃ may be rewritten by
substituting (2) into (5), thereby obtaining an expression that
only depends on the pre-selected map S and the distribution
function FX corresponding to the required invariant density.
Second, since }−1 is strictly increasing, the map S̃ has the
same number of branches and the same branch supports as
the pre-selected map S, and preserves branch completeness.
Hence, one may generate any number of structurally distinct
maps which share at least one common invariant density fX
by selecting the branch characteristics of S. Third, whereas
at least one invariant density of S̃ is equal to fX , additional
conditions pertaining to the map structure have to be derived
in order to ensure that the invariant density is unique (i.e.,
such that S̃ is ergodic). We derive such conditions in the next
section for a new family of piecewise monotonic maps.

V. PIECEWISE MONOTONIC HAT MAPS

In this section, we define the class of piecewise mono-
tonic hat maps. We distinguish between piecewise linear and

Fig. 2. Example of a 2× 2 piecewise linear and monotonic hat map.

piecewise nonlinear maps from this class; with respect to the
solution of the IFPP, pre-selection of S is done from the subset
of piecewise linear maps, whereas the ergodic map S̃ (i.e., the
IFPP solution) is generally found to be piecewise nonlinear.

The N×N piecewise linear and monotonic hat maps (refer
to Fig. 2 for an example), where N > 1, are defined by

S(x) =

N∑
n=1

N∑
m=1

Sn,m(x)1Qn,m(x)+S∗n,m(x)1Q∗
n,m

(x), (6)

where Sn,m(x) = 2∆n,m(x − bn,m) + yn−1, and where
S∗n,m(x) = −2∆n,m(x − b∗n,m) + yn−1, and 1Q(x) , 1 if
x ∈ Q and 1Q(x) , 0 otherwise. The map parameters are
related according to

bn,m = qm−1 +

n−1∑
p=1

[yp − yp−1]/∆p,m, (7)

b∗n,m = bn,m + [yn − yn−1]/∆n,m, (8)

and Qn,m = [bn,m, bn,m+cn,m), Q∗n,m = [bn,m+cn,m, b
∗
n,m),

where cn,m = [b∗n,m − bn,m]/2, as well as

N∑
n=1

(yn − yn−1)∆−1n,m = qm − qm−1 (9)

for m = 1, 2, . . . , N , where y0 = q0 , 0 and yN = qN , 1.
The proposed approach to selecting a piecewise linear hat map
is to specify the parameters ∆n,m > 1 for n = 1, 2, . . . , N−1
and m = 1, 2, . . . , N , as well as the interval endpoints qn and
yn for n = 1, 2, . . . , N−1; the remaining parameters are then
computed from (7) to (9).

A simplified expression for the distribution function FY , as
required to derive S̃ = F−1X ◦ FY ◦ S in the case where S is
a piecewise linear hat map, is obtained from (2) as

FY |(yn−1,yn)(y) =

N∑
m=1

[
Cn,m(y) +Dn,m(y) +

n−1∑
p=1

Ep,m

]
,

(10)



Fig. 3. The beta invariant PDF with parameters α = 2 and β = 2.5.

where Cn,m(y) , FX ◦ S−1n,m(y) − FX(bn,m), Dn,m(y) ,
FX(b∗n,m)−FX◦S∗−1n,m(y), and Ep,m , FX(b∗p,m)−FX(bp,m).

Conditions under which S̃ belongs to the class of ergodic
Markov maps are given by the Folklore theorem [17]. One of
the requirements of this theorem is that S̃ possess the Markov
property, which corresponds to the set of conditions

yn = F−1Y ◦ FX(qn), n = 1, 2, . . . , N − 1. (11)

The map S̃ may be constructed iteratively to satisfy these
conditions; specifically, the points qn are specified beforehand
for all n, whereas the points yn are computed sequentially
from (11) for n = 1, 2, . . . , N−1 (when computing yn, points
yn+1, yn+2, . . . , yN−1 are not required to evaluate F−1Y ).

The power spectrum of the map S̃ was found to be
well approximated by the multimodal power spectrum of the
pre-selected map S. The matrix representation PS of the
FP operator PS (associated with S) has elements given by
PS = [∆−1n,m]Nn,m=1. It follows from [12] that the structure of
piecewise linear hat maps leads to the center frequencies and
bandwidths of N of the spectral modes being fully determined
by the eigenvalues of PS , whereas the remaining N spectral
modes no longer appear in the power spectrum. Hence, the hat
map structure provides control over the characteristics of all
spectral modes that are present, unlike previous solutions to the
IFPP [10], [11]. More specifically, the spectral characteristics
of S̃ may be prescribed by performing a numeric search for
parameters ∆n,m such that PS has the required eigenvalues.

VI. NUMERICAL EXPERIMENTS

To illustrate the flexibility of the proposed approach in ac-
commodating the simultaneous and independent specification
of the invariant density and power spectrum properties, several
ergodic hat maps S̃ = }−1 ◦ S having unimodal and bimodal
power spectra with distinct characteristics were designed. The
unimodal and bimodal spectra were selected to have variable
mode bandwidths and mode center frequencies equal to 0
rad / sample and ±2π/3 rad / sample, respectively. The beta
invariant PDF fX(x) , xα−1(1−x)β−1/B(α, β) was selected
for all maps, with parameters α = 2 and β = 2.5, where B(·)
is a scaling factor which ensures ||fX ||1 = 1 (see Fig. 3).

Figure 4 is a plot of a sample map S̃ with the prescribed
statistical properties. The map is observed to be piecewise non-
linear and incomplete. Figure 5 contains plots of the power

Fig. 4. A piecewise nonlinear hat map S̃ with the beta invariant PDF.

Fig. 5. Unimodal and bimodal power spectral densities of piecewise nonlinear
hat maps S̃ sharing the beta invariant density, with different mode bandwidths.
The bandwidths are determined by the prescribed eigenvalue magnitude |λ|,
where λ1 = 1 is the Perron eigenvalue, and λ , λ2 = λ∗3 .

spectra of all maps S̃ constructed using the proposed tech-
nique. The spectra were obtained via numerical iteration of the
maps. The blue and purple curves correspond to the unimodal
spectra, whereas the red and yellow curves correspond to the
bimodal power spectra (the DC offset of the trajectories were
removed). It is observed that the unimodal and bimodal nature
of the power spectra become increasingly apparent as the mode
bandwidth is decreased. The center frequencies of the modes
are consistent with the prescribed frequencies.

VII. CONCLUSION

The outcome of the numerical experiments leads to the
conclusion that the proposed approach provides the freedom to
simultaneously and independently prescribe the invariant den-
sity function and the properties of the map’s power spectrum
(i.e., the mode center frequencies and bandwidths). This allows
for the construction of more realistic system and process
models, as compared to existing solutions for the IFPP.



REFERENCES

[1] A. Boyarsky and P. Gora, “The inverse problem for the Frobenius-Perron
equation,” in Laws of Chaos: Invariant Measures and Dynamical Systems
in One Dimension, 1st ed., Birkhauser, 1997.

[2] N. Santitissadeekorn, “Transport analysis and motion estimation of dy-
namical systems of time-series data,” Ph.D. dissertation, Dept. Math.
Comput. Sci., Clarkson Univ., NY, USA, 2008.

[3] A. G. Lozowski, M. Lysetskiy, and J. M. Zurada, “Signal processing with
temporal sequences in olfactory systems,”IEEE Trans. Neural Netw., vol.
15, no. 5, pp. 1268-1275, 2004.

[4] A. Boyarsky and P. Gora, “Applications,” in Laws of Chaos: Invariant
Measures and Dynamical Systems in One Dimension, 1st ed., Birkhauser,
1997.

[5] A. M. McDonald and M. A. van Wyk, “Efficient generation of random
signals with prescribed probability distribution and spectral bandwidth via
ergodic transformations,” in Proc. 26th IEEE Eur. Signal Process. Conf.,
2018, pp. 331-335.

[6] H. G. Guzman, “Wideband chaotic signal analysis and processing,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Univ. Texas at El Paso, TX, USA,
2007.

[7] A. Baranovsky and D. Daems, “Design of one-dimensional chaotic maps
with prescribed statistical properties,” Int J. Bifurcation Chaos, vol. 5, no.
06, pp. 1585-1598, 1995.

[8] N. Friedman and A. Boyarsky, “Construction of ergodic transformations,”
Adv. Math., vol. 45, no. 3, pp. 213-254, 1982.

[9] P. Gora and A. Boyarsky, “A matrix solution to the inverse Perron-
Frobenius problem,” Proc. Amer. Math. Soc, vol. 118, no. 2, pp. 409-414,
1993.

[10] A. McDonald and M. van Wyk, “Solution of the inverse Frobe-
nius–Perron problem for semi–Markov chaotic maps via recursive Markov
state disaggregation,” in Proc. 25th IEEE Eur. Signal Process. Conf.,
2017, pp. 1654–1658.

[11] A. McDonald and A. van Wyk, “Construction of semi-Markov ergodic
maps with selectable spectral characteristics via the solution of the inverse
eigenvalue problem,” in Proc. 2017 IEEE Asia-Pacific Signal Inf. Process.
Assoc. Annu. Summit Conf., pp. 987-993.

[12] S. H. Isabelle and G. W. Wornell, “Statistical analysis and spectral
estimation techniques for one-dimensional chaotic signals,” IEEE Trans.
Signal Process., vol. 45, no. 6, pp. 1495-1506, 1997.

[13] A. Boyarsky and P. Gora, “The Frobenius-Perron operator,” in Laws of
Chaos: Invariant Measures and Dynamical Systems in One Dimension,
1st ed., Birkhauser, 1997.

[14] A. Villani, “On Lusin’s condition for the inverse function,” Rendiconti
del Circolo matematico di Palermo, vol. 33, no. 3, pp. 331-335, 1984.

[15] A. Papoulis and S. U. Pillai, “Functions of one random variable,”
in Probability, Random Variables and Stochastic Processes, 4th ed.,
McGraw-Hill Europe, 2002.

[16] M. A. van Wyk and W.-H. Steeb, “One-dimensional maps in electronics,”
in Chaos in Electronics, 1st ed., Springer Science and Business Media,
1997.

[17] A. Boyarsky and P. Gora, “Other existence results,” in Laws of Chaos:
Invariant Measures and Dynamical Systems in One Dimension, 1st ed.,
Birkhauser, 1997.


