Applied Energy Materials

Polypyrrole-promoted rGO-MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products

Neeraj Kumar^{1*,} Santosh Kumar^{2,} Rashi Gusain^{1,3,} Ncholu Manyala^{4,} Salvador Eslava² and Suprakas Sinha Ray^{1,3*}

- ¹ Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- ² Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, London
- ³ Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
- ⁴Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0002, South Africa
- *Corresponding authors: N. Kumar (nkumar@csir.co.za; ynk.neeraj@gmail.com), and S. S. Ray (responding authors: N. Kumar (nkumar@csir.co.za; ynk.neeraj@gmail.com), and S. S. Ray (responding-authors: S. Ray (responding-authors)

https://pubs.acs.org/doi/10.1021/acsaem.0c01602

Abstract

Advanced functionalized nanomaterials are indispensable for the efficient production of solar fuels via the reduction of CO₂ under solar light. This approach simultaneously addresses two major issues: (a) global warming due to anthropogenic CO₂ production and (b) the ongoing energy crisis. Owing to their high catalytic activity and visible-light absorption, MoS2 has recently emerged as a suitable candidate for the photocatalytic production of solar fuels from water splitting and CO₂ reduction. However, it currently shows poor conversion efficiency because of low adsorption of reactant gases, fast radiative recombination, and low chemical stability; these factors limit their practical applicability. In this CO₂ photoreduction and H₂ production were enhanced by integrating photoabsorber MoS₂ and N-containing conducting polymer polypyrrole (PPy) on reduced graphene oxide (rGO). rGO-MoS₂/PPy nanocomposites with various amounts of PPy were fabricated and morphologically, structurally, and optically characterized using several techniques. The optimal rGO-MoS₂/PPy nanocomposite was found to exhibit a remarkable production of CO (3.95 μ mol g⁻¹ h⁻¹), CH₄ (1.50 μ mol g⁻¹ h⁻¹), and H_2 (4.19 µmol $g^{-1} h^{-1}$) in the photocatalytic reduction of CO_2 in an aqueous suspension under simulated sunlight. The enhanced photocatalytic performance of the nanocomposites was attributed to the beneficial combination of the rGO skeleton, MoS₂ nanosheets, and *in situ* polymerized conductive PPy; this effectively promoted charge transfer, delayed recombination, improved light absorption, and CO₂ adsorption. In summary, this study describes an inexpensive non-noble metal photocatalyst with three components for the efficient photoreduction of CO2 into clean solar fuels.