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ABSTRACT

In this paper, we model a real-time feasible rosette imager, consisting of a rosette scanner, an optical sensor and a
deterministic image reconstruction algorithm. We fine-tune the rosette imager through selecting the appropriate
sensor field of view and rosette pattern. The sensor field of view is determined through a greedy approach using
uniform random sampling. Furthermore, the optimal rosette pattern is selected by determining which pattern
best covers the imaging area uniformly.

We explore image sparsity, image decimation and Gaussian filtering in a well-known natural data set and dead
leaves data set using the PSNR, Peak-Signal-to-Noise Ratio. This exploration helps to establish a connection
between PSNR and image sparsity. Furthermore, we compare various rosette imager configurations in a Bayesian
framework. We also conclude that the rosette imager does not outperform a focal-plane array of equivalent
samples in terms of image quality but can match the performance.

Keywords: Image Formation, Compressed Sensing, Rosette Scanning Systems.

1. INTRODUCTION

Infrared imaging is a key sensing component in support of digital technologies. Development of infrared imaging
have shifted focus from scanning single detectors to focal-plane arrays, driven mostly by advances in manufac-
turing technology.1 Single detector scanning systems lack the quality and resolution of current focal-plane array
systems and require advanced sampling strategies and higher data processing. The improvement of computa-
tional capability and development of new sampling theories, such as compressed sensing,2 has provided new
opportunities for imaging through single detector scanning systems such as the rosette scanner.

It was shown that an infrared rosette scanner with a single detector, equivalent to an infrared seeker system,
can produce images offline via compressed sensing.3 The image formation process through compressed sensing
was further improved by modelling detector measurements as the sum of multiple pixels, replacing the binary
orthonormal measurement matrix first used4.5 Recent attempts to improve image reconstruction quality either
combines multiple frames6 or smaller image blocks.7 Here we design a real-time imaging device using a single
detector scanning system that match the performance of focal-plane arrays.

The paper is structured as follow: In Section 2 we introduce the rosette imager and a performance optimisa-
tion process. Then, in Section 3, we discuss the methods used and experimental protocols followed for evaluating
the optimised imager. The discussion includes a description of the testing data sets, Peak-Signal-to-Noise Ra-
tio(PSNR) as performance measure and the importance of image sparsity for parameter inference. Thereafter, in
Section 4, we discuss performance results of the rosette imager based on four rosette patterns and a focal-plane
array. Lastly, in Section 5, we discuss future work and give some concluding remarks.
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2. THE ROSETTE IMAGER

The rosette imager is defined by the rosette scanning pattern and a compressed sensing setup. Briefly, the
rosette scanning pattern is the sampling pattern produced by the mechanical movement of an actual imager.
The compressed sensing setup is how the samples are reconstructed to represent the image that was sampled.
We discuss these two components in more detail below. The requirements for the rosette imager being designed
is as follow:

• An output image with resolution of 256× 256 pixels.

• A frame rate of 25 frames per second (fps).

• Real-time performance, subjected to a latency of 2 frames or 80 ms.

The designed imager must be practical and therefore the physical realisation can be achieved through utilising a
rosette scanner. The rosette scanner has multiple parameters that can be adjusted to achieve different optimisa-
tions. For example, sensor sensitivity in relation to integration times can be improved by using slower rotation
frequencies and lower sampling rates.8

In this paper only the rosette scanning pattern and the detector field of view will be optimised for best image
quality. It must be noted that all physical effects, such as lens distortion, mechanical precision, sensor noise and
integration times, are ignored in the system evaluation.

2.1 The Rosette Scanning Pattern

The rosette scanning pattern can be realised by using a combination of rotating canted mirrors, optic wedges or
canted rotating detector. The paper will use a wedge typed rosette scanner as shown in Figure 1. The rosette
scanner must satisfy certain condition to successfully form a scanning pattern. The scanning pattern is presented
by the locus that the Instantaneous Field of View (IFOV) will travel when projected onto a plane perpendicular
to the rotation axis (See Appendix A.1 for governing equations). The different rosette scanning patterns are
denoted by two integer values (n,m).
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Figure 1: The Rosette Scanner. A wedge typed scanner is demonstrated in Figure 1a. A typical scanning
pattern with frequency f1 = 100Hz and f2 = −175Hz (n,m = 11,4) is shown in Figure 1b. The system’s Field
of View (FOV) is the total area covered by the rosette scanner. The Instantaneous Field of View (IFOV) is the
field the sensor covers while the sampling point indicates the optical axes of the detector.



The physical realisation of a rosette scanner have various processes that impose limitations such as manufac-
turing quality and cost. The following limitations can be imposed on the rosette scanner parameters used for
the design of the rosette imager.

• The rotational frequency of the mirror and wedge is limited to 2500 Hz.

• The maximum sampling frequency of the detector is limited to 510 kHz.

2.2 The Compressed Sensing Setup

The compressed sensing setup consist of a measurement and reconstruction matrix .9 The measurement matrix is
governed by the limitations of the rosette scanner while the reconstruction matrix, generated by the reconstruction
algorithm, governs the speed of image formation and image quality.

The measurement matrix represents the detector output as a sum of pixel intensity values related to the
output image.5 The sample positions within the rosette pattern is discretised such that the optical axis of the
detector is always in the middle of a pixel within the output image. The IFOV is dicretized in-terms of the
output image and can be measured in pixel size. An example of a discretized detector is shown in Figure 2. The
discretized IFOV is placed on the sample position of the rosette pattern. The generated image is flattened and
coincide with a row entry in the measurement matrix. For every sample in the rosette scanning pattern a row
is added into the measurement matrix. It must be noted that the image formation process assumes a discrete
world where the mapping from a continuous to a discrete domain has not been taken into account. The reference
to the IFOV might be misleading when talking about the imaging domain, thus it will rather be referred to as
the probe size.

Figure 2: A probe with a radius of 2 pixels, starting in the middle of pixel (4, 4). The white pixels indicate a 1
and the black pixels indicate a 0 with the fractional values of the circle indicated by the grey values.

The reconstruction matrix is based on the chosen image reconstruction algorithm. The choice of recon-
struction algorithm should allow for real-time execution while maintaining appropriate quality. A fair amount
of reconstruction algorithms exist such as Basis Pursuit Denoising (BPDN)10 and total variation regularisa-
tion (NESTA). Unfortunately, these algorithms are not suitable for real-time applications. A good candidate
is the Fourier Domain Regularisation Inversion (FDRI) algorithm developed in 2018 by Czajkowski et al and
has equivalent performance to NESTA.11 The FDRI algorithm is based on the calculation of the Moore-Penrose
pseudoinverse. The FDRI is not an iterative algorithm and allow reconstruction by performing a single matrix
multiplication with a predetermined reconstruction matrix. The reconstruction matrix can be calculated before
the execution of imaging, but require the knowledge of a known measurement matrix. In case of a rosette
scanning pattern, the measurement matrix is known beforehand. It is important to note that FDRI is not an
l1-regularisation algorithm but approximate the effects.

The real-time expectation of using the FDRI reconstruction matrix can be calculated by assuming an output
image of 256 × 256 with 20% samples. The reconstruction matrix of size 65536 × 13107 can be multiplied by
the measurement vector of size 13107 within 20ms utilising a GPU. (Tested on a nVidia GeForce 1060). The
estimated speed of the execution makes the reconstruction algorithm real-time in-terms of the expected frame
rate.



2.3 Design Optimisations

The rosette imager can now be designed through the optimisation of the probe size and the rosette scanning
pattern. The probe size and sample positions have direct influence on the constructed measurement matrix and
influencing the coherence between the measurement and reconstruction matrices. Although, the application of
compressed sensing theory is limited by the fact that the probe samples in the spatial domain which is equivalent
to the output domain. Despite this, compressed sensing principles will still be applied and random uniform
sampling would be assumed to provide optimal reconstruction possibility.

To find the optimal probe size, a greedy approach is followed. The probe size and the percentage samples
are linearly scanned while measuring the average PSNR over the dead leaves data set. For every probe size
and sample percentage a set of random coordinates are uniformly distributed across the image. The number
of generated coordinates in the set coincide with the sample percentage. The results of the greedy approach is
shown in Figure 3a.

Interpreting the results it can be concluded that a small probe, provide a higher maximum PSNR but require
a higher percentage of samples. For a certain sampling percentage there exist an optimal probe size which will
produce the maximum possible PSNR performance while applying uniform random sampling. Combining the
compressed sensing theory and evidence from these experimental results the optimal performance can be achieved
by minimising the number of pixels not part of a sampled probe and minimising the amount of probe overlap.

The rosette imager design will have a single sample percentage and probe size. The sample percentage can
be estimated by assuming the samples within the field of view of the rosette scanning pattern are uniformly
distributed. A square within a circle will consist of approximately 63.6% of the circle area. A detector sampling
at 510kHz will produce 20400 samples per 40 ms, thus 20400 samples per rosette scanning pattern at 25fps.
Approximately 12974 samples will fall within the imaging area and with an output image 256 × 256 a sample
percentage of 19.7% will be achieved. Figure 3b provides the result related to 19.7% sampling and produces
probe size of 2.25 pixels at the maximum PSNR.
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(b) PSNR versus probe size for 19.7% samples. A
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Figure 3: The result summary for the probe size optimisation process.

In order to find the optimal scanning pattern we set a criteria based on minimal probes overlap and maximal
number of pixels scanned within the imaging area. The probe overlap was already minimised by selecting the
optimal probe size. To determine the optimal scanning pattern a 2-dimensional histogram is constructed using
the pixels as bins and filling the bins with the probe positioned by the selected rosette pattern. The number of
non-zero bins are counted while the pattern producing the most non-zero pixels are assumed to cover the imaging
area uniformly. The rosette scanner parameters (n,m) are linearly searched from 0 − 1000 with the amount of



non-zero entries plotted in Figure 4c. The maximum value of the non-zero entries was measured and all entries
equal to the maximum are plotted in Figure 4d (m and n only range from 0-100 for display purposes).
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Figure 4: Optimisation Images

From the million n,m-values (1000×1000) 1150 (m,n) combinations provided equivalent global maximum val-
ues of non-zero elements. The values were further filtered by (n,m) combinations providing rotational frequencies
below 2500 Hz and 1000 Hz. The top three patterns for each filter are shown in Table 1 and Table 2.

Table 1: Top 3 rosette pattern producing most non-zero value with rotation frequencies less than 2500 Hz
non-zeros n m Frequency 1 Frequency 2 Number of Samples

65450 8 99 2475 2275 11966
65428 15 98 2450 2075 11977
65444 20 97 2425 1925 11976

Table 2: Top 3 rosette pattern producing most non-zero value with rotation frequencies less than 1000 Hz
non-zeros n m Frequency 1 Frequency 2 Number of Samples

64383 76 37 925 -975 12008
64377 76 39 975 -925 12009
63877 72 35 825 -925 11946

Figure 5 provide an illustration of the best 2500 Hz and 1000 Hz pattern with their respective histograms
with probe size equal to 2.25 pixels. The pattern shown in Figure 5c is the pattern used for most previous



publications with f1 = 100Hz and f2 = −175Hz. The probe size was adjusted such that the probe cover all
pixels, equivalent to selecting the optimal IFOV for an infrared seeker system. The radius was found to be 31
pixels. The recommended sampling patterns for 2500 Hz are (8, 99) and for 1000 Hz are (76, 37) with a probe
size of 2.25 pixels respectively.

(a) (n,m) = (8,99) (b) (n,m) = (76,37) (c) (n,m) = (11,4)

(d) (n,m) = (8,99),d=2.25 (e) (n,m) = (76,37),d=2.25 (f) (n,m) = (11,4),d=31

Figure 5: Illustration of the optimal sampling patterns with limiting frequencies

3. ASSESSMENT METHODS AND PROTOCOL

3.1 Data Sets

In the assessment of the rosette imager we used two datasets namely, the dead leaves dataset and the natural
scene dataset. The deadleaves dataset is significant due to its scale invariance. Lee et el12 introduced a scale
invariance case of the general dead leaves model. This scale invariant case occurs when the power law distribution
parameter of the simulation is set to 3. The scale invariant case of the dead leaves model approximate natural
scenes when a small size cut-off on the circle radius’s are introduced.13 Perfect simulation of the stochastic
geometry occurs14 when backwards construction of the pattern is performed successfully simulating such an
image. Generated dead leaves image samples are shown in Figure 6.

The natural scene data set is divided into various categories15 such as forest, coast, mountains and open
country. Examples are given in Figure 7.

3.2 Peak-Signal-to-Noise Ratio

Reconstructed images from the data sets (described above) are assessed based on the Peak-Signal-to-Noise
Ratio (PSNR) measure. The PSNR measure is the inverse logarithm of the Mean Square Error between two



Figure 6: Dead leaves data set image examples.

(a) Forest (b) Open Country (c) Coast

Figure 7: Natural scene imaging examples

discrete valued images (See Appendix A.2). Images are converted to 16 bit, before measuring the PSNR, placing
the maximum PSNR value at 96.33 dB. It is common to use the Structural Similarity(SSIM)16 measure when
comparing images although it is interesting to note that SSIM is related to PSNR.17–19 It can be argued that
according to some research papers SSIM is a better metric compared to PSNR or MSE. Not SSIM or PSNR can
be used as a norm and is thus not an adequate measurement for vector spaces although MSE can be calculated
from PSNR. SSIM might indicate the likelihood that the human visual system would find certain images more
visually pleasing but this is not the purpose of a sampling system. The purpose is to accurately reconstruct
a sampled signal and measure the accuracy. Therefore the PSNR measure is adopted and is also proposed for
future research.

3.3 Image Sparsity

In compressed sensing one of the factors determining the quality of signal reconstruction is the sparsity of the
signal itself. A more sparse signal will require fewer samples to reconstruct at a higher accuracy. The expected
PSNR values should reflect this effect and is explored in Section 3.3.1 using the Discrete Cosine Transform (DCT).
Also in the section, the large histogram variances on the PSNR values assert the requirement for advanced
statistical techniques and the dead leaves data set is shown to be adequate evaluation set for comparing imaging
algorithms.

Following on image sparsity in the DCT, an image with a fair amount of detail should reconstruct worse
than an image with less detail. The dead leaves data set is generated to represent a highly detailed natural
image, while the natural scene database consist of landscapes (low detail), mountain areas (medium detail) and
forests(high detail). In Section 3.3.2 image sparsity is related to image detail.



3.3.1 Image sparsity in the Discrete Cosine Transform

The sparsity of an image is measured in accordance to a specific transformation basis. The Discrete Cosine
Transform (DCT) will be used as the sparsity basis. The image sparsity is taken as the percentage of non-zero
coefficients within the transform. Sparse images was created by selecting a percentage of the highest coefficients
in the transform, setting all other coefficients to zero and taking the inverse transform. The number of coefficients
required to reproduce an image at maximum PSNR value indicates the sparsity of the image.

The PSNR was calculated between the generated sparse image and the original image in the data set. Example
images at different sparsity is shown in Figure 8 and Figure 9. The sparsity performance graphs for each data
set is shown in Figure 10 with the histogram distribution for each sparsity level overlaid. In the figure it is clear
that the Dead leaves data set persistently ranges at the bottom of performance of the natural scene data set and
is, therefore, less sparse on average.

Original
100%

PSNR: 20.40
20%

PSNR: 17.95
10%

PSNR: 16.40
5%

Figure 8: An example image from the dead leaves database reconstructed at different sparsity percentages based
on the Discrete Cosine Transform

Original
100%

PSNR: 25.89
20%

PSNR: 23.13
10%

PSNR: 21.21
5%

Figure 9: Example image from the Scene database reconstructed at different sparsity percentages based on the
Discrete Cosine Transform. The images was zoomed (128× 128) to allow for closer investigation.

In Figure 11 a single PSNR histogram is shown for 50% sparsity from which it is clear that the Dead leaves data
set covers the bottom part of the Natural Scene database. A worse PSNR value for the same amount of sparse
coefficients indicate that the specific image is less sparse than another. Using this concept the various categories
in the natural scene data set and the dead leaves data set can be plotted in a Figure 11c. The distribution
created indicate the various sparsity categories. It is observed that the forest category achieve almost equivalent
performance to the dead leaves category where the landscape categories outperform the average PSNR of the
dead leaves significantly. This can be attributed to the sparseness found in the various categories and can be
evaluated intuitively by comparing the detail in a forest-like image and the detail in an ocean view. It can be
concluded that the dead leaves data set will provide a worst case performance and should be adequate to compare
various algorithms without using full natural scene data sets.
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Figure 10: Sparse image reconstruction in the Discrete Cosine Transforms with the average PSNR plotted and
the PSNR histograms overlaid on the graph as a grey scale image for each different sparsity percentage.
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Figure 11: The histogram of PSNR values for all images in each respective data set at a 50% sparsity recon-
struction using the Discrete Cosine Transforms

3.3.2 Sparsity in a focal-plane array

In imaging and optics it is common practise to use the spatial frequency response (SFR) as an indication to
how much detail can be observed in an image. The degradation of an image based on the SFR is commonly
modelled through a Gaussian filtering process. Applying Gaussian filtering to an image reduces the amount
of high frequencies observable in the image. It is tempting to say, ”high detailed images are less sparse than
low detailed images”. This statement can easily be disproved by creating an image with a single 2-dimensional
high-frequency sine-wave. In the Fourier domain such a signal will only require two coefficients. Applying a
Gaussian filter to the same image will increase the required Fourier coefficients to represent the new image.



Optical images taken from a natural scene is not sparse and thus by adding the assumption that the image is of
a natural scene, one can comment that a high detailed image is less sparse.

A focal-plane array can be simulated by using a large image, applying an appropriate Gaussian filter followed
by area averaging (downsampling) to measure the intensity of each pixel. From the previous section we showed
how the PSNR changed over the sparsity of an image here the same sparsity effects can be observed through
Gaussian filtering and down sampling of images and is shown in Figure 12. It is observed that higher filtering
and down sampling require less coefficients to reconstruct the complete image. Using the sparsity measure and
PSNR values we can estimate the performance of a rosette imager by the size of a focal-plane array.
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Figure 12: Two graphs indicating how reducing the expected SFR influence the image sparsity. A lower expected
SFR produces a sparser natural image in the Discrete Cosine Transform basis.

3.4 Experimental Protocol

We conducted two experiments in order to assess the performance of the Rosetta Imager. The experiments
use group comparison through Bayesian Estimation as presented by Kruschke.20 From Section 3.3 the PSNR
distributions validate the usage of a student t-distribution for the model approximation and with no previous
results, the priors are taken as uniform (See Appendix A.3).

Rather than using p-values or confidence interval for evaluating the null hypothesis of effect size, we instead
use Bayesian estimation with a Highest Density Interval of 95% measured on the effect size. Thus the relative
performance of two algorithms are evaluated by approximating the posterior distribution of the effect size via
Markov Chain Monte Carlo (MCMC). Typically negative effect size values support the first algorithm and a
positive effect size values suppor the second algorithm. However from a Bayesian perspective the algorithm is
assumed to perform better if the 95% Highest Density Interval (HDI) of the effect size are strictly positive.

The first experiment evaluate the optimal rosette pattern for limiting rotational frequency of 2500 Hz against
three other possible patterns. The first pattern, (11, 4) is a previously published pattern, although the purpose
of this pattern was only to demonstrate image formation using a rosette scanner and compressed sensing. The
second pattern is selected by limiting the maximum rotational frequency to 1000 Hz. The third pattern, (56,
99), was randomly selected from the top 10 patterns found through the optimisation process. Each pattern is
used on both data sets outputting a set of PSNR values with related averages and standard deviations. These
outputs are then used to perform Bayesian estimation.

The second experiment compare the performance of a focal-plane array (FPA) to the optimal rosette pattern.
The focal-plane array is simulated by down sampling the image to the appropriate size, followed with a linear up
scaling to allow for equivalent PSNR measurements. The experiment is only performed using the dead leaves data
set. Comparing a single sized FPA to the optimal rosette pattern would not provide any insight and therefore
a range of FPA sizes are tested. Using the effect size and the 95% HDI the expected probability that an image
from the FPA will be better than the rosette imager can be estimated.



4. RESULTS

4.1 Scanning Pattern Results

The results of the four patterns are shown in Table 3 with example images in Figure 13.

Table 3: rosette imager pattern evaluation results
Pattern Frequency 1 Frequency 2 Probe Size Dead leaves Natural Scene
(n, m) (Hz) (Hz) (pixels) (Average PSNR) (Average PSNR)
(11 4) 100 -175 31 13.63(1.05) 20.22(2.84)
(76 37) 925 -975 2.25 17.36(1.19) 25.58(3.76)
(56 99) 2475 1075 2.25 17.67(1.25) 25.90(3.86)
( 8 99) 2425 2275 2.25 17.67(1.24) 26.00(3.90)

PSNR: 12.9829 PSNR: 16.0587 PSNR: 16.3123

(a)

Original

(b)
PSNR: 18.7237

(11 4)

(c)
PSNR: 23.2185

(76 37)

(d)
PSNR: 23.3288

(8 99)

Figure 13: Example images generated by using the various scanning patterns.

First (11 4) and (8 99) is compared. A comparison between averages in PSNR show that (8, 99) outperform
(11 4) on both data sets and the difference far exceeds the standard deviations. An example comparison between
the two patterns can be made visually in Figure 13b and Figure 13d.

The second evaluation is between (8 99) pattern and (76 37) pattern. Comparing the means of the PSNR of
each data set, (8 99) is better than (76 37) although the standard deviations are large compared to the difference
in means. A visual inspection can be performed between Figure 13c and Figure 13d and only slight degradation’s
can be observed between the dead leaves patterns. This difference might only be specific to the image example.
To dig deeper in the comparison the Bayesian estimation is shown in Figure 14.
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Figure 14: The results of the Bayesian estimation between (76 37) and (8 99). The 95% HDI of the effect size
indicate that (8 99) is statistically better than (76 37).



In the first row of the figure the estimated posterior probability distribution of the PSNR values are overlaid
with the histogram data of the sampled data. The second row show the posterior distributions for the µ parameter
and the difference of means indicate that the difference are statistically significant. It is interesting to note how
these means differ from the averages shown in Table 3. If the data is roughly symmetric, the comparison of the µ
parameter can be adequate. The third row provide the mode or somewhat the data variance. The difference in
modes according to the 95% HDI is not significant. The lower left graph provide the distribution of the normality
parameter, where small values indicate large tailed distributions. The posterior distribution is relatively narrow
indicating the consistent accommodation of outliers within the data. The last posterior distribution show the
credible effect size of the two data groups. The 95% HDI of the effect size supports the hypothesis that group
2 is significantly higher than group 1. The Bayesian estimation shows that the 95% HDI of the effect size is
not shared between the two patterns and therefore it is expected that (8 99) performs better than the (76 37)
pattern.

The third evaluation, between (8 99) pattern and (56 99) pattern, is somewhat more tricky. Evaluating the
PSNR averages (8 99) performs equivalent to that of (56 99) on the dead leaves pattern but much better on the
natural data set. A Bayesian estimation is performed on the dead leaves data set and the natural scene data set
with only the output of the effect sizes shown in Figure 15. Taking the 95% HDI, the difference in performance
is not statistical significant and we can therefore not say that the one pattern is better than the other.

Effect size for dead leaves pattern
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Figure 15: The effect sizes of Bayesian estimation between (56 99) and (8 99) on the dead leaves data set and
natural scene data set. The 95% HDI indicate that there is no significant difference between the two patterns.

4.2 Focal-plane Array Comparison Results

The results for comparing the range of focal-plane arrays to the (8 99) pattern is shown in Figure 16. It can be
seen from the graph that an FPA of size 114 × 114 will only produce an image 30% of the time with a higher
PSNR value than the rosette imager. From the analysis the rosette imager will produce an image 95% of the
time equivalent to a 111 × 111 up to 121 × 121 FPA. Uniformly sampling the imaging area 12974 samples can
be used in image reconstruction and thus an FPA with equivalent number of samples rounded up would be a
114× 114 FPA.
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Figure 16: The probability according to the 95% HDI that the specific sized FPA will outperform the rosette
imager on a sampled image.

5. DISCUSSION

The designed rosette imager is based on a rosette scanner and the Fourier Domain Regularisation Inversion
algorithm. The imager use a single sensor with an instantaneous field of view equal to 2.25 pixels; It samples at
510 kHz to output a 256× 256 image at 25 frames per second. Furthermore, the wedge rotates at 2475Hz, and
the mirror rotates at 2275 Hz. The set-up produced images of equivalent quality as focal-plane arrays of size
111× 111 to 121× 121.

We expected that the rosette imager would perform just as well as the focal-plane array. The performance is
due to the signal sparsity requirement in compressed sensing theory. In the exploration of image sparsity we have
also shown that natural images are not sparse. The development of an imager using a single detector scanning
system compared to a focal-plane array allow for different trade-offs (such as image quality versus number of
samples needed). Further modelling of a rosette imager will better establish these trade-off parameters. We note
that the same rosette pattern can be achieved by replacing the rosette scanner with a Risley prism.

The image sparsity investigation highlighted the effect of different image categories on the expected PSNR and
image sparsity itself. Furthermore, the investigation indicates that the performance of algorithms are dependant
on the set of testing images. Preferably algorithms should be compared using the same set of images. It is
also suggested that using only the dead leaves pattern for comparison should be adequate for a large range of
algorithms in image formation. The PSNR measure and image sparsity was shown to provide estimates of the
spatial frequency response of the imager. These measurements can likely assist evaluations in the laboratory.
Finally, we note that advanced statistical techniques such as Bayesian estimation will benefit the evaluation of
image formation and image processing algorithms.

APPENDIX A. EQUATIONS

A.1 Rosette scanner governing equations

The wedge typed device can be described by the following design equations:8

φ2 ≈
φ1(n− 1)d1

2d2

with φ1 the vertical angle of the wedge, φ2 the canted angle of the secondary mirror, n is the refractive index of
the wedge, d1 is the distance of wedge from the sensor and d2 is the distance of the mirror from the sensor. The
locus of the IFOV is given by:

x = φ2 (cos(2πf1t)− cos(2πf2t))

y = φ2 (sin(2πf1t)− sin(2πf2t))



Furthermore, it is required that the rosette scanning pattern is repeated at a specified time interval T ; which
also relate to the specified frame rate of the imager 1/T . The frame rate in conjunction with rotating elements
are constrained by:

T =
m

f1
=
m− n
f2

=
n

f1 − f2
with n,m ∈ Z.

A.2 Peak-Signal to Noise Ratio Equations

Given an image I of height H and width W such that I(m,n) 7→ im,n ∈ 0, . . . , 216 − 1 with |m| ≤ H − 1,
|n| ≤ W − 1 and m,n ∈ Z. The Mean Square Error between a reference image IR and a test image IT is given
be

MSE(IT , IR) =
1

HW

H−1∑
m=0

W−1∑
n=0

[IT (m,n)− IR(m,n)]
2

The Peak Signal-to-Noise Ratio (PSNR) in decibel (dB) is defined as

PSNR(IT , IR) =

20 · log10

(
2B−1√

MSE(IT ,IR)

)
MSE(IT , IR) ≥ 1

20 · log10

(
2B − 1

)
Otherwise

(1)

A.3 Student t-distribution

The student t-distribution is given by

StudentT(y|ν, µ, σ) =
Γ ((ν + 1)/2)

Γ(ν/2)

1√
νπ σ

(
1 +

1

ν

(
y − µ
σ

)2
)−(ν+1)/2

with ν as the normality parameter, µ as the mean, σ as standard deviation and y as the data point.

The effect size is calculated by:

Effect Size =
(µ1 − µ2)√
1
2 (σ2

1 + σ2
2)
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