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ABSTRACT There has been an increasing number of attacks against critical water system infrastructure in
recent years. This is largely due to the fact that these systems are heavily dependent on computer networks
meaning that an attacker can use conventional techniques to penetrate this network which would give
them access to the supervisory control and data acquisition (SCADA) system. The devastating impact of
a successful attack in these critical infrastructure applications could be long-lasting with major social and
financial implications. Intrusion detection systems are deployed as a secondary defence mechanism in case an
attacker is able to bypass the systems preventative security mechanisms. In this thesis, behavioural intrusion
detection is addressed in the context of detecting cyber-attacks in water distribution systems. A comparative
analysis of various predictive neural network architectures is conducted and from this a novel voting-based
ensemble technique is presented. Finally an analysis of how this approach to behavioural intrusion detection
can be enhanced by both univariate and multivariate outlier detection techniques It was found that multiple
algorithms working together are able to counteract their limitation to produce a more robust algorithm with
improved results.

INDEX TERMS Anomaly detection, cyber-physical security, industrial control system, machine learning,

water distribution system.

I. INTRODUCTION

The deployment of cyber-physical in critical infrastructure
applications such as water distribution systems is going to
be paramount in realising the envisioned smart cities of the
future [1]-[3]. These cyber-physical systems conveniently
allow for the remote monitoring and control of the physical
process by allowing the industrial control network to incor-
porate both internal and external communication. This means
that industrial control networks are now similar conceptu-
ally to conventional computer networks but remain struc-
turally different owing to the conflicting priorities of the
two systems [4]. This however also means that these net-
works are now as vulnerable to the same security threats
that plague conventional IT networks with far more severe
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implications. The increased number of cyber-attacks against
these critical infrastructure applications in recent years is evi-
dence of this and the consequences of them being successful
could be devastating for the people that rely on them and
in some cases also the natural environments where they are
deployed [5].

An intrusion occurs when an attacker bypasses these exter-
nal security mechanisms in an attempt to compromise at
least one of the three key pillars of network security (con-
fidentiality, integrity and availability) [6]. When these pre-
ventative security mechanisms fail, detection mechanisms,
diversionary tactics and countermeasures can be used to
limit the potential damage an attacker can cause [7]. This
group of security mechanisms and protocols are collec-
tively referred to as Intrusion Detection and Prevention
Systems. An intrusion detection system (IDS) is a secu-
rity mechanism consisting of software and/or hardware that
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FIGURE 1. Typical structure of ANNs.

attempts to autonomously detect malicious behaviour within
the system [8].

In this work we focus on behavioural IDSs which are
preferred over traditional signature-based methods because
they provide greater detection generality [9]. This generality
however comes at a cost of accuracy because these systems
generally have a lower precision than their signature-based
counterparts because they normally have significantly more
false positives. This is acceptable when protecting critical
infrastructure because the reactive nature of signature-based
methods is not ideal because the consequences of successful
cyber-attacks could be devastating [10]. Behavioural IDSs
are specialised versions of anomaly/outlier detection systems
was pioneered by the statistics community in its early days of
inception [11]. A major challenge in these outlier detection
applications is that there is an imbalance of data as outliers
by nature will make up a small proportion of any dataset.
This means that there will be a shortage of positive samples
to adequately train machine learning models.

Traditional outlier detection techniques aren’t concerned
with the system dynamics but rather in trying to directly
distinguish between normal and anomalous data instances.
In this paper, a second approach to outlier detection is con-
sidered where the model attempt to learn normal system
behaviour and predicting particular elements. If the error
between the predicted and actual values is beyond some
predetermined threshold then a data instance is considered
anomalous. The main contributions of the work presented in
this paper are as follows:

1) A number of popular neural networks are used to learn
the normal behaviour of the system and predict tank
levels within the BATADAL dataset. The Mahalanobis
distance is then used as the second stage statistical
technique distinguish between normal and anomalous
data.

190404

Hidden

Layer

Output

Layer

/7

— Red

AN
X
/

— Blue

2) A voting-based ensemble technique is proposed to cre-
ate a more robust algorithm that improves the overall
performance by leveraging the strengths of each indi-
vidual algorithm. In essence the goal of the algorithm
is to improve the performance metrics that evaluate the
detection accuracy.

The rest of this paper is organised as follows: First the
different neural network architectures that were implemented
are discussed (Section II). The chosen anomaly detection
approach is then discussed followed by the proposal of a
novel voting-based ensemble technique for anomaly detec-
tion using the implemented algorithms (Section III). The
results of our experiments are then presented and discussed
(Section V). Finally, some observations from the results
are discussed (Section VI) and the paper is concluded
(Section VII).

Il. NEURAL NETWORKS

A. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) have the ability to model
very complex input/output relationships which have made
them very popular in practical applications which range from
self driving cars to fraud detection in the financial sector [12].
ANNs present a black box approach to machine learning
where the algorithm captures very complex relations without
input from the user about the structure of the output. The basic
structure of an ANN consists of a number of interconnected
artificial neurons or nodes that can be categorised into three
main layers as shown in Figure 1. The network has one
input layer which has a node count that is equivalent to the
number of inputs. The network can also have multiple hidden
layers with the user rationally selecting the number of layers
and nodes in each layer depending on the complexity of
the problem. Finally the network has an output layer which
has the same number of nodes as the number of outputs.
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FIGURE 2. Difference between ANN and RNN configurations.

In classification problems the node count in the output layer
could correspond to the number of categories in the dataset.
To get the output of a particular node j, the weighted sum
of inputs from the previous layer and a bias value are put
through an activation function as shown in (1), where g is
the activation function, b is the bias value and w is the weight
association between two nodes [13].

)4
aj=gbj+ Yy _ai-wij) (D

i=1

B. RECURRENT NEURAL NETWORKS

The sequence of events in water distribution systems is impor-
tant in evaluating whether or not an anomaly has occurred.
For instance, consider a tank in one time step that is at 80%
capacity but in the following time step the same tank is at
40% capacity and that the interval between time steps is
10 minutes. The two tank levels and input parameters could
be within the normal operating range of the system but the
large reduction level reduction within one time instance is
an anomalous event within the context of the system. These
types of anomalies are called contextual anomalies. Recurrent
neural networks (RNNs) are neural network architectures that
are able to capture the temporal dynamics of the system unlike
conventional ANNs where each time instance is viewed as
independent of all other instances.

RNNS are able to predict future states not only based the
current input instance, but also taking into account previous
systems states [14]. This essentially means that the RNN has
a memory of what was happening previously in the system
and includes this contextual information when making pre-
dictions. The difference between the structure of the feed-
forward ANNs and RNNs is shown in Figure 2. For the
ANN the input nodes is connected to a hidden node and its
contribution is controlled with weight W;. The hidden node
also has a weighted connection W, to the output node. The
RNN structure is very similar except that the hidden node
has a feedback loop with a weighted contribution of Wj,.
What this means is that like the ANN the weighted input is
passed through the hidden node as an additional weighted
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input. The output of the hidden layers for both ANN and RNN
are shown in (2) and (3) respectively. The only difference
between the two equations is the additional weighted input
from the previous state.

h(t) = g(bi + Wix(1)) @
h(t) = g(bp + Wix (1) + Wyh(t — 1)) 3)

The RNN architecture shown in Figure 2 is the most basic
RNN configuration and is known as the simple or Elman
RNN [14]. The Elman RNN is a powerful algorithm that has
been shown to produce great results in a variety of different
application. The main issue with this configuration is that
it is structured such that earlier time steps get diluted over
time. This means that the configuration prioritises short-term
memory and “forgets” earlier instances over time. In some
applications this property is not an issue and could even be
preferred but in others it could seriously affect the perfor-
mance. It is for this reason that more complex RNN archi-
tectures that possess the ability to retain long-term memory
have been proposed. In this work we consider only two of the
most popular of these architectures which are described in the
sections that follow.

1) LONG SHORT-TERM MEMORY

The major issues with the basic RNN architecture are the
vanishing/exploding gradient problem and also its inability to
retain long-term memory. Long short-term memory (LSTM)
networks were designed specifically to deal with these issues
and have been one of the most effective RNN architectures
proposed to solve these problems [15]. LSTMs are structured
similarly to the basic RNN except that the hidden node char-
acterised by (3) is replaced by a more complex memory cell.
This memory cell provides it with the ability to retain long-
term memory and solves the vanishing gradient problem by
not directly using a non-linear function to alter the state of
the cell. This means that the back-propagation algorithm does
not need to be artificially constrained so the error can be
distributed without restrictions.
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FIGURE 3. Layers of a Typical CNN Architecture.

The LSTM memory cell consists of three gates which
control the proportional contribution of the different para-
meters [16]. Each of the gates takes in as input the previous
output of the cell and the current input and their operations are
analogous to the reset, read and write operations in physical
memory chips. The forget gate f(¢) controls how much the
previous state will affect the new cell state. The input gate
i(1)) on the other controls how much this state will be affected
by the input to the cell. The input and forget gates thus
collaborate to produce the new cell state c(¢). The output gate
o(t) controls how the cell state will affect the output of the
cell A(t). The relationships just described are shown in (4)
meaning that unlike the basic RNN which is controlled by one
equation, the output of LSTM is dependent on five equations.

i

il=

o (by + Wyr x0 + Wy hy—1),

o (bi + Wy x¢ + Wi hy—y),

= fr - ¢t—1 +ip - tanh(be + Wye x¢ + Wie hr—1),
0r = 0(bo+ Wyo Xp + Who hyi—1),

h; = oy - tanh(cy)

Ct

“

2) GATED RECURRENT UNIT

The gated recurrent unit (GRU) is a recent but popular RNN
architecture that was proposed by Cho er al. [17] in 2014.
Conceptually it is very similar to the LSTM but it has fewer
parameters and is thus simpler to train. This means that for
the same network configuration, GRUs will take less time to
train the LSTMs. This simplicity does not however come at
a cost of reduced performance as the architecture has been
shown to have better or comparable results to LSTMs across
a variety of different applications [18]. This means that for
most applications LSTMs and GRUs outperform the simple
RNN but when compared to each other their performances
will vary depending on the applications.

The main difference between the LSTM and GRU is that
the latter uses two gates instead of three to control the cell
output [14]. The reset gate r(¢) determines how much of the
previous state is going to affect the new state. The update
gate u(t) on the other hand determines how the new input
is going to affect the current cell state. Another major dis-
tinction between the two architectures is that the GRU does
not have an internal cell state. This means that the output
is directly dependent on the previous state and new input.
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How the output of the cell is determined using the described
configuration is shown in (5). As with LSTMs, GRUs are not
affected by the vanishing/exploding gradient problem with
the added benefit that they are simpler to compute.

rr = o(by + Wy xp + Wi by 1),
uy = o(by + Wy x¢ + Wiy by 1),

~

hy = tanh(by, + Wy xt + Win(ry - hi—1)),

hh =0 —z) h-1+z - Q)]
C. CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNN) are biologically
inspired but the human visual cortex [19]. Individual neurons
react to only specific components of what is within range
of the eye. This small parts then overlap with each other to
produce one coherent image that covers the entire field of
vision. The image is then past on to higher layer neurons
which successively produces an increasingly more detailed
image. This is the general idea of how a CNN works, the input
is broken up into blocks of data which are processed indepen-
dently and then combined to produce more meaningful data.
As the data passes through more and more layers the more
useful features start becoming apparent.

CNNs are typically used in image processing applications
where images fed into the network as 2D inputs (width x
height). This is contrary to traditional ANNs where the input
image has to be transformed into a 1D vector before being fed
into the network. One of the main reasons CNNs are popular
in image processing applications because they are translation
invariant [20]. This means that when trying to detect a specific
object in an image its location within the image is of no
consequence to the algorithm. This property is also useful
in many other applications such as speech recognition where
translation variance could occur as a result of different speak-
ing styles [21]. This is a convenient property which reduces
the pre-processing burden on the users of the algorithm. Even
though CNNs are popularly used in image processing appli-
cations they are also able to accurately extract the temporal
dependencies found in time-series data [22].

Figure 3 shows the main components of a typical CNN
architecture. The first layer is the convolutional layer which
performs the convolution operation between the input and a
filter or kernel. Equation (6) can be used to get the output
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of this layer at indices a, b € o. The size of the kernel is a
hyper-parameter selected by the user usually by conducting
experimentation to find the size the produces the best results.
The next layer is the pooling layer which aggregates the
results of the convolutional layer by performing a downsam-
pling operation on the data. The following layers involve
flattening the data into a 1D vector feeding it into a vanilla
ANN configuration. A dropout layer can also be added to
reduce the size of the network and prevent the overfitting that
these kinds of networks are prone to [23]. These main layers
can be repeated multiple times in different orders depending
on the CNN architecture. It is also possible to replace the
fully connected layer with other deep learning layers just as
RNN which could greatly improve results depending on the
application [24].

h(a, b)=ReLu(by+» . Y w(i.j)x(a+i—1,b+j—1) (6)
ick jek

IIl. ANOMALY DETECTION

Traditional outlier detection schemes attempt to directly eval-
uate whether each data instance is an outlier or the degree
to which it is an outlier relative to other instances in the
dataset. This is similar to how neural networks can be used
to predict categorical values instead of an output sequence.
In this case the model can be trained on a data set of known
attacks and a second dataset that includes previously unseen
attacks. The latter would be used to evaluate how well the
system generalises. The trouble with using this approach
with neural networks is the unbalanced data problem because
anomalies are rare obscure events in practice. This means that
datasets may generally not have enough anomalous samples
to adequately train the model. The result of this could a model
with a high precision but low recall rate. Within the context
of WDSs where the results of not detecting an attack could be
catastrophic, a system with these characteristics would not be
desirable. Preprocessing the data could alleviate the problem
but in many real-world applications labelled anomalous data
is not always available. With ICSs however there is always an
abundance of data when the system is working under normal
operating conditions so a more attractive solution is to work
with prediction as opposed to classification.

The second approach to anomaly detection attempts to
model the system dynamics using dependencies to predict
known system variables. In this way the model need only be
trained on the normal data and the anomalous instances can be
used for cross-validation and testing. To detect whether or not
an instance is anomalous the error between the actual and
predicted value is calculated and in general a threshold
can be determined to isolate the anomalies. For this work,
the squared error was used because the neural network
weights were optimized using the mean squared error (MSE)
during training. The cross-validation dataset is then used to
find an appropriate threshold and the test dataset can deter-
mine how well the chosen threshold generalises.
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TABLE 1. Dependency matrix for BATADAL network.

Actuator Sensor
LT1 | LT2 | LT3 | LT4 | LTS | LT7
PUI1 X - - - - -
PU2 X - - - - -
V2 - X - - - -
pPU4 - X - - -
PUS - - X - - -
PU6 - - - X - -
PU7 - - - X - -
PU8 - - - - X -
PUI0 - - - - - X
PUI11 - - - - - X
€
X :
€
X, :
€
X3 :
— [ MD [—»y
X4 NN, 2
€
Xs :

X[ NNy

FIGURE 4. NN based anomaly detection scheme.

Instead of using the entire feature space to predict one vari-
able, the system was broken down into multiple subsystems
to predict different tank levels. Each tank level is dependent
on pumps which have corresponding flow, pressure and status
flag variables that can be used as predictors. For the chosen
application environment, the sub-systems were chosen based
on the dependency matrix shown in Table 1 where LT is the
tank level, PU is a pump and V is a valve. The tank levels
are different variables which means that each subsystem will
have its own error vector which needs to be analysed to find
anomalies. This univariate approach to anomaly detection
will be able to detect content anomalies on the error vectors
but may struggle with contextual anomalies. To account for
this a multivariate anomaly detection scheme was used on
the entire error matrix which contains error vectors from the
different subsystems.

The structure of the proposed system is shown in Figure 4.
The NN block represents the different network algorithms
that were discussed in the previous section. Each subsystem
has its own inputs and produces its own prediction error.
All the errors associated with a particular data instance are
then fed into a multivariate anomaly detection scheme. The
chosen scheme for this system is based on the Mahalanobis
Distance (MD) which is preferred over the Euclidean distance
because it takes the variability and correlation of the variables
into consideration [25]. This is because the Euclidean dis-
tance works well when the data is not correlated does but
cannot be used to find outliers when it is correlated. The
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MD works by first scaling the data to the effect of removing
any correlation and then calculating the normal Euclidean
distance on the normalised data. In order to scale the data
the covariance matrix C € R4*¢ first needs to be calculated
where the covariance between any two features can be found
using (7). The MD can be calculated using (8) which is
the same as the euclidean equation in (9) except for the
covariance matrix used to normalise the data.

¢
1
Covlx,y) = 7— D (5 =D =) )
i=1

MD =\ — 7 ¢ e — ) ®)
= @) ©)

The MD assumes that the underlying data follows the
Chi-Square distribution with d degrees of freedom where d
is the dimensionality of the data. The Chi-Square distribution
approaches the multivariate normal distribution for larger d
values which would be the case which would always be the
case in the application scenario. This assumed distribution
will not always be correct in the practical set up but the
algorithm still works reasonably well even when this is the
case. This method is not applicable to high dimensional data
due to multicollinearity. This is however not an issue in this
application because the input to the algorithm will be an error
vector associated with the seven tank levels. In multivariate
distance-based methods, the threshold for what constitutes an
anomaly is generally selected by the user arbitrarily. For MD
however, a probability is used to find a critical value from
Chi-Square distribution which is applied to the dataset until
an optimal value is found.

dist(x, u) =

A. PROPOSED ENSEMBLE TECHNIQUE

The results of the different implemented neural networks
are also combined to create a more robust algorithm that
leverages the strengths of each individual algorithm. This is
because the algorithms won’t consistently perform well in all
scenarios but by combining them the ensemble technique will
be more robust to the different scenarios. The algorithms were
combined through a system of voting as shown in Figure 5.
The ensemble technique thus only flags an anomaly if at
least two out of the five algorithms agree. This was preferred
over the traditional majority rule vote because the application
requires a bias to detecting attacks.

The reason for choosing the proposed ensemble technique
is that an analysis of the results of the implemented Neural
Network techniques showed some inconsistent results across
the two datasets. Furthermore, the different algorithms were
effective at detecting different attacks but there was a lot of
overlap with regards to the data instances that were correctly
identified. The algorithms were also unlikely to flag the same
data instances as anomalous meaning that errors could be
eliminated which would result in significant performance
improvement. By using a voting-based approach it is hypoth-
esised that the ensemble technique will be robust and produce

190408

Y2

Ya

FIGURE 5. Voting based ensemble technique.

consistent results across both datasets while maintaining a
good PPV.

As discussed in the previous paragraph, this method is
effective in reducing the number of false positives because
it is unlikely that multiple algorithms with consistently flag
the same normal data instances as anomalous. The technique
will however not always produce results that outperform the
individual components in all performance metrics but it will
be more robust to changing environments and in general have
far fewer false alarms. The application scenario is such that
the algorithms should be biased towards detection because
the cost of not detecting an error is too high. With that being
said a system that constantly produces false alarms will be
unusable in practice because it will not be taken seriously.

An issue with this approach is that it will result in a
computational time that is at least five times that of running
an individual algorithm. In time critical applications, this kind
of delay would render the proposed technique unsuitable for
practical implementation. This is however not the case in this
application scenario because of (1) the architecture of the IDS
and (2) the machine learning algorithms used. The described
IDS uses a centralised architecture meaning that intrusions
are detected by a central manager and not the individual
nodes. This means it is possible to do all the processing on a
central manager with significant computational power instead
of using the resource-constrained nodes. The second consid-
eration is that neural networks consume the bulk of their com-
putational load while training and require very little during
execution. In fact, even in resource-constrained devices it has
been shown that the execution time for deep learning models
can be in the 10ms range for large configurations [26]. It is
for these two reasons that the additional computation burden
caused by the ensemble technique will not have a significant
impact in this application.

IV. EXPERIMENTAL SETUP

A. BATTLE OF THE ATTACK DETECTION ALGORITHMS

The discussed algorithms were trained and evaluated using
the battle of the attack detection algorithms (BATADAL)
datasets. BATADAL was a competition where a number of
proposed attack detection algorithms were pitted against each
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TABLE 2. BATADAL dataset.

Dataset Normal  Cross-validation Test
Normal Instances 8761 3676 1682
Attack Instances 0 501 407
Total Instances 8761 4117 2089
Number of Attacks 0 7 7

other on a simulated water distribution system [27]. The
competition provided participants with three datasets, one
containing only normal data and the other two containing
a variety of attacks against the system. One of the attack
datasets can be used for cross-validation purposes and the one
can be used to test how well the proposed algorithm works
when used on unseen data. Table 2 shows the distribution
of data in the three datasets provided for the competition.
As can be seen in the table, the cross-validation and test
datasets each have 7 different attacks represented by 501 and
407 data instances respectively. It can further be seen that the
proportion of anomalous vs normal instances in each dataset
is approximately 13% and 24% respectively. The structure of
the data is thus realistic in that it is unbalanced in favour of
normal instances as discussed in Section III. In fact, the pro-
portion of normal instances relative to anomalous instances
across all three datasets is approximately 93%. The datasets
are also realistic in that the attacks also have corresponding
concealment strategies used to make detection even more
difficult. In a practical scenario, the attacker would use these
concealment strategies so as not to be detected by the system’s
built-in fault detection mechanisms.

B. ACCURACY METRICS

The main performance metrics from the BATADAL com-
petition have a bias towards detecting attacks because in
these systems the consequences of not detecting attacks are
far greater than of falsely detecting one. The competition
used one overall metric to compare the different algorithms
(S score) and that metric is calculated using an accuracy
metric (Scrr score) and a time metric (S7rp score). The Scrr
is a measure of how effective the system is at detecting attacks
and it is calculated using the true positive rate (TPR) and the
true negative rate (TNR) as shown in (10). The TPR, also
called the sensitivity, is a measure that indicates proportion of
detected attacks relative to the total number of attacks in the
dataset as shown in (11). The TNR, also called the specificity,
is a measure that indicates the proportion of normal instances
that were correctly identified relative to the total number of
normal instances in the dataset as shown in (12). The Strp
indicates how quickly the algorithm is able to detect attacks
and is a measure of when the attack was first flagged relative
to when it started as shown in (12). The S combines the
Scrr and S7rp scores using the weighting parameter y as
shown in (14). For the competition, y was given a value of
0.5 indicating that both metrics were given equal weighting
in the calculation of the overall S score.

TPR + TNR

ScLr = — (10)
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TABLE 3. Structure of used models.

Model No. No. Size of No. Activation
ode Inputs Hidden Layers ~ Hidden Layer ~ Outputs  Function
ANN  Variable 3 [100, 50, 100] 1 Linear
RNN Variable 1 [100] 1 Linear
LSTM  Variable 1 [100] 1 Linear
GRU Variable 1 [100] 1 Linear
TP
TPR = —— an
TP + FN
TN
TNR = ——— (12)
TN + FP
n
1 < TTD;
Srp=1——Y —2 (13)
ng ~— At;
i
S=y-Stmp+ (1 —y)-Scrr (14)

Another important metric when evaluating machine mod-
els is the positive predictive value (PPV), which was not
considered for the competition. The PPV, also called the
precision, is a measure that indicates the proportion of flagged
instances that were correctly identified as shown in (15). This
is also an important measure in the application environment
because the proportion of anomalous instances is far smaller
than normal instance so the TNR is always likely to be high.
The PPV evaluates how accurate the system is every time
an anomaly is flagged which is a very important measure to
consider. This is because if, for example, the system is only
correct 20% when it flags an anomaly it is unlikely to be taken
seriously in practice. The PPV is sometimes combined with
the TPR into one metric called the F-score as shown in (16).
The F-score, which is the harmonic mean of the two metrics,
evaluates whether the system can accurately identify most of
the anomalous instances in the dataset.

P
PPV = — (15)
TP + FP
TPR - PPV
F=2—1 (16)
TPR + PPV

C. MODEL STRUCTURE

The used structures for the ANN, RNN, LSTM and GRU and
shown in Table 3. As can be seen from the table the number
of inputs going into each neural network architecture is varies
based on the dependency matrix shown in Table 1. The ANN
structure has three hidden layers with the first, second and
third hidden layers having sizes 100, 50 and 100 respec-
tively. Each of the RNN models only has one hidden layer
that consists of 100 nodes. All four models have only one
output which is the predicted tank level and thus uses the
linear activation function. As can be seen in Section II-C,
the convolutional neural network has a slightly more complex
structure and will thus be discussed separately.

The chosen model for the CNN loosely follows the
architecture shown in Figure 3 with some minor structural
changes. The model consists of a variable size input layer,
six hidden layers, and an output layer corresponding to the
predicted tank level. The first two hidden layers are identical
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TABLE 4. Neural network results on BATADAL cross-validation dataset.

No

Rank Name Attaci(s S Strp  ScLr P TPR TNR PPV
1 Ensemble 7 0.9262 0.9463 0.9062 0.7075 0.9002 0.9121 0.5827
2 CNN 7 0.9213 0.9679 0.8748 0.6677 0.8423 0.9072 0.5531
3 LSTM 7 0.8872 0.8971 0.8774 0.7234 0.8144 0.9404 0.6507
4 RNN 7 0.8754 0.8662 0.8847 0.7675 0.8104 0.9589 0.7289
5 GRU 7 0.8721 0.8915 0.8526 0.5977 0.8363 0.8689 0.4650
6 ANN 7 0.8431 0.9024 0.7838 0.5219 0.7026 0.8651 0.4151
7 Naive 7 0.7500 1.0000 0.5000 0.2142 1.0000 0.0000 0.1199

convolutional layers each with a kernel size of three. This
is followed by a dropout layer that halves the sized of the
network to reduce the probability of overfitting due to the
two convolutional layers. The fourth hidden layer performs
the max-pooling operation with a pool size of two. The next
layer is the flattening layer needed to transform the data into
an input that can be used in the last hidden layer, which is a
vanilla neural network layer consisting of 100 nodes.

D. GRADIENT OPTIMISATION

Backpropagation happens through a process of gradient opti-
misation in which the goal is to minimise the objective
function [14]. There are many gradient descent optimisation
algorithms in use each with its own strengths and weak-
nesses. In this work the popular adaptive moment estimation
(Adam) optimiser [28] is used due to its fast convergence
and computational efficiency. Adam is a first-order stochastic
optimisation method which uses an adaptive learning rate and
combines the popular adaptive gradient and moment-based
techniques. The result is a technique that outperforms most
other gradient descent algorithms and is consequently the
most widely used in practice. Using this algorithm, the net-
work weights are updated using (17) where my and vy are
bias-corrected moment estimates, « is the learning rate, and
€ is a hyper-parameter.

s

Vi +e€

Wi =Wy —a (17)

V. RESULTS

In this sections the results of the neural network architectures
presented in the previous sections are evaluated using the
BATADAL dataset [27]. The algorithms were trained using
only the normal data and the remaining two datasets were
used for cross-validation and testing. The results of the former
are presented first and then the latter is used to determine how
well the algorithms generalised. The performance metrics
from the competition will be used to evaluate the algorithms.
The algorithms will also be compared to each other and then
a multi-stage technique using a univariate anomaly detection
will be applied in order to improve results.

A. CROSS-VALIDATION DATASET

The optimal threshold found using the Mahalanobis distance
rule is found using the cross-validation dataset. The neural
networks were only trained using the normal dataset which
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means that the cross-validation dataset is also a useful tool
in evaluating how well the system works. This is because
the dataset is also unseen by the core algorithm and thus
the neural network will not know the difference between the
cross-validation and test dataset. It is thus possible for an
algorithm to be more effective at detecting the attacks in the
test dataset than those found in the cross-validation dataset.

The results of running the algorithms on the cross-
validation dataset are shown in Table 4. The Naive classifier
was not an implemented algorithm but rather a benchmark
system assumes all of the data instances are anomalies. This
is because the main performance metrics from the BATADAL
competition have a bias towards detecting attacks (10)-(14) so
any proposed algorithm has to beat the S score of the Naive
classifier. The Scpr is the accuracy metric and the S77p is
the time it takes to detect the attack after it starts. All of
the neural network architectures are able to beat the Naive
classifier by a significant margin in this dataset. In general
though the F scores are significantly lower than the Scrr
values which is an indication that the algorithms were trained
with a bias towards detecting attacks as per the priorities of
the application scenario. This approach inherently means that
the number of false positives will be high because the thresh-
old attempts to encompass as many anomalies as possible.
Training the algorithms to favour the F; score instead would
however result in fewer attacks being detected which is not
ideal so only the BATADAL metrics were considered during
training.

Looking at the S scores all of the algorithms were above
the 0.8 with CNN and the Ensemble technique both breaching
the coveted 0.9 threshold. This can be seen in Figure 6 which
plots the Scrr vs the Syrp from the different algorithms.
Even though both CNN and the Ensemble technique have
S scores above 0.9 only the Ensemble technique has both
the Strp and Scrr above 0.9. Most of the other algorithms
have comparable Scrr values with the exception of ANN
which is significantly lower than the rest. For ANN the Scrr
is below 0.8 but its Strp is high enough to keep the S also
above 0.8. In fact ANN’s S7rp is only lower than the two
algorithms which are above the 0.9 S score line. This means
that ANN detects attacks quickly but is generally less efficient
at detecting all of the anomalous instances. This is evident
from the fact that it has the lowest number of true posi-
tives and the highest number of false positives of any of the
algorithms.
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FIGURE 6. NN cross-validation results plotted as a function of S¢;r and S7p.

When looking at the performance metrics from the
BATADAL competition the algorithms in general performed
really well. The F scores however were not as great with all
of them falling below 0.8. Why this is the case is evident when
looking at the precision and recall which are the two metrics
used to calculate the F'| score. In general the algorithms have
a very high recall rate meaning that they are able to detect
most of the attacks found in the dataset. The precisions are
however very low meaning that the proportion of flagged
instances that are incorrectly identified as anomalous is rela-
tively high. When looking at the proportion of anomalous data
instances in the dataset however this is not a major issue. Hav-
ing a proportionally higher number of false positive among
instances that make up only twelve per cent of the dataset
will not have significant practical implications because it’s
still relatively a small number of instances being flagged. The
cost of not detecting attacks is much higher than the cost of
the minor inconvenience of investigating false cases. Ideally
however this value should remain above 0.5 otherwise the
number of false positives start outnumbering the number of
correctly identified instances.

1) PERFORMANCE OF ENSEMBLE TECHNIQUE

The proposed Ensemble technique outperformed all of the
other algorithms on this dataset. This is primarily due to its
significantly higher TPR meaning that it was able to identify
the most number of attacks of all of the algorithms. This is
evident when looking at the number of true positives which
is the highest of all the implemented algorithms. Even though
the algorithm is composed of the different neural network
implementations it is possible to have a higher TP because
the different algorithms aren’t necessarily flagging the same
instances. The combination is able to produce a result that
is greater than the sum of its parts. The F score is not the
greatest in the group but it falls somewhere in the middle at
a respectable value. Its PPV is however significantly above
the 0.5 threshold which in general means that the algorithm
performed quite well.
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B. TEST DATASET

Once the optimal threshold on the cross-validation dataset
is found the test dataset is used to determine how well the
algorithms generalise. This dataset is thus completely unseen
by both the underlying neural network and the MD algo-
rithm used to find anomalies. The results of this are shown
in Table 5 where it is already evident that there is a difference
just from the ordering of the algorithms. ANN and RNN
perform worse than the naive classifier in this dataset with
RNN having the highest reduction in across all performance
metrics. It maintains a higher accuracy than ANN when
looking at the Scrr and Fy scores but ANN still has a far
superior Strp making their S scores comparable. RNN was
evidently more efficient at detecting outliers in the previous
dataset than it was in this one. The remaining algorithms still
maintained S score values of above 0.8 but in this dataset
none of the algorithms crossed the 0.9 S score mark. The Strp
score of CNN remains above 0.9 but its Sczr score dropped
significantly enough for the S score to dip below 0.9.

Figure 7 shows how the performances of the algorithms
changed between the key performance metrics. There was a
reduction of S scores across the board for all of the algorithms
with ANN and RNN being the most affected. The proposed
ensemble technique also suffered a heavy loss probably as
a result of its S7rp score which dropped significantly on
this dataset. The most affected performance metric between
the two datasets is the S7rp which had a significant reduc-
tion in all of the algorithms except for CNN and LSTM.
In fact CNN was the most robust algorithm between the two
datasets surpassing the Ensemble technique to become the
best performing algorithm in this dataset. The Scrr values
also decreased but this difference was not as pronounced as
it was for the S7rp. Interestingly enough the F; score for half
of the algorithm increased in this dataset when compared to
the previous one. It is possible for the F| score to increase
while the remaining performance metrics it is the only one
considering precision. While the TPR reduced across the
board for the algorithms the PPV of the ones with improved
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TABLE 5. Neural network results on BATADAL test dataset.

No.
Rank Name Attacks. S StrD ScrLr Fy TPR TNR PPV
1 CNN 7 0.8853  0.9465554  0.8240 0.6716 0.7789 0.8692 0.5903
2 LSTM 7 0.8408  0.8842844  0.7972 0.6432 0.7199 0.8746 0.5813
3 Ensemble 7 0.8355  0.8183917  0.8527 0.7591 0.7666 0.9388 0.7518
4 GRU 7 0.8329  0.8324704  0.8334 0.7471 0.7150 0.9518 0.7823
5 Naive 7 0.7500 1.0000 0.5000 0.3261 1.0000 0.0000 0.1948
6 ANN 6 0.7247  0.7641452  0.6852 0.4721 0.5921 0.7782 0.3925
7 RNN 6 0.6702  0.6208927  0.7196 0.5843 0.4767 0.9625 0.7549
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FIGURE 7. Change in performance metrics between cross-validation and test datasets.

F1 scored increased. This means that while the algorithms
were detecting proportionally fewer attacks, the proportion
of relevant flagged instances increased.

1) PERFORMANCE OF ENSEMBLE TECHNIQUE
The performance of the Ensemble technique did indeed
reduce significantly between the cross-validation and test
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datasets as is evident from it dropping two down in the
rankings. Looking at the S score in isolation however isn’t
fully indicative of the performance of the algorithms. This is
because the S score was greatly affected by the S7rp score
which had one of the largest reduction across the algorithms.
Looking at the metrics that evaluate accuracy however the
Ensemble technique still has a very strong showing even
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FIGURE 8. Multi-stage cross-validation results as a function of S¢;r and Sy7p.

in this dataset. The algorithm had the highest Scrr and Fi
scores in this dataset and detected the second most number of
attacks behind only CNN. It also had a high precision (close
to 0.8) meaning that even though it detected a large number
of attacks this wasn’t due to the algorithm indiscriminately
flagging more instances as anomalous. So in general the tech-
nique detected attacks relatively late but was more effective
at identifying outliers than the other algorithms.

C. MULTI-STAGE SYSTEM
As mentioned previously we also look at how adding a sec-
ond stage of detection affects the results. The multivariate
anomaly detection algorithm is paired with a univariate detec-
tor to create a more accurate multi-stage system. The uni-
variate anomaly detection scheme used is the variation of the
boxplot rule which presents a more accurate representation of
skewed data and is thus more effective at finding outliers [29].
Figure 8 shows the S7rp plotted against the Scy r for the cross-
validation dataset. In the stand-alone systems (Figure 6) only
two of the algorithms were above the 0.9 S score line but for
the multi-stage systems all of them have crossed it. All of the
Strp scores are also above 0.9 while only two of them have
Scrr scores below 0.9. CNN only marginally misses out in
this case as its Scrr is less than one percentage point short of
the 0.9 mark. The best performing algorithm in this dataset
is the Ensemble primarily due to its superior Scrr score.
In fact when looking at the metrics that evaluate accuracy the
ensemble technique still comfortable outperforms the other
algorithms for both the Scrr and F scores. In general though
all of the algorithms perform exceedingly well on this dataset
with very little difference overall between the top four.
Figure 9 shows the change in performance metrics between
the standalone and multi-stage systems in the test dataset.
There were significant improvements across all the perfor-
mance metrics for all the algorithms with CNN remaining
the top performing algorithm with the best S score attributed
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largely to its Syrp which is almost one. GRU also becomes
the algorithm with highest S¢yr score marginally beating out
the Ensemble technique and it also has the second largest
F score. The biggest S7rp improvement came from RNN
with an almost 20 percentage point increase but its accuracy
metrics did not improve enough for it to surpass ANN in the
rankings. Both algorithms showed significant improvements
but ANN continues to outperform RNN across most perfor-
mance metrics. This is in line with the rest of the improve-
ments where the ranking remained largely unchanged with
the exception of the Ensemble technique which moved down
one spot. The Ensemble technique is however far more accu-
rate than the other algorithms and is only in the middle of the
rankings because if its lower S77p score. In general there were
significant improvements across all performance metrics in
both datasets.

D. COMPARISON WITH BATADAL ALGORITHMS

One of the benefits of using the BATADAL dataset is that
there is already a set of machine learning algorithms that
were implemented on the same dataset and compared with
the same performance metrics. This makes it easier to com-
pare proposed techniques with the state-of-the-art algorithms
developed for the competition. Figure 10 shows the results
of the implemented neural network architectures compared
to the machine learning algorithms proposed in BATADAL
implemented on the test dataset. As can be seen from the fig-
ure, the implemented architectures have comparable results
to the schemes proposed for BATADAL with the top per-
forming algorithms all being within four percentage points
of each other. The majority of the algorithms from both
sets are either close to or above the 0.9 S score mark with
only three falling below 0.8. This shows that the algorithms
implemented in the paper perform well when looking at the
individual performance metrics and also when comparing
them to the state-of-the-art.
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FIGURE 9. Change in performance metrics between normal and multi-stage systems.

VI. OBSERVATIONS

A. NEURAL NETWORKS

In general, all of the algorithms performed reasonably well
on the cross-validation dataset but the results were mixed in
the test dataset. RNN and ANN were particularly unable to
make the transition as they both performed worse than the
naive classifier in the test dataset. This means that they aren’t
able to generalise well which means they are generally able
to perform reasonably in the dataset in which the threshold is
chosen. GRU and LSTM have comparable results with LSTM
slightly taking the edge in most metrics across both datasets.
Both algorithms had very good results on both datasets
with both maintaining their S and F; scores at least 0.8
and 0.6 respectively. The stand out performer across all the
algorithms was CNN which was the most robust algorithms
between the datasets. It outperforms the other algorithms sig-
nificantly and maintains the highest TPR across both datasets.
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This means that it is more effective at finding anomalies than
the other algorithms and is also the fastest at detecting them
when looking at the S7rp scores. It also maintains an F
score of above 0.65 across both datasets which means that it
isn’t just indiscriminately detecting anomalies like the naive
classifier.

B. ENSEMBLE TECHNIQUE

A voting-based ensemble technique was used to combined the
results of all of the implemented algorithms. When looking
at the S score it had great results in the cross-validation
dataset, where it was the best performing algorithm. This is
primarily due to its significantly higher TPR meaning that
it was able to identify the most number of attacks of all of
the algorithms. The combination was thus able to produce a
result that is greater than the sum of its parts. The Ensemble
technique had mixed results test dataset primarily because
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the different architectures also had varying performances.
Its S score in the test dataset was largely affected by the
fact that it had the lowest Srrp of the top four algorithms.
Its greatest strength however was in the performance metrics
that evaluated accuracy where it had the highest Scrr across
both datasets and maintained an F'| score of above 0.7. This
means the like CNN it is very effective at detecting anomalies
but it does so more accurately. This means that even in the
test dataset the combination produced a result greater than
the individual algorithms.

C. MULTI-STAGE SYSTEMS

Including a multi-stage system increased results considerable
across all performance metrics for all of the algorithms. The
strength of this approach lies in selecting algorithms that are
likely to detect different types of anomalies even if one of the
algorithms has a significantly lower accuracy. The is because
if the algorithms are detecting the same attacks there will be
an overlap in the identified outliers which means that noth-
ing new will be learned from the combination. Combining
multiple algorithms has the potential to improve the results
but there is also a danger of exacerbating the inadequacies
of the combined algorithms. For instance, combining two
algorithms could result in an F; score that is significantly
lower if the combination results in a PPV that proportionally
decreases at a higher rate than the TPR increases. This means
that considerable thought needs to be put into selecting the
different stages of multi-stage systems to ensure the output is
more accurate than the individual algorithms.

VII. CONCLUSION

Recurrent neural networks are ideally suited for time-series
data because they predict future states using both the current
input and previous systems states. This memory of previous
system states provides contextual information that improves
the accuracy of time-series data prediction. Another pop-
ular deep learning architecture is the convolutional neural
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network which is mostly used in image processing applica-
tions. The one-dimensional CNN architecture has however
also been found to be very effective when used on time-series
data.

In this paper a number of neural network architectures
where trained on the normal BATADAL dataset. The dataset
consists of fourteen sophisticated attacks that include mea-
sures to evade attack detection algorithms. To detect anoma-
lies the output of the networks when run on cross-validation
dataset were used to find an error threshold using the multi-
variate MD rule. A voting-based ensemble technique which
combines the outputs of the different algorithms was also
implemented to improve results. In general the algorithms
performed very well on the cross-validation dataset with
slight performance decreases in the test dataset. The only
exception was RNN which did not perform well when run
on the test data.

The algorithms were compared using a vast range of per-
formance metrics with the S score defined for the BATADAL
competition still used as the primary ranking metric. The
best performing algorithm between the two datasets when
considering the S score was CNN which was very robust
across all performance metrics. When looking at the metrics
that evaluate accuracy the Ensemble technique was the best
performing algorithm across the two datasets. A multi-stage
approach combining both the multivariate and univariate out-
lier detection schemes was also proposed and resulted in a
significant improvement across all performance metrics. The
models were trained only on the normal data meaning that
only a change to the system dynamics would drastically affect
the performances of the presented algorithms. The range of
attacks used and the fact that they included evasive techniques
also means that the results are a good indication of how the
algorithms would generalise in a larger dataset encompassing
a larger variety of attacks. Future work will evaluate this gen-
eralisation in larger more complex industrial control system
configurations.
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