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Abstract: SARS-CoV-2 virus infections in humans were first reported in December 2019, the boreal 

winter. The resulting COVID-19 pandemic was declared by the WHO in March 2020. By July 2020 

COVID-19 is present in 213 countries and territories, with over 12 million confirmed cases and over 

half a million attributed deaths. Knowledge of other viral respiratory diseases suggests that the 

transmission of SARS-CoV-2 could be modulated by seasonally-varying environmental factors such 

as temperature and humidity. Many studies on the environmental sensitivity of COVID-19 are 

appearing online, and some have been published in peer reviewed journals. Initially these studies 

raised the hypothesis that climatic conditions would subdue the viral transmission rate in places 

entering the boreal summer, and that southern hemisphere countries would experience enhanced 

disease. For the latter, the COVID-19 peak would coincide with the peak of the influenza season, 

increasing misdiagnosis and placing an additional burden on health systems. In this review we 

assess the evidence that environmental drivers are a significant factor in the trajectory of the COVID-

19 pandemic, globally and regionally. We critically assessed 42 peer reviewed and 80 preprint 

publications that met qualifying criteria. Since the disease has been prevalent for only half a year in 

the northern, and a quarter of a year in the southern hemisphere, datasets capturing a full seasonal 

cycle in one locality are not yet available. Analyses based on space-for-time substitutions, i.e. using 

data from climatically distinct locations as a surrogate for seasonal progression, have been 

inconclusive. The reported studies present a strong northern bias. Socio-economic conditions 

peculiar to the ‘Global South’ have been omitted as confounding variables, thereby weakening 

evidence of environmental signals. We explore why research to date has failed to show convincing 

evidence for environmental modulation of COVID-19, and discuss directions for future research. 

We conclude that the evidence thus far suggests a weak modulation effect, currently overwhelmed 

by the scale and rate of the spread of COVID-19. Seasonally-modulated transmission, if it exists, will 

be more evident in 2021 and subsequent years. 
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A novel coronavirus, thought to have made a zoonotic transition from bats, infected a human 

host in Wuhan, Hubei Province, China (Wang et al., 2020c). By late January 2020 the virus, newly 

named SARS-CoV-2, and the disease it causes, COVID-19, had spread to 18 other Chinese provinces, 

and to Japan, South Korea, Taiwan, Thailand, and the USA. On the date of submission of this review 

(July 15, 2020) there were 13,331,879 confirmed cases, in virtually every country worldwide (213 

countries and territories, Figure 1). At the time it was reported that 577,825 people infected with the 

virus had died; both numbers have subsequently risen. The only comparable acute respiratory 

disease pandemic was Spanish Influenza (H1N1), transmitted from birds to people in 1918, which 

lasted until 1919 and killed an estimated 50 people worldwide. In the current highly interconnected 

world, the impact of the COVID-19 pandemic is likely to be felt for many years (Nicola et al., 2020; 

Kickbusch et al., 2020; Mahler et al., 2020). Therefore it is therefore crucial that all potential 

determinants of the rate and location of the pandemic spread receive careful consideration, in order 

to make appropriate plans for its management. 

 

Figure 1. The number of confirmed COVID-19 cases as of 12 July 2020. Data are shown as the number 

of cases per 100,000 individuals. COVID-19 case data are from Johns Hopkins University Center for 

Systems Science and Engineering. The world population data are from the World Bank. 

Epidemiological models have been used worldwide to guide the imposition (or not) of policy 

and regulatory intervention (Tanne et al., 2020; Coronavirus Government Response Tracker). These 

models can be modified to include aspects of social characteristics of the infected populations; and 

they can also be adapted to reflect the modulating effect of environmental influences on the processes 

that determine transmission.  

Many related respiratory diseases show a connection between climate variables and the 

dynamics of the disease. It is thus plausible that such a dependency could exist for SARS-CoV-2 

(reviewed in Section 4). Given that COVID-19 began in mid-winter in the northern hemisphere, 

where it was (at the time of writing) peaking toward the middle of the boreal summer, and that the 

opposite scenario seems to be playing out in many southern hemisphere countries, it is tempting to 

associate this pattern with climate seasonality, as many publications have suggested. However, it is 

also plausible that the association is spurious, related simply to coincidental spatial connectivity 

between countries. It is necessary to critically assess the evidence for environmental sensitivity in 

both the organism and the disease before leaping to conclusions that may have large implications.  

In terms of a response to the pandemic, we need to understand if and how environmental 

variables influence the infection rate. This knowledge provides clues for policy and practice to reduce 

the spread of the virus and potential for treatment options. For example, if analyses show that 

absolute humidity is strongly associated with reduced infection rates (e.g. for influenza, see Shaman 
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and Kohn, 2009; Shaman et al., 2010), artificially raising indoor absolute humidity during periods of 

low ambient humidity may be an effective intervention.  

Second, if environmental variables do influence the trajectory of the pandemic, the seasonal 

progression of the disease will lead to different implications across the globe, varying by hemisphere, 

region, and climatic zone. In the extra-tropical northern hemisphere, there would be a real possibility 

of a second wave appearing during the next winter (Xu and Li, 2020). Conversely, there is a danger 

that the initially slow pace of the epidemic in the southern hemisphere could be misinterpreted to 

mean that proactive management has stemmed the disease. Given that in the south, where the peak 

of COVID-19 incidence is likely to coincide with the winter peak of other endemic respiratory 

illnesses, complicating diagnosis and placing additional strain on the health systems, missing the 

environmental drivers of COVID-19, if they exist, would be deeply damaging. As we will argue, 

many southern hemisphere countries are particularly vulnerable (they are in the developmental 

‘Global South’ as well as the geographical south). For these regions especially, clarifying the 

environmental sensitivity will assist the prioritization of resources. 

Third, for longer-term management of the disease, we need to understand whether the seasonal 

effect will manifest as it does in established or endemic respiratory viruses, in the absence of being 

able to predict in what period of time (in years) the virus will be eliminated (Nassar et al., 2018). 

In this review we consider all the pertinent studies relating to the effect of a range of specific 

environmental and climatological variables on the biology of the virus and the epidemiology of the 

disease. 

In Section 2 we develop our reasoning for why southern hemisphere countries can benefit from 

the lessons learnt in the north, if the application of that knowledge takes heed of particularly southern 

hemisphere issues. In Section 3 we briefly present the main classes of epidemiological models, since 

key parameters revealing environmental modulation are derived from such analyses. In Section 4 we 

explore environmental sensitivity in extant respiratory viral diseases and past epidemics, to suggest 

why seasonally-coupled environmental influences probably also exist for SARS-CoV-2. Section 5 then 

critically reviews evidence for such signals in the literature that had accumulated to May 15, 2020. 

Section 6 summarises our findings, and offers suggestions for future analyses of the seasonal 

modulation of COVID-19. 

2. Why the southern hemisphere is different 

The southern hemisphere context is important in three regards. First, while the northern 

hemisphere is moving out of winter at the time of their peak of infections, the southern hemisphere 

is moving into winter. Second, a much larger proportion of countries in the southern hemisphere are 

developing countries, with significant resource limitations in their healthcare systems. Third, many 

of the countries in the southern hemisphere, and on the African continent in particular, have much 

higher incidence of pulmonary diseases such as tuberculosis, immunocompromising diseases such 

as HIV-AIDS, and incidence of diseases such as cholera and malaria which may not be significant 

comorbidities, but place coinciding stressors on the health system. To their advantage, the delayed 

arrival of COVID-19 in much of the southern hemisphere has allowed these countries the time to 

observe effective containment and treatment practices in the Global North, and to adapt their 

healthcare and policy response accordingly.  

The initial outbreak of COVID-19 in China, early epidemics in Iran, Italy, and later much of 

Europe and the United States took place during the coldest months of their year, and were distributed 

within a narrow climatic band (Carlton and Meng, 2020; Sajadi et al., 2020). During the early period 

of the outbreak in January and February 2020, few known cases had been recorded in the southern 

hemisphere, which was experiencing peak summer conditions. This could reflect a climate sensitivity, 

but could just as plausibly reflect dominant trade and human movement patterns (Healy, 2003). Thus, 

the initial relatively low rates of spread and mortality in southern Africa, Australia and some regions 

of South America may simply be a result of being at an earlier stage in the spread process. However, 

in both the northern and southern hemisphere, influenza and other corona viruses peak during their 

winter seasons (Hirve et al., 2016). Thus, if climate factors do play a role in COVID-19 infection rates, 
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the concurrence of transition of southern hemisphere countries to their winter season and the mid-

stages of the disease transmission trajectory is of concern, especially with respect to containment 

policy and health system resource allocation. 

The status of healthcare services in the Global South is of concern even without a climatic 

component to COVID-19. While Australia and New Zealand have healthcare services as good as any 

in the northern hemisphere (Healy, 2003), much of South America and sub-Saharan Africa struggle 

with access to quality healthcare. This is associated with poverty and socioeconomic inequalities and 

result in poor health outcomes and financial risk to the state and individuals (Lloyd-Sherlock, 2009; 

Naiker et al., 2009; Atun et al., 2014; Hampshire et al., 2015). The healthcare sectors are under-staffed, 

under resourced, and understocked under normal conditions, which were working at maximum 

capacity even before the COVID-19 pandemic (Kapata et al., 2020), and will be severely challenged 

as COVID-19 cases increase (Gilbert et al., 2020; Velaven and Meyer, 2020). Early evidence from China 

shows a significant correlation between mortality and the healthcare burden (Ji et al., 2020). Efforts 

to model the preparedness of African countries have highlighted concerns relating to the staffing of 

testing centres, stock for testing, and the ability to implement effective quarantining both inside and 

outside of healthcare facilities (Gilbert et al., 2020). The prevalence of pre-existing infectious diseases 

compounds this issue. In the period 2016-2018, 41 African countries have experienced at least one 

epidemic, while 21 have experienced at least one epidemic per year (Talisuna et al., 2020). South 

America is currently struggling with outbreaks of measles in 14 countries, and a tripling of the 

incidence of Dengue Fever in four countries (Rodriguez-Morales et al., 2020). Recent outbreaks of 

diphtheria, Zika and Chikungunya have further stretched the healthcare systems (Rodriguez-

Morales et al., 2020). The most prevalent infectious diseases in sub-Saharan Africa include cholera, 

malaria, viral haemorrhagic fever, measles and malaria (Kapata et al., 2020).  

Of particular concern in the Global South is the possibility of comorbidity with HIV and 

tuberculosis (TB). Many TB cases are pulmonary in nature (Steingart et al., 2013), while patients with 

HIV are significantly immunocompromised (Gelaw et al., 2019). There is considerable TB-HIV 

comorbidity (Grant et al., 2005). Corbett et al., (2006) found 38% incidence of HIV in TB infected 

patients across Africa, and for the countries with the highest HIV prevalence, up to 75% of TB patients 

also tested positive for HIV. Comorbidity has decrease from 33% to 31.8% over the past decade, and 

over the period 1990-2017 TB incidence, TB mortality rate and HIV-associated TB have declined in a 

number of southern African countries (Gelaw et al., 2019). South America has much lower cases of 

both HIV and TB, and a comorbidity of around 10% (Adenis et al., 2018). While results from Spain 

suggest that HIV-positive patients currently on antiretroviral treatment have no higher risk of severe 

SARS-COV-2 induced illness (Blanco et al., 2020), the comorbidity of those with a longer HIV history 

and TB comorbidity, with or without HIV, are unknown. There are further related concerns 

pertaining to continued HIV (Jiang et al., 2020) and TB (Pang et al., 2020) care during COVID-19 as 

social distancing requires people to stay indoors, and hospitals are overstretched.  

Finally, having later first case dates in the southern hemisphere holds certain allows these 

countries to ‘get ahead of the curve’ through evidence-based management derived in the north 

(Preiser et al., 2020). Recent experiences of two Ebola epidemics have meant that many countries in 

sub-Saharan Africa have implemented temperature screening at airports long before the first COVID-

19 cases were reported (Gilbert et al., 2020), and contact tracing and epidemic management plans are 

in place (Kapata et al., 2020). South Africa, Kenya, Uganda and Zambia are reported as having all 

been particularly proactive in planning for their eventual COVID-19 cases (Kapata et al., 2020). South 

America has arguably been not as ready (Rodriguez-Morales et al., 2020). Studies modelling risk for 

the African continent are largely related to importation risk (Gilbert et al., 2020), which has been 

capped due to lockdown in many countries. This form of response is important in delaying the peak 

and flattening the curve, but is unlikely to completely avoid extreme pressure on already stressed 

healthcare systems (Naiker et al., 2009; Ji et al., 2020). 
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3. Monitoring and modelling the spread of COVID-19 

3.1 Data Issues 

When assembling datasets from many different locations to test the effects of environment on 

COVID-19 progression, it is essential that the criteria for determining the infection and mortality rates 

are consistent across sources. The data used to calibrate and validate epidemiological models (e.g. 

the COVID-19 Data Repository, Center for Systems Science and Engineering (CSSE), Johns Hopkins 

University) consist of time series of infections, which often include only those with symptoms 

sufficiently severe that the patients sought medical assistance, and who subsequently tested positive 

using a PCR-based test for the presence of the SARS-CoV-2 virus (Liu et al., 2020b). This is known as 

the ‘case rate’. As the number of tests increases and includes community-based testing rather than 

just those displaying symptoms, the case rate will converge on a true infection rate. PCR testing is 

accurate (though reporting is often delayed by days to weeks; Patel et al., 2020), but if testing is mostly 

done on those presenting symptoms and their close contacts, estimates of the true infection rate 

inevitably include large biases, especially given the high occurrence of asymptomatic or mild cases. 

Compensating for this bias requires that the sample frame be weighted to be representative of the 

population as a whole. As antibody-based tests become more widely used, datasets that indicate post 

facto what fraction of the general population was exposed to the virus will emerge. Antibody tests 

have variable accuracy, both in terms of false positives and false negatives (Patel et al., 2020); 

nevertheless their overall accuracy is much better than the guesswork that otherwise goes into 

estimating the number infected from the medical case rate alone. It is suspected that mildly infected 

people and even asymptomatic cases can spread the disease (Ye et al., 2020), but perhaps less 

effectively than severely ill individuals. It is likely that recovery from SARS-CoV-2 provides 

subsequent immunity, with initial indications that this may be persitent (Grifoni et al., 2020). 

The models that predict mortality use a time series of recorded deaths. At a minimum this 

includes the deaths recorded in hospitals, for people being treated for SARS-CoV-2 at the time of 

death. More complete records are supplemented with data on people who died in the community or 

in nursing homes, and were inferred from the symptoms they displayed to have died from COVID-

19. For severely-affected areas, it is possible to estimate the anomalies between COVID-attributed 

death-rate relative to the seasonally-adjusted expected population death rate, and infer that these 

additional deaths (‘excess deaths’) were caused by the pandemic (Leon et al., 2020). Where this has 

been done, it suggests that the death rate is substantially higher than that initially reported; however, 

this approach conflates deaths directly caused by SARS-CoV-2, and those that may have resulted 

from overburdening the health system.  

Making accurate estimates of transmission rates requires a sufficient number of cases. Often the 

models are initiated only once 30 or 100 cases have occurred in a location (Yao et al., 2020) so that the 

effect of importation of cases due to travelling may be minimised. Therefore, if the area selected for 

analysis is too small, the number of cases may be inadequate to support the more data-intensive 

approaches. In most countries, data are collected daily, but the daily data show a lot of noise, partly 

for stochastic reasons; also, for spurious reasons such as the effect of weekends, laboratory delays, or 

recoding the date of reporting rather than the date of testing or infection (Section 5.1). Smoothing the 

data over periods of a week helps to solve irregular daily data patterns (Şahin, 2020; Zhu and Xie, 

2020), but this also means that the analysis is unresponsive to events at finer timescales. 

The need to match the time period for which infections and deaths are recorded and the period 

over which environmental driver are integrated is widely accepted. Similar considerations also apply 

to spatial resolution. COVID-19 outbreaks are apparently highly clustered, often in small areas. 

Environmental drivers are also spatially heterogeneous, some much more so than others. The 

resolution chosen for the environmental data needs to be appropriate for both the grain of the 

infection process, and the grain of the environmental variable.  
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3.2 Epidemiological models of COVID-19 

Several typologies have been applied to epidemiological models, mostly based on what factors 

they take into account (Hesterbeek et al., 2015). Table 1 is a pragmatic classification of the types thus 

far predominantly used for COVID-19 projections, based on the logic of their construction. Most of 

these model types can be implemented either deterministically or stochastically; for age structured 

or non-age structured populations; for a single, equally-exposed population or for a spatially 

disaggregated population with transfers between groups; and using frequentist or Bayesian 

approaches. 

Table 1. A summary of modelling approaches applied to COVID-19. 

Theoretical basis Advantages Disadvantages Examples 

(a) Simple extrapolation of 

recent trends, linear or 

exponential 

 

Few assumptions, nearly 

theory-free, easily updated 

as new data come in 

Sensitive to data quality; 

unrealistic for projections 

more than a few timesteps 

into the future 

Systrom and Vladeck (2020) 

 

(b) Phenomenological or 

parameterised models—fit a 

curve of predetermined 

form to cumulative case 

data 

Few assumptions, good for 

explaining large-scale, 

multi-month patterns like 

‘flattening the curve’ 

Inflexible and unresponsive 

to changes in circumstances, 

such as social distancing 

policy 

Della Morte et al. (2020), 

Roosa et al. (2020) 

(c) Compartment models 

(e.g. SIR, SEIR) 

Classical epidemiological 

approach, semi-mechanistic  

Relatively many parameters, 

that are highly uncertain 

initially; needs lots of good 

data 

Anastassopoulou et al. 

(2020) 

(d) Machine learning Few assumptions other than 

data homogeneity and 

stationarity 

Requires very large case 

datasets to be effective; no 

explicit mechanism 

Ardabili et al. (2020), Pinter 

et al. (2020) 

(e) Agent-based models 

every person in a 

population is modelled 

Allows a rich set of 

interpersonal interactions 

despite simple rules 

Data and computationally 

intensive 

Cuevas (2020) 

 

Simple extrapolation and phenomenological models are suitable for projections of less than one 

month into the future, whereas the somewhat mechanistic models are more robust for projections 

months or years into the future. The various classes of models can in principle run at any spatial scale 

and over any time period, but in practice there are data-imposed constraints.  

3.3. Incorporating environmental drivers into epidemiological models 

Environmental influences can be introduced into the basic model structures at a variety of points 

(Figure 2). Where they are introduced, and what the models are able to say about the relationship 

between the environmental influences and infection or mortality rates, depends on the theoretical 

basis of the model (Table 1). Models that best capture the functional relationship of confirmed daily 

cases across time are best suited for revealing environmental drivers. The phenomenological and 

compartmental models are the strongest contenders here. The raw time series of confirmed infections 

and deaths can be time-aggregated, and time-lagged with respect to the environmental factors, to 

find the best fits, as long as this is done consistently, and considers the time-lags already built into 

the model structure. 
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Figure 2. Environmental factors that have been suggested to influence a COVID-19-like disease, 

overlain on the structure of a generic SEIR-type compartment model to show the potential 

mechanisms of action. 

One approach is to establish correlations, either over time or across space, between the infection 

rate at a given time and simultaneous environmental factors such as temperature, humidity and UV 

(see Section 5.4). In SEIR and similar models, two metrics are available for this infection rate: R0, the 

Basic Reproductive Number, and Rt, the Effective Reproductive Number. R0 is defined as the expected 

number of secondary infectious cases generated by an average infectious case in an entirely susceptible 

population. R0 should be largely free from signals due to imposed factors that affect human behaviour. 

It is typically derived from the initial portion of the growth curve when the disease spreads in a 

population where everyone is susceptible, before control measures have been put in place (i.e. 

completely ‘natural conditions’ sensu Shi et al., 2020) or herd immunity had been attained. Neher et 

al. (2020, p. 1) note that, “R0 is not a biological constant for a pathogen” but it is affected by factors 

such as the infectiousness of the virus, susceptibility of the hosts (e.g. due to age or an assortment of 

comorbidities), duration of infectivity, density of susceptible people (also population density and the 

proportion of the population that is urbanised) or the contact rate with them (including aspects of 

mobility), and environmental influences (as shown in Figure 2). These aspects are subject to localised 

idiosyncrasies across the globe and must be accounted for in regional or global analyses. 

Rt is a measure of observed disease transmissibility, defined as the average number of people a 

case infects at any time (t) once the epidemic is underway. Rt incorporates changes in a society’s 

behaviour (self-regulated responses and non-pharmaceutical interventions; Flaxman et al., 2020) as 

the disease becomes widespread, and varies day-to-day. These effects are typically stronger than the 

environmental influences, and can easily hide them or generate spurious associations. It is not 

advised to base assessments of environmental effects on Rt due to the ‘noise’ that the signal will 

contain, unless there is sufficient information that permits inclusion of the interventions as 

continuous, time-varying factors. 

For the compartment models, it is possible to derive the values of the key model parameters by 

model inversion, in near-real time, and from these, calculate R0. This needs at least one more 

observation than there are free parameters to be estimated. In practice, accurate estimates along with 

confidence limits requires many more data points than parameters. The multiple observations can 

come from a single-population time-series, but this would limit the degree to which changes over 

time can be resolved within the parameters themselves. If there are multiple time-series from 

different populations, both temporal and spatial variation of the parameters can be obtained.  

Phenomenological approaches typically use a variety of parametric regression models (see 

Section 5.4). It is sometimes necessary to fit a piecewise model to accommodate the breakpoint that 

develops when country-specific non-pharmaceutical interventions are introduced. It is generally only 

possible to compare the parameters of the curves across locations (rather than within locations, over 

time), to determine if there is a systematic pattern that relates to any environmental predictors. This 
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is because fitting multi-parameter non-linear curves using data from only a part of the curve (in 

epidemics, usually just the initial part) is notoriously difficult and uncertain. If you knew the effect 

of the environmental factors on the model parameters, they could be used to alter the curve 

parameters dynamically, and thus the projected outcomes; but the parameters typically have no 

intrinsic biological meaning. 

4. Implications for COVID-19 of environmental sensitivity in other viral respiratory diseases  

Seasonality of prevalence is a common feature in most persistent and established or endemic 

respiratory infectious disease (Lofgren et al., 2007; Du Prel et al., 2009; Stewart, 2016; Drexler et al., 

2014; Killerby et al., 2018; Price et al., 2019; Cohen, 2020; Moriyoma et al., 2020), as well as many other 

infectious diseases (Martinez, 2018; Fisman, 2012), in diseases (or endemic tolerated infections) of 

both humans and other animals. Peaks seasons, mostly falling in the shoulder seasons or the winter, 

oscillating globally with the seasons. Seasonally varying prevalence has a general latitudinal gradient 

and is accentuated in highly seasonal temperate and subtropical climates (with some rare exceptions) 

but is also observed in tropical regions (Viboud et al, 2006). Seasonality is found in a wide range of 

viral respiratory diseases (VRDs) – including influenza viruses, para-influenza versus (PIV), human 

syncytial virus (RSV), rhinoviruses and human coronavirus strains (HCoV), among others (Stewart, 

2016; Moriyoma et al., 2020). For endemic viruses causing VRDs in humans, seasonal peaks are 

usually quite predictable, but inter-annual variability in onset and duration of any season, and the 

virulence of the seasonal strains varies. It follows therefore, that if VRD prevalence follows this 

climatological pattern, a mechanism or mechanisms that connects and modulates the viral disease 

progression with seasonally varying climatological variables in individuals or populations must exist. 

This sensitivity must occur in at least one location of the SEIR model (Figure 2).  

In the case of novel viruses, the role of seasonality is more debated, mainly because they have 

not existed for enough time for seasonality to be unambiguously established. The seasonal prevalence 

of pandemic strains of virus is often confused with the so-called second wave, which may be 

coincidentally associated with the following winter season, suggesting that there is a climate-based 

mediating effect on its incidence (Saunders-Hastings and Krewski, 2016; Al-Tawfiq and Memish, 

2016; Nassar et al., 2018). In the case of SARS and MERS, the attribution of resurgence to 

climatological drivers, as opposed to secondary circulation dynamics, remains unresolved 

(Skowronski et al., 2005; Al-Tawfiq and Memish, 2019). Novel viruses are much less predictable than 

established ones with respect of their persistence, re-emergence in the following years or seasons, 

and virulence in later outbreaks (Dowel and Ho, 2014; Saunders-Hastings and Krewski, 2016). Until 

a novel virus becomes endemic and recycles (in its existing form or as mutated strains), its seasonal 

prevalence is difficult to assess (Kissler et al., 2020). The magnitude of the current SARS-CoV-2 

pandemic is likely to result in an extended period of persistence (see Moore et al., 2020), thus if 

seasonality exists it should eventually be unambiguously apparent. 

In the generalised SEIR model shown in Figure 2, environmental modulation can primarily take 

place at two stages, namely Susceptibility and Exposure. Environmental sensitivity insights can come 

from two basic sources. The first is observational data and laboratory studies and analyses of the 

environmental modulation on the SARS-CoV-2 virus biology and the incidence of the disease it 

causes (as in this review). Second, we can examine data and information from published studies on 

respiratory viruses and VRDs and related endemic and novel coronaviruses specifically (see Dowel 

and Ho, 2004; Lofgren et al., 2007; Chan et al., 2011; Stewart, 2016; Killerby et al., 2018; Cohen, 2020; 

Moriyoma et al., 2020, for general treatment of this topic).  

In this section we examine three sets hypothetical mechanisms which explain environmental 

modulation and seasonality of VRDs other than COVID-19: (i) physical environmental variable 

modulation, (iii) biological and host behavioural modulation, and (iii) viral molecular and 

biochemical modulation. 

Physical environmental variable modulation hypotheses focus on the meteorological correlates 

of seasonality in the diseases (e.g. Du Prel, 2009; Price et al., 2019) and comprise the bulk of such 

studies. These all follow the basic tenet that selected environmental variables (such as temperature 
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or humidity) vary in space and time with the progressing seasons, and if a mechanism that links them 

with a VRD can be demonstrated, this makes them a suitable candidate for explaining VRD 

seasonality. There is unclarity in the literature regarding which concept of humidity is best applied 

as environmental moderator of respiratory viral epidemiology. Studies employ relative humidity 

(RH), absolute humidity (AH), specific humidity (SH), vapour pressure or dew point (more in Section 

5 below). This renders comparisons and conclusions difficult to reach (see Shaman and Kohn, 2009). 

RH and SH have strong dependence on temperature, which complicates studies that include both 

temperature and humidity as predictors. 

The postulated mechanisms are usually tested in laboratory studies which monitor the 

persistence of viable viruses in aerosol droplets and on surfaces (e.g. Tellier, 2009), perform 

experimental transmission studies in animal models (e.g. Lowen et al., 2007), or study the relationship 

between observed ambient or indoor environmental variability and infection rate, morbidity and 

mortality, with the assumption of causality (Section 5 ). Notably, results from temperate and tropical 

climate zones (or with ranging latitude) are often contradictory. This has led to a suggestion that 

different seasonality mechanisms are at play: humidity-aerosol droplet transmission as the key driver 

in temperate regions; and precipitation-contact transfections in the tropics (Lowen and Palese, 2009; 

Tamerius, et al., 2013; Baker et al., 2018).  

The environmental determinants of virus transmission in aerosol liquid droplets has received 

substantial consideration. The premise is that in winter, characterised by relatively lower humidity, 

pathogen bearing aerosol droplets (PBADs) are more persistent. PBADs expelled by infected 

individuals often contain viruses or bacteria, in a mucus of saliva and dissolved salts, and can travel 

up 8 m from a simple sneeze (Bourouiba, 2016). PBADs. Upon leaving the airway with moisture 

saturation close to 100%, PBADs are exposed to much drier air that causes evaporation. They lose up 

to 90% of their water mass and reduce in size. At RH of 40-60%, the water loss greatly increases the 

salt concentration, to levels that inactivate viruses. In contrast, for RH <40%, the dissolved salts 

precipitate, resulting in a PBAD with low salt concentration and a high number of infectious viruses 

(Yang, 2012). PBADs range in diameters 5-20 μm when the ambient RH is 30-60% whereas below 30%, 

a PBAD may immediately reduce its size below 0.5 μm, and become a droplet nuclei (Cole and Cook, 

1998; ‘WHO Guidelines Approved by the Guidelines Review Committee,’ 2009). Thus conditions of 

lower ambient RH results in the production of smaller, lighter (longer floating periods), and more 

potentially more penetrative PBADs, thereby increasing the exposure component of the SEIR model 

(Liu et al., 2017; Tellier et al., 2019).  

The role of temperature in influencing the prevalence of VRDs is more contested and complex. 

This is partly because temperature and AH together determine RH, which affects the rate of 

evaporation and thus PBAD dynamics, as argued above (see Lowen et al., 2007; Lowen and Steel, 

2014); and temperature could also have direct effects. Several studies associate temperature with 

respiratory disease incidence, some by direct association (Zhang et al., 2018; Nielsen et al., 2011) and 

some focussed on the temperature changes (i.e. lowering temperatures rather than lower temperatures; 

Jaakkola et al., 2014). Temperature may also plays a mediating role in other ways. The first set of 

hypotheses considers the direct effect of temperature on respiratory virus survival. There are very 

few such studies; but they show that viruses in general are surprisingly tenacious, with survival 

periods of days at room temperature for SARS-CoV-1. Effective inactivation occurs at temperatures 

of above 56°C (Rabenau et al., 2005; Sauerbrei and Wutzler, 2009). 

Another temperature-mediated mechanism with substantial literature involves the fomite 

viability of viruses (Bean et al., 1982; Boon and Gerber, 2007), particularly in public spaces and 

hospitals, involving endemic coronaviruses and SARS-CoV-2 (Casanova et al., 2010; Kampf et al., 

2020). Some studies explore at the role of temperature alone on specific surface types (e.g. Bean et al., 

1982), while others look at the combined role of temperature and humidity (McDevitt et al., 2010; 

Casanova et al., 2010). Respiratory viruses, including human coronaviruses, can remain viable as 

fomites on a range of surface types, indoors and in sheltered external environments, at room 

temperature and higher, for periods of hours to days and from days to weeks on refrigerated surfaces 

at 4°C. Persistence depends on both the surface type and the temperature and humidity range (see 
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Table 1 in Kampf et al., 2020, for a recent summary). Thus the risk of infection from fomites (the 

exposure element of the SEIR model) increases as temperature decreases. The combination of 

temperature and humidity has been found important for fomite viability in the endemic human 

coronavirus HCoV 229E (Table 2). Most studies aim to test sterilisation techniques and personal 

protective gear (e.g. Geller et al., 2012; Sizun et al., 2000; Otter et al., 2015; Kramer et al., 2006; Kampf 

et al., 2020). One hypothesis posits a predominance of surface contact transmission in the tropical 

climates, versus transmission through PBADs in temperate climates (Lowen et al., 2008).  

Table 2. Viability of the human coronavirus, HCoV 229E as a function of time, temperature and 

humidity (from Geller et al., 2012).  

Relative humidity 20°C 6°C 

 15 min 24 h 72 h 6 days 15 min 24 h 

30% 87% 65% >50% n.d. 91% 65% 

50% 90.9% 75% >50% 20% 96.5% 80% 

80% 55% 3% 0% n.d. 104.8% 86% 

*n.d. = not detectable 

A range of other physical environmental variables have been cited as moderators of respiratory 

viral epidemiology. They often co-vary with other causal variables. Wind and wind-speed are 

relatively neglected as physical environmental factors in infectious disease epidemiology. Given that 

windy seasons occur in many climates zones, wind should not be discarded as a contributing variable 

(Ellwanger and Chies, 2018). For influenza, wind has been cited in some instances as a factor in 

transmission of infectious particles from remote locations, as promoting the extended local 

transmission of PBADs (Peci et al., 2019, and citations therein), with a convincing account in one case 

of equine influenza (Firestone et al, 2012). Barometric pressure has also been considered, for example 

in the case of Respiratory Syncytial Virus, where it was found to have no statistically significant 

influence (Yusuf et al., 2007). In other studies it does have an influence, along with temperature 

(Hervás et al., 2012). Guo et al. (2018) found air pressure to be a predictor of the risk of influenza 

infection in children in Guangzhou, China, with a differential effect by age. 

Rainfall seasonality and disease incidence in general is well described (see Adler et al., 2017), 

but literature on the relationship between rainfall patterns and VRD epidemiology is restricted to 

tropical climates. Most studies have considered rainfall either at very local scale, or as part of a set of 

meteorological variables being tested. Pica and Bouvier (2012) comprehensively review the literature 

on this rainfall and VRD, and conclude that for a range of respiratory viruses (primarily influenza 

and RSV) there are as many studies finding some association as there studies finding no link. With 

attenuated intra-seasonal temperature variation in the, rainfall provides key differentiator between 

seasons, possibly explaining the strong associations between rainfall and respiratory illness 

prevalence in the tropics. The mechanism of association is less clear. There is a suggestion that the 

tropical rainy season causes crowding, and thus increased exposure (Murray et al., 2012), another 

suggesting that reduced sunlight is associated with pneumonia incidence (Paynter et al., 2013) and 

yet another citing diurnal temperature changes (Chew et al., 1998). The improvement of air quality 

and reduction of allergen production following rainfall may be another mechanism (Idani et al., 2016). 

Solar ultraviolet radiation (solar UV) varies greatly with season everywhere and is thus an 

attractive candidate to explain seasonality of VRDs. UV radiation in laboratory settings is a very 

effective means of deactivating viruses, and there are a plethora of studies of this effect on all kinds 

of pathogens (including coronaviruses SARS-CoV-1 and MERS-CoV), mainly targeting hygiene and 

outbreak management in public spaces and hospitals (see Duan et al., 2003; Darnell et al., 2004; Bedell 

et al., 2016). Studies that consider the environmental effect of solar UV (a component of sunlight) 

without confounding effects of other variables are rare. Sagripanti and Lytle (2007), state that for 

influenza “the correlation between low and high solar virucidal radiation and high and low disease 

prevalence, respectively, suggest that inactivation of viruses in the environment by solar UV 

radiation plays a role in the seasonal occurrence of influenza pandemics” but concede that there are 

a range of additional factors that need to be considered. Despite UV being regarded by several 
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authors as the “primary germicide in the environment” its independent effect as a seasonal driver of 

VRDs remain uncertain (see Weber and Stilianakis, 2008, on this point for influenza). 

A second set of hypotheses for explaining the seasonality of VRDs considers behavioural and 

physiological responses to changing environmental variables such as temperature (Du Prel, 2009; 

Stewart, 2016; Moriyoma et al., 2020). These include considering the consequences of confining 

people in sheltered and enclosed spaces, with recirculating air and closer proximity to infected co-

inhabitants, thus increasing the likelihood of exposure. They also include that the idea that colder 

and drier air at the cellular level in the respiratory tract results in impaired physical or immune-

system defences to infection, and hence increased susceptibility (Eccles, 2002; Moriyama et al., 2020). 

Large (<30 μm) and medium (<10 μm) inhaled PBADs are normally captured in the upper nasal 

mucosa and upper respiratory tract respectively and are transported towards the mouth (and 

expelled) through a synchronized circular movement of cilia. The combination of the mucosal layer 

and cilia can effectively clear the particles (‘WHO Guidelines Approved by the Guidelines Review 

Committee,’ 2009). However, low ambient RH has been demonstrated to reduce the effectiveness of 

both mucosal production and cilia action (Lowen at al., 2007; Moriyama, 2020). A corroborating study 

demonstrates that dry air (low RH) impairs host defence against influenza infection in genetically 

engineered mice with human-like lung tissue, as well as slowing recovery (Kudo et al., 2019).  

The third set of hypotheses consider the biochemistry and molecular adaptation of the viral 

pathogens (Stewart, 2016). These take into account the temperature sensitivities of the various stages 

of the virus infection cycle, from binding to the host cell, replication of nucleic acids, the stability of 

secondary structures of viral proteins, and eventual ejection of the virus from the host cell (Stewart, 

2016). Given that there is a gradient of temperature within the respiratory tract, and that breathed air 

can greatly alter conditions in the upper respiratory tract, susceptibility can increase under cold 

conditions, especially to viruses which are adapted to be most efficiently infectious at temperatures 

slightly below normal body temperature (Eccles, 2002; Stewart, 2016).  

Falling somewhere between the physical, physiological and biochemical hypotheses in 

explaining seasonality of respiratory viruses is the change in susceptibility with varying serological 

levels of Vitamin D. Vitamin D synthesis occurs when the skin is exposed to sunshine, which varies 

seasonally (confounded with UV, temperature and other variables). Vitamin D has been suggested 

as an important form of defence against microbes, influenza and pneumonia in particular (Cannell et 

al., 2006; Liu et al., 2006; Moan et al., 2009; Yamshchikov et al., 2009). Shaman et al. (2001) attempted 

to model this effect on influenza prevalence in the USA and concluded that seasonal variability in 

other factors such as humidity and even the school calendar were better at explaining their results.  

These considerations are incomplete with a final abiotic aspect that must be included. Air 

pollution refers to a wide range of harmful, primarily geogenic (naturally occurring) and 

anthropogenic particulate matter, chemicals or gasses that cause negative or dangerous physiological 

responses and effects in humans and biota. It is well known that poor air quality can have direct and 

indirect impacts on human health, and in particular on the susceptibility of humans to respiratory 

viral infections as well and a measurable effect on the severity and mortality rates (reviewed by 

Ciencewicki and Jaspers, 2007). Gases such as nitrogen dioxide, ozone and especially particulates 

classified by size (PM10, PM2.5, PM0.1) have different mechanisms and effects but are all known to 

be associated with the increases in viral respiratory disease incidence, hospitalization or attributed 

deaths, famously during the London fog of 1952 (Schwartz, 1994) and the 1918 Spanish Influenza 

Pandemic (Clay et al., 2018). Clifford et al. (2015), for example, showed that PM10 inhalation 

exacerbates the response to influenza and Ye et al. (2015) showed that ‘haze’ (a combination of air 

pollutants) was associated with the spread of respiratory syncytial virus in children. Air pollution is 

also known to have a strong seasonality, driven by both seasonal economic production activity and 

also by ranging seasonal metrological conditions which can either concentrate and trap pollutants in 

surface air or conversely disperse pollutants and improve air quality (see Peng et al., 2015; 

Chichowicz et al., 2017; Cheong et al. 2019). Therefore it is a further consideration that seasonal 

variation in air quality and pollution is an additional factor for consideration as a contributor to the 

seasonality of respiratory viral infections that have been reported. 
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It is most likely that each of these hypothesized mechanisms has some role, either in unison, or 

independently or that one mechanism dominates in particular conditions (Moryioma et al., 2020). 

While the precise mechanism that explains the relationship between environmental factors and 

disease prevalence is important, particularly because it may reveal optimal management 

interventions (of transmission and for treatment), statistical attribution of a strong correlate may 

suffice for effective management (e.g. Shaman et al., 2010).  

5. Critical assessment of studies of COVID-19 climate susceptibility 

Evidence from the many studies on viruses not dissimilar to SARS-CoV-2 suggests that a 

seasonal and environmentally-mediated signal should be seen in the novel COVID-19 epidemic. What 

do studies to date tell us? 

We comprehensively reviewed the preprint and peer reviewed literature on the topic of 

environmental influences of SARS-CoV-2 transmission. We used the Boolean search capability of 

Google Scholar to locate articles with the following keywords in the article title: “(COVID-19 OR 

SARS-CoV-2) AND (pollution OR humidity OR temperature OR UV OR climate OR weather 

OR season OR seasonality)”. This returned 287 articles on 8 July 2020. On the same day, additional 

searches for these search terms were conducted in the title fields on PubMed and the title, abstract 

and subject fields on the WHO COVID-19 literature database (https://search.bvsalud.org/global-

literature-on-novel-coronavirus-2019-ncov/), returning 469 and 170 publications, respectively. All 

searches were constrained to the year 2020. We selected only studies on infection rates or similar 

metrics, excluding studies based solely on mortality rates. The combined list, which contained many 

duplicates and triplicates due to the intersection of three sets of search results, was screened manually 

and papers suitable for inclusion in our review were retained. Five reviews in preprint were excluded 

from our assessment, but we did verify that we included in our analysis all relevant papers cited in 

these reviews. Since we a priori expected many preprint manuscripts, we did not embark on the 

review with the intention to be PRISMA compliant (as would be necessary for a meta-analysis and 

systematic reviews), and hence we did not count the number of duplicates and triplicates, the 

ineligible studies discarded, and the reasons for why they were discarded. 

The result of our searches was 42 peer reviewed publications and 80 preprint manuscripts 

(Supplementary Tables S1 and S2). The peer reviewed publications were subject to normal review 

scrutiny, and form the main body of this section. We did not assess the outcomes of the preprint papers 

(i.e. they are not discussed in detail as part of Section 5.5), in order to avoid erroneous assessment 

based on untested data, or alternatively applying our own peer-review process. 

The peer reviewed research conducted on the role of climatic variables in COVID-19 

transmission has been highly interdisciplinary, with authors spanning 25 broad academic 

backgrounds. The largest number of authors (27) currently work in disciplines of geography, earth 

and environmental sciences, which incorporate climate science. This is closely followed by the 26 

authors working in public health, and 25 authors in disciplines of epidemiology, virology and disease 

control. A total of 40% of the authors are in fields directly relating to COVID-19 and climate. There 

is, however, a notable spread of authors in more distal academic and medical fields. Notably, the 

authorship of 18 papers included nobody with an explicitly medical background. Of the multi-

authored papers, only three were by researchers who all come from the same disciplinary 

background, and for two of these, the backgrounds were epidemiology and medical laboratories.  

Collectively, the peer reviewed studies provide only weak evidence that SARS-CoV-2 is more 

infectious under lower temperatures and lower levels of absolute humidity. Similarly ambiguous 

relationships for air pollution, UV and wind are reported, with a smaller focus on these variables in 

the literature. There are considerable differences in the ways in which the relationships have been 

established, resulting from which co-varying variables were included or not; use of different metrics 

of viral transmission, and which statistical methods were applied. In many cases, insufficient 

information is provided on the methods and data used, making it impossible to replicate the analyses. 

5.1 Geographical Coverage of Studies 
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This section is relevant because of the high dependence on spatial variance to provide 

information at this early stage of the pandemic. The geographical coverage of the literature on the 

environmental influences on SARS-CoV-2 is heavily weighted to the northern hemisphere. Data from 

Bolivia, Ecuador, Brazil and Australia were included in only five studies, i.e. a tenth of the total. Most 

of the southern hemisphere studies are included in studies claiming to be near global in their 

sampling. Only eight studies focus specifically on a country in the southern hemisphere, Brazil (Auler 

et al., 2020; da Silva et al., 2020; Figueiredo et al., 2020; Neto and de Melo, 2020; Prata et al., 2020; 

Rodrigues et al., 2020; Velásquez and Lara, 2020; Ward et al., 2020), and none of them consider any 

African country. 

5.2 Influential Variables 

Environmental variables considered in preprint and peer reviewed publications as modulators 

of SARS-CoV-2 transmission rates include mean, minimum and/or maximum daily temperature, and 

diurnal temperature range; an undefined ‘humidity’ variable, relative humidity, specific humidity 

and absolute humidity; dew point temperature; rainfall; wind speed or wind power; air pressure; 

some metric of solar or UV radiation; and ‘air quality’ (Supplementary Tables S1 and S2). These 

choices are apparently strongly influenced by the literature on other viral respiratory diseases. 

Which definition of ‘humidity,’ is selected. Humidity broadly refers to the amount of water 

vapour held by air (which effects on the viability of pathogens in aerosol droplets – see Section 4). 

Studies must account for the fact that atmospheric pressure and temperature modulate the amount 

of water that a volume of air is able to hold in a gaseous state. A relatively small amount of water 

vapour is able to saturate cold air, whereas more water vapour is required to bring warm air to 

saturation. The studies we reviewed that seek to establish if humidity is a potential driver of COVID-

19 use absolute humidity, relative humidity or specific humidity. Two studies use ‘humidity’ (Bashir et al., 

2020; Tosepu et al., 2020) without qualifying whether it is relative, specific or absolute humidity –this 

ambiguous use of the term does not permit reproducibility or meta-analysis. Absolute humidity is 

defined as the total amount of water vapour held by air, in units of g.m-3. A temperature change will 

not necessarily change the moisture content; it simply changes the capacity of the volume of air to 

hold water. Only if temperature drops to saturation point, will condensation occur and water vapour 

content (but not relative humidity) will drop. If temperature increases, water vapour content will 

only increase if a moisture source is available from where evaporation can take place, or if a moist air 

mass moves in to replace the drier one. Relative humidity is the fraction of water vapour, expressed 

as a %, contained by air relative to the amount of water vapour required to result in saturation of air 

at a given temperature and pressure. Specific humidity is the amount of water vapour per unit mass 

of dry air (g.g-1). The distinction between relative and absolute humidity matters less in situations 

when the seasonal thermal range is constrained to a narrow band, such as at some mid-latitude 

coastal locations and near the tropics. However, in space-for-time studies – such as are required for 

global syntheses of seasonality effects – the reliance on absolute humidity should allow the 

investigator to arrive at plausible conclusions about atmospheric water vapour’s effect on viral 

transmissibility (Gupta et al., 2020; Liu et al., 2020a; Poirier et al., 2020). 

Environmental data were obtained from various sources such as ERA interim (Dee et al., 2011) 

or local meteorological organisations, and may be daily data or aggregates on temporal scales from 

10 days to months. Some use ‘seasonal climatologies’, i.e. generalized long-term data. Since 

symptoms first manifest 3 to 14 days after infection, analyses sometimes apply lags between the 

independent and dependent variables of up to 14 (Şahin, 2020) or 21 days (Zhu and Xie, 2020). Lags 

have been accommodated in the reviewed literature by applying moving average filters to the daily 

time series of environmental variables with a width of 7, 14 or 21 days (Zhu and Xie, 2020). Another 

approach is to base the analysis on 10-day aggregates of environmental data (e.g. Gupta et al., 2020). 

It is uncertain how such discretized intervals can be aligned with case data that is typically daily, but 

contains various delays. Some studies take the mean of the variable over the analytic time period; for 

example, Jahangiri et al. (2020) who ambiguously use either the mean temperature over the study 

period or over the year, or Liu et al. (2020a) and Sajadi et al. (2020) who use the mean of the 
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environmental variables over the period for which case incidence data were obtained. Most studies, 

do not account for lag effects (Bashir et al., 2020), or if they do, fail to adequately explain how lags 

were accommodated (e.g. Şahin, 2020). 

5.3 Dependent variables 

Which metric of SARS-CoV-2 transmission to use as dependent variable is critical in addressing 

the central question, “do environmental variables modulate the transmission of the virus?” We argue 

in Section 3.3 that the Basic Reproductive Number, R0, is the best parameter for this purpose since it 

excludes the effects spontaneous or imposed non-pharmacological control measures implemented to 

slow the spread of the disease, but which still incorporates the environmental influence of a particular 

place. The failure to adequately account for non-entrée influences is the Achilles heel of many of the 

studies reviewed. Of the literature we assessed (Supplementary Tables S1 and S2), only six studies 

base their assessment of the presence or magnitude of environmental influences on R0 as the 

dependent variable: Gao et al. (2020), Guo et al. (2020), Gupta and Gharehgozli (2020), Jamil et al. 

(2020), Jia (2020), and Yao et al. (2020).  

Jebril (2020), Luo et al. (2020), Poirier et al. (2020), and Wang et al. (2020a) used Rt (see Section 

3.3) as the response variable. Because Rt is very context specific and sensitive to social factors and 

interventions, using this parameter to assess the presence and size of environmental influences will 

in most instances have a poor signal:noise ratio. The usefulness of Rt is that it demonstrates how 

effective non-pharmaceutical intervention measures are in controlling an epidemic, and provides 

information on how regulators must adapt these interventions over time, based on health and 

economic goals. The non-environmental ‘noise’ can be filtered out, but this requires a great deal of 

data regarding the nature of the specific interventions applied, movement patterns, precise 

knowledge about testing and reporting (which is not necessarily constant), and so forth. None of the 

Rt based studies to date meet these preconditions, and are therefore not able to remove the non-

climatic (social) influences from the rapidly fluctuating Rt values. 

Another approach that holds merit is to use the growth rate or doubling time estimated from the 

exponential increase in cases as dependent variable (Carlton et al., 2020; Caspi et al., 2020; Ficetola 

and Rubolini, 2020; Jamil et al., 2020; Merow and Urban, 2020; Notari, 2020; Oliveiros et al., 2020; 

Sahafizadeh and Sartoli, 2020; Skutsch et al., 2020). Merow and Urban (2020) argue that these kinds 

of metric are robust even if the details of testing and reporting vary from place to place, as long as 

the detection probabilities at a place remain constant over the estimation period. This argument is 

equally valid for estimates of R0. 

Another variation to this theme of estimating growth rate related parameters as an indication of 

transmissibility is to take rates as time required to progress from the first reported case to 200 cases 

(Kotsiou et al., 2020), or to use the cumulative number of cases reached 28 days after the first reported 

case (Leung et al., 2020). However, these approaches effectively fit a linear model to case vs. time data, 

which does not account for the accelerating rate of increase in number of cases. Lolli et al. (2020) use 

the daily ICU case anomaly, but this of course entirely excludes all but the most severely ill patients 

and cannot be seen as being representative of disease transmissibility. 

Other data-related considerations, particularly in relation to studies that use parameter 

estimates of the exponential relationship that daily new infections has with time, are that care must 

be taken to i) omit cases that result from the importation of infected individuals from the time series 

(i.e. new cases must be local transmissions only), and ii) the case data obtained after the intervention 

period begins. Requirement (i) can be affected by including only the portion of the time series after a 

certain minimum number of cases are present, as has been done by Caspi et al. (2020), Merow and 

Urban (2020), and Notari et al. (2020). Requirement (ii) is met by Ficetola and Rubolini (2020), Merow 

and Urban (2020), Notari et al. (2020), and possibly for Oliveiros et al. (2020); although we are 

uncertain how strictly this was implemented due to their statement that Oliveiros et al. (2020, p. 4) 

“considered mainly the initial days of the time series”. We will comment on the reproducibility of 

methods in Section 6. Requirement (ii) is implicit in the definition of R0; but the two requirements box 

the usable data between ‘not too early’ and ‘not too late’.  
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The bulk of the studies in Supplementary Tables S1 and S2 used daily new or cumulative 

confirmed cases as response variables. This practice is not advised for largely the same reasons given 

for Rt. Such daily data are likely to carry too many other non-climatic signals to be generally used – 

unless, of course, analysed subject to a specific set of controls that would be difficult to extend to 

global analyses of the kind we are interested in here.  

5.4 Modelling approaches 

The studies in Supplementary Tables S1 and S2 employed the following statistical methods to 

evaluate relationships between environmental variables and the transmission rate of SARS-CoV-2: 

various linear, logistic, or exponential parametric models (Auler et al., 2020; Chen et al., 2020a; Guo 

et al., 2020; Jamil et al., 2020; Lin et al., 2020; Luo et al., 2020; Oliveiros et al., 2020; Poirier et al., 2020; 

Prata et al., 2020; Rahman et al., 2020; Shi et al., 2020; Wu et al., 2020; Yao et al., 2020; Zhu and Xie, 

2020), sometimes with the inclusion of non-Gaussian error structures as permitted by Generalized 

Linear Models, GLM (e.g. Bannister-Tyrrell et al., 2020; Chen et al., 2020a; Leung et al., 2020; Liu et 

al., 2020a; Notari, 2020; Tobias and Molina, 2020; Wang et al., 2020b; Xu et al., 2020); Generalized 

Additive Models, GAM (e.g. Prata et al., 2020; Qi et al., 2020; Ujie et al., 2020; Wu et al., 2020; Zhu and 

Xie, 2020); distributed lag panel regression models (Carlton et al., 2020); machine learning such as 

support vector machines and decision trees (Gupta and Gharehgozli, 2020); local panel projection 

estimator within a country-level dynamic framework (Wilson, 2020); Loess smoothers/curves (Poirier 

et al., 2020); Bayesian methods (Merow and Urban, 2020); and Pearson’s, Spearman’s, and Kendall’s 

correlations (e.g. Ahmadi et al., 2020; Alipio, 2020; Bashir et al., 2020; Bhattacharjee, 2020; Caspi et al., 

2020; Gupta et al., 2020; Şahin, 2020; Tosepu et al., 2020).  

Regression approaches allow functional relationships to be established between the driver (any 

of the environmental influences) and response variable (a metric of infection rate), allowing the 

magnitude of the environmental effect can be determined. Robust implementation of a regression 

approach would include place as a random effect (i.e. as mixed models, also known as panel 

regressions; for example, Briz-Redón and Serrano-Aroca, 2020; Carlton et al., 2020; Carlton and Meng, 

2020; Ficetola and Rubolini, 2020; Sobral et al., 2020; Winston, 2020). This allows the fact that the effect 

of the environment on viral transmission varies from place to place, for social and historical reasons. 

Multiple regression allows the simultaneous evaluation of several predictor variables in terms of the 

influence they collectively or individually have on the outcome (e.g. Mollalo et al., 2020; Pirouz et al., 

2020; Yao et al., 2020). It is possible to establish which of the drivers, if any, has the greatest 

contribution to an effect seen in the outcome variable. For example, Mollalo et al. (2020) used multiple 

regression to evaluate the simultaneous contributions of environmental and socio-economic 

influences on USA county case counts. If parameterized properly, multiple regression can be used to 

rule out contributions of potentially confounding and multi-collinear variables. 

Loess smoothers and correlation approaches, although useful for a qualitative assessment for 

the presence of environmental influences, cannot inform us on the relative importance of 

environmental modulators versus other location-specific or social influences. Similar non-

quantitative approaches that only hint at the presence of relationships include the simple visual 

mapping of the number of infections in relation to climate zones or latitudes (Arias-Reyes et al., 2020; 

Bukhari and Jameel, 2020; Gunthe et al., 2020; Jebril, 2020; Sajadi et al., 2020). These methods can at 

best raise an hypothesis that requires further testing. 

Other approaches worth mentioning include the application of wavelet transforms (Iqbal et al., 

2020), multivariate analyses (Auler et al., 2020), and ecological niche models (Araújo and Naimi, 2020; 

Coro, 2020). Wavelet analysis, which requires a long time series, provides only a qualitative view of 

disease dynamics as modulated by weather or climate variables. Ecological niche models are not 

suited for studies on COVID-19 because disease dynamics are entirely different mechanistically from 

the principles that govern organisms and ecological systems (as reviewed by Carlson et al., 2020). 

Multivariate methods are useful for examining environmental variable modulation of COVID-19, 

since they provide many, if not all, of the benefits of multiple regressions, plus they have other 

features that confer flexibility and the ability to accommodate a range of data types. They are ideally 
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suited for situations where there are many factors that might contribute simultaneously to the 

variation of one or many outcome variables. The application of a multivariate approach by Auler et 

al. (2020) uses data on the daily new confirmed cases (see critique above), and for this reason we do 

not consider the findings of this study further in our review. 

Dynamic or mechanistic models (predominantly the compartment models of the SEIR family) 

are useful tools to explore how seasonality may impact on the evolution of the disease, and provide 

a way to discern the signature of seasonality in near real-time observational data. Such an 

investigation recently reported on by Baker et al. (2020) concluded that under the high infection rates 

of COVID-19, within the context of almost the entire population being susceptible at the onset of the 

disease, seasonality effects on the disease evolution will be limited initially, but cannot be discounted 

later, for instance if the immunity gained by recovered patients is temporary, so that they become 

susceptible again in subsequent years. A similar study by Neher et al. (2020) came to similar 

conclusions.  

5.5 Findings 

We will now discuss findings only of those studies that have undergone peer review, have 

selected appropriate environmental data as influential variables, relied on suitable response variables 

(such as R0 or parametric estimates) to estimate the local viral transmission rates in the absence of 

policy control measures, accounted for potential confounding influences, and applied appropriate 

statistical models. 

The only peer reviewed paper that fulfils most of these criteria is that by Yao et al. (2020), which 

undertakes an assessment of the effects that temperature, relative humidity, and UV radiation have 

on the R0. This study has a relatively narrow geographical focus: it includes 227 Chinese cities. R0 was 

calculated from data over the period 10 February to 9 March, 2020. The authors assert that these data 

are for the “expected number of secondary cases generated by an initial infectious individual, in a 

completely susceptible population” (Yao et al., 2020, p. 1). All daily environmental data were spatially 

matched as closely as possible to the cities they represent. Given the large number of cities, each with 

its unique climate, this kind of study lends itself to a regression-type analysis if each of the daily 

observations per environmental variable are averaged over the study period duration before relating 

them to each locality’s R0. This study did not find an influence due to any of the environmental 

variables studied on the rate of SARS-CoV-2 transmission. A weakness of the study was the failure 

to account in their multiple regression model for any of a large number of city-level confounding 

influences. 

A single published study does not provide robust support for the presence or absence of a 

climatic influence on SARS-CoV-2 transmission rates. The preprint studies (Carlton et al., 2020; 

Ficetola and Rubolini, 2020; Gupta and Gharehgozli, 2020; Leung et al., 2020; Lin et al., 2020; Merow 

and Urban, 2020; Wan et al., 2020; Wilson, 2020) offer mixed statistical support (none, weak, or strong 

relationships) for the influence of environmental drivers. Carlton et al. (2020) show that that UV 

radiation affects COVID-19 growth rates, but not temperature or humidity. Merow and Urban (2020) 

offer comparable support for a UV radiation effect. According to Ficetola and Rubolini (2020) and 

Wan et al. (2020), COVID-19 transmission is greatest at a temperature of 5°C and 6.3°C, respectively; 

the former authors further show that transmission peaks at a specific humidity ~4-6 g.m-3 (peaking 

implying optimum conditions above and below which transmission drops off). Similarly, Leung et 

al. (2020) suggest support for the hypothesis that lower temperature and humidity enhance COVID-

19 transmission. Similar responses are seen by Lin et al. (2020) and Wilson (2020) with regards to 

temperature, but they also suggest an interaction between temperature and relative humidity (Lin et 

al., 2020) and temperature and mobility (Wilcon, 2020) in terms of modulating infection rates. In 

contrast, Gupta and Gharehgozli (2020) show that higher temperatures enhance the spread of the 

disease; they also show that viral transmission is enhanced under higher concentrations of PM2.5. 
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6. Discussion 

This pandemic has rapidly mobilised scientists from diverse disciplines in a possibly 

unprecedented way. Scientists have helpfully offered insights and methods based on their own 

disciplines They did so efficiently and swiftly, particularly in those countries most heavily affected 

by the pandemic early on. The rush to contribute knowledge about the future spread of COVID-19 

resulted in a flood of papers appearing on preprint servers (Kwon, 2020), which will in due course 

be peer reviewed and some will be published. The pressure to speed up the peer review process, in 

order to address the urgent challenge, may result in a compromise in quality. In our screening process 

in Section 5 we scrutinized 29 peer reviewed publications and 23 preprint articles. Of these we found 

one published and potentially four preprint studies that offer insight into the climate-related SARS-

CoV-2 and COVID-19 dynamics and epidemiology with a reasonable degree of confidence and rigour.  

The general prevalence of climatologically-coupled seasonal signals and environmental variable 

modulation seen in the majority of other viral respiratory diseases creates the expectation for a similar 

effect on SARS-CoV-2 and in COVID-19 epidemiology. However, this virus and disease have only 

been spreading for 6 months. Observational evidence available to date has not yet been analysed 

sufficiently thoroughly to show that climate-related modulation is indeed a significant factor. The 

studies reviewed in Section 5 have aimed to find signs for such a signal, but a variety of 

methodological problems render a definitive conclusion premature. 

The currently available time-series do not capture a full annual cycle at any one location, or 

globally. The first studies appeared in late January on preprint servers (the majority of these are yet 

to be formally published as of mid-July 2020). As such, the initial reports looked for spatial variation 

in infectivity within a region and attempt to explain it in terms of associated variability in temperature, 

humidity or other environmental factor. Later studies could have benefitted from the larger datasets 

and a wider range of variation in the environmental drivers, resulting from the global spread, but 

became increasingly confounded by co-varying differences among the countries’ socio-economic 

conditions and pandemic responses. To date, the ‘global’ messages coming from the current body of 

COVID-19 research in general, and in respect of the environmental drivers of the disease, do not 

equitably address the specific dynamics and considerations pertaining to the ‘Global South’. This is 

in part likely due to the slightly later arrival of the disease in the southern hemisphere. Thus fewer 

southern hemisphere countries have suffered outbreaks of the same scale and severity (at the stage 

of assembling this manuscript) as the epidemics in the Far East, Europe and the United States. At the 

time of writing the situation in some South American countries (such as Brazil and Peru) was 

deteriorating quickly. There is also a technical challenge in countries with relatively lower medical 

health research capacity, such as those in Africa (see Beran et al., 2017). The upshot is a 

circumstantially driven bias in the current literature which needs to be corrected, for several reasons. 

Neglecting the hemispheric disparities in knowledge regarding the role of environmental variables 

on SARS-CoV-2 and the modulation of the COVID-19 epidemic influences the discussion on the 

attribution of the reductions in cases. Northern countries are likely to move past peak daily infections 

coincidentally with the height of summer. It also neglects the urgent consideration of countries which 

are moving into winter. Importantly, many of the countries in the global south have already-stressed 

healthcare systems, and accurate modelling is critical in determining policy interventions for control 

measures to protect the lives of some of the world’s most vulnerable people. The collective global 

experience can provide a shortcut to knowledge and information regarding role of environmental 

variables on SARS-CoV-2 biology and modulation of COVID-19 epidemiology and seasonality, 

applicable anywhere, by exploiting the phased latitudinal phasing of seasons to conduct research in 

all climates zones simultaneously. This leads us to call for global collaboration on this topic.  

Much of the work we reviewed failed to carefully consider the implications of the choice of 

available metrics for viral transmission. We deem R0 to be best suited for the purpose of finding 

environmental sensitivity and seasonal climatic signals; some parametric estimates from regression 

models can also work, provided that care is taken to constrain the cases to those that result from local 

transmissions up to the time when non-pharmaceutical interventions come into play. R0 is closely 
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aligned with the SIR-SEIR model family, and can be derived from the inversion of time series of case 

rate data using these models (see below). 

Due to the effects of the incubation period it may be important to use daily data (rather than 

data averaged over a several days) and a suitable lag period for both environmental and test-result 

data incorporated in the analysis. In the case of a highly infectious disease such as COVID-19, 

manifesting in a densely populated location, the effect of daily weather variations on transmission 

mechanisms is likely to be overwhelmed by the sheer magnitude of exposure. It may be that 

environmental modulation is still an important factor in these circumstances, but may reflect in 

indoor environments rather than outdoor ambient conditions (see Morawska and Cao, 2020). Once 

the disease spread begins to approach an equilibrium (Rt ~1) the environmental effect may become 

more apparent.  

To date, studies that attempted to discern the effects of climate by comparing infection rates 

across regions with different climates have been compromised by the heterogeneities that exist across 

locations and times in terms of control measures applied (see the COVID-19 Health System Response 

Monitor), and social, economic and cultural conditions that affect the practise of social distancing. 

Most studies have omitted variables such as poverty, population size and demographics (particularly 

age frequencies of the populace), the density of the population and how much high resolution 

clustering is present (such as in the informal settlements in many countries of the South), the degree 

of urbanization, access to healthcare, mobility and migration, various types of comorbidities (e.g. TB, 

HIV, malnourishment), the effect of the BCG vaccine (Escobar et al., 2020), and a plethora of 

additional influences which are still not well understood with regards to how they influence the 

unfolding of COVID-19 across the globe. Simple graphing of case numbers across time in relation 

some of the potentially influential drivers (as for example permitted by the Our World in Data 

Coronavirus Pandemic Data Explorer will help reveal which of the additional variables to admit into 

the analysis.  

An important obstacle to finding the seasonal signal in the global COVID-19 data is to find a 

way to deal with the hemispheric disparity (gradient away from the equator) in out-of-phase climatic 

signals. Comparing the evolution of COVID-19 for northern hemisphere countries moving from 

winter to summer, to its evolution is southern hemisphere countries moving from summer to winter, 

provides a valuable opportunity to discern the signature of seasonality. However, such a comparison 

will remains compromised by short time-series and can only fully fulfil its potential once both 

hemispheres have experienced a full annual seasonal cycle. 

We is concluded that due to high values of R0 exhibited by SARS-CoV-2, seasonality effects 

should not be relied on to significantly dampen the infection rate even in the midst of the northern 

hemisphere approaching summer. Should the disease persist several years in the future, under the 

condition of an increasing fraction of the population of a given region having immunity, it is likely 

the COVID-19 will exhibit an increasingly clear seasonal cycle. Such insights will only be clearly 

apparent after the main pandemic surge in 2020. 

We suggest some avenues for progress in addressing the environmental sensitivity of the disease. 

In addition to regression and correlative empirical approaches (Section 5.4), non-linear methods can 

also be applied. These may include the use of extended Kalman filters and the inversion of 

compartment models. Extended Kalman filters are commonly used in data assimilation to infer 

parameters from high-dimensional input data sets. Recently, Pei et al. (2020) applied an ensemble-

adjusted Kalman filter to infer the differential spatial distribution of COVID-19 infection rates from 

empirical data collected across different counties in the USA, followed by their application in a SEIR 

model. It may be feasible to apply this technique to estimate the relative roles of non-pharmaceutical 

control measures and seasonality in determining the infection rate. Inverse modelling, particularly 

using SEIR-type models, can infer infection rates from case and testing data, as demonstrated for the 

Hubai Province in China (Anastassopoulou et al., 2020). Making use of large ensembles that ingest 

data from many locations and systematically explore various combinations of the forcings can 

potentially explore the relative sensitivities of infection rates to non-pharmaceutical control measures 

and seasonality.  
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We recommend the use of regression-type statistical analyses than can be adapted to 

accommodate a many of simultaneous driving variables, including both environmental and non-

environmental factors, and thus remove confounding influences. These models also readily accept 

non-Gaussian error terms and can account for autocorrelation in time series. Lags between exposure 

and confirmation as infectious can be accommodated by distributed lag non-linear models (e.g. 

Gasparrini et al., 2015; Liu et al., 2019). These techniques rely on Generalised Additive Models (GAMs) 

for the flexible estimation of smooth responses and parametric terms. The recognition that disease 

dynamics may differ between locations for a multitude of reasons requires that ‘location’ be specified 

as random effect (notable examples involving COVID-19 include Carlton et al., 2020 and Wilson, 

2020). Such approaches can be accommodated by longitudinal models or panel regressions by 

biologists and economists, respectively (sensu Gardiner et al., 2009), which regress the dependant 

variable (plus covariates and constraints) as a function of time. Care should be given to estimations 

of uncertainties around model predictions. This is permitted by Markov Chain Monte Carlo (MCMC) 

approaches (e.g. Hesterbeek et al., 2015). Knowing the uncertainties is necessary in assessing 

projections from competing models in the public policy space. Finally, multivariate approaches, such 

as Redundancy Analysis (RDA) or Constrained Correspondence Analysis (CCA), will also accept a 

creative assignment of a host of response and influential variables simultaneously, and can be 

employed when a research is faced with many potentially contributing factors, each of which might 

explain a portion of the overall variability. 

We noted a lamentable deficiency in the application of reproducible research practices in many 

of the publications we reviewed. Clear, precise reporting of data sources and quality, data screening 

practices, listings of the ancillary data sources used, a detailed account of the data processing and 

statistical procedures and software used, and the exact reporting of all relevant diagnostic and 

supporting statistics, tables and figures is essential, particularly in this global emergency where 

published data and information are used operationally, and where robust guidance is most likely to 

emerge from meta-analyses of many studies. Lives, livelihoods and economies, and the public trust 

in science depends on rigour and reproducibility. It is thus incumbent upon global research 

organisations and agencies such as the World Health Organization (WHO) and the World 

Meteorological Organisation (WMO) to provide leadership and guidance and to define best practice 

protocols for the analysis of data and production of information. To this end the WHO has produced 

a document entitled “A Coordinated Global Research Roadmap: 2019 Novel Coronavirus” (WHO, 

2020). Its scope is broad, and thus does not specifically address some of the raised in our review. The 

authors are aware (Shumake-Guillemot, pers. comm.) that at the time of writing the WMO has agreed 

to set up a Task Team which will focus on the environmental aspects of the COVID-19 pandemic. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Discipline 

backgrounds of authors whose publications were included in this review. Table S1: Studies that have aimed to 

establish links between SARS-CoV-2 infections and environmental variables, notably temperature and humidity. 

All studies have in common a finding that the transmission of the virus is enhanced under colder, dryer 

conditions. Table S2: Studies that have aimed to establish links between SARS-CoV-2 infections and 

environmental variables, notably temperature and humidity. All studies have in common a finding that the 

transmission of the virus is enhanced under colder, dryer conditions.  
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