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Abstract 14 

 15 

 Southern African biomes experience significant changes in the distribution of rainfall that are 16 

linked to El Ni~no–Southern Oscillation. As such, an understanding of the spatio-temporal 17 

rainfall trends is key in predicting rainfall patterns as well as validation of climate change 18 

projections. Currently, the available information on rainfall trends in southern Africa is scanty 19 

with most studies focusing either on the spatial or the temporal dimension at localised levels. 20 

The novelty of this study is its regional aspect (i.e. all of southern African arid and semi-arid 21 

biomes) and the simultaneous integration of space and time in rainfall trend analysis through 22 

the use of space time rainfall cube. In this study, we simultaneously examined spatial and 23 

temporal rainfall trends based on the space-time rainfall cube derived from 1981 to 2016 24 

CHIRPS satellite rainfall data. The space time rainfall trend analysis revealed a significant (P 25 

< 0.05) decrease of rainfall across most biomes particularly in the northern parts of the savanna 26 

biome and southwestern biomes (i.e. karoo, desert and fynbos). Statistically significant (P < 27 

0.05) rainfall increase was observed in the central parts of the region mostly within the savanna 28 

biome. In terms of the magnitude of rainfall change, some of the areas experienced as much as 29 

12 mm rainfall decrease in the mean annual rainfall while others recorded an increase of 14 30 

mm. Our results provide baseline information for climate change adaptation and ecosystem 31 

conservation. 32 

 33 
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 37 

1 INTRODUCTION 38 

The United Nations has identified global climate change as a key challenge of the 21st century  39 

(Davis-Reddy and Vincent, 2017) with serious threats to ecosystems and society (Gosling et 40 

al., 2011). Within southern Africa, severe and widespread droughts have occurred during 41 

1982–1984, 1991–1992, and recently the 2015-2016 season drought was the driest since the 42 

early 1980s with critical impacts on ecosystems and food security (Archer et al., 2017). 43 

Furthermore, most parts in Africa are projected to have a possible decrease in rainfall as a result 44 

of global warming (Mazvimavi, 2010).  45 

 46 

The global warming effects together with expanding population and the resulting increased 47 

pressure on ecosystems could lead to negative impacts on southern African societies which are 48 

predominantly rural and survive on natural ecosystems (Dalal-Clayton, 1997). Studies claim 49 

that global warming will result in extreme weather events (droughts and floods) (Fauchereau 50 

et al., 2003). However, the magnitude of these extreme events is not known (Kusangaya et al., 51 

2013). This is despite the fact that these extreme events often have devastating consequences 52 

on society for example the cyclone Idai which started on the 14th of March 2019 affected 53 

Mozambique, Zimbabwe and Malawi killing more than 1000 people and destroying more than 54 

50 000 houses (Reliefweb, 2019). The recent 2015/2016 drought season which caused severe 55 

crop and ecosystem failure in the region (Archer et al., 2017) also points to the region’s 56 

vulnerability to the effects of global warming. It is therefore imperative to assess the historical 57 

rainfall trends in order to understand future rainfall trends so that societies can be better 58 

prepared especially in the case precipitation decreases. 59 

 60 

The literature on historical rainfall trends in southern Africa is scanty and fragmented and based 61 

on point level analysis (Kusangaya et al., 2013). The paucity of this literature was raised as a 62 

major concern in the second assessment report of the Intergovernmental Panel on Climate 63 

Change (IPCC) which noted insufficient studies on observed historical trends in climate 64 

extremes (Toggweiler, 2001). Most of the available studies on rainfall trends are at country and 65 

river basin level e.g. Kampata et al. (2008) found no evidence of significant trends in the annual 66 

rainfall at individual stations of the Zambezi basin in Zambia. (Mazvimavi, 2010) also found 67 



no evidence of significant trends in rainfall on all 40 weather stations used in Zimbabwe. 68 

Fauchereau et al. (2003), did a similar study over southern Africa (1950-1988) and found no 69 

significant changes in the late (January-March) season rainfall.  70 

 71 

A comprehensive review of rainfall trend studies covering southern Africa was done by 72 

Kusangaya et al. (2013). (Nicholson, 1993) analysed rainfall trends between the 1970-1990 73 

period based on rain gauge data. The results of the study showed negative rainfall trends across 74 

the whole African continent except for East Africa. A study by (Shongwe et al., 2009) revealed 75 

decreasing rainfall trend in the southwestern parts of southern Africa and increasing rainfall 76 

trend in the northern parts of the region mainly covering northernmost parts of  Zambia, Malawi 77 

and Mozambique. A similar study on rainfall trend analysis (1961-2000) based on ground 78 

rainfall station data by (New et al., 2006) in Southern Africa also found negative rainfall trends 79 

across most rainfall stations. On the contrary a study by (Joubert et al., 1996) revealed a 80 

declining trend of rainfall for southern Africa. However, this decline was not statistically 81 

significant. Statistically significant rainfall decrease in areas between the equator and 20o South 82 

Latitude was reported by (Morishima and Akasaka, 2010) between 1979-2007 period. 83 

 84 

The major weakness of these studies is that they do not simultaneously consider space and time 85 

in the trend analysis and they are restricted to the location of rain gauges which are limited in 86 

spatial coverage (Chikodzi and Mutowo, 2014). By considering time separately in rainfall trend 87 

analysis, the existing studies fail to detect rainfall trend clusters which are slowly emerging 88 

whilst considering space separately might detect less relevant rainfall trend clusters, i.e. those 89 

that have been in existence over a long time, rather than emerging ones (Neill et al., 2005). 90 

Furthermore, the analysis of rainfall trends at administrative or river basin level does not always 91 

reflect southern Africa’s main rainfall zones. In addition, such analysis cannot be extrapolated 92 

to the southern African regional level mainly due to the use of different methodologies and 93 

datasets check for reference.  94 

 95 

Global circulation models provide an alternative source of regional information on rainfall 96 

trends. However, the problem with these models, is that they do not accurately model regional 97 

trends and different models sometimes show conflicting results of rainfall trends. For example, 98 

(Dai, 2013) in a study entitled “Increasing drought under global warming in observations and 99 
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models” reported an increase of drought risk due to precipitation decreases over Africa. On the 100 

other hand, (Trenberth et al., 2013) found no significant increase in drought trends. The 101 

differences in the results of these two studies are partly attributed to different methodologies 102 

used (Seneviratne, 2012). 103 

 104 

In this regard, the aims of the study are to: (i) investigate the intra-annual and inter-annual 105 

rainfall patterns over the southern African biomes, (ii) determine if there is any significant trend 106 

in the long-term rainfall amounts over space and time and (iii) compute, on a pixel level the 107 

magnitude of the rainfall change (total increase or decrease of rainfall (mm)) over a 36-year 108 

period (1981-2016) across southern African biomes. We hypothesize the presence of negative 109 

rainfall trends across southern African biomes due to increased frequency and intensity of 110 

droughts. 111 

2. METHODS 112 

The study area, southern African biomes lies between latitude 6oN to 35oS and longitude 10oE 113 

to 41oE (Figure 1). In terms of precipitation, the southern African rainy season is between 114 

October and April for summer rainfall biomes i.e. desert, karoo, savanna and grassland, with 115 

peak rainfall received between December and February. The fynbos biome receives winter 116 

rainfall between May and September. 117 

 118 

Figure 1: location of study area showing southern African biomes used in the rainfall trend analysis.  119 

 120 



The El Niño Southern Oscillation (ENSO) controls inter-annual rainfall variability over the 121 

Southern African. The ENSO phenomenon is triggered by variations in sea-surface temperature 122 

(SST) in the equatorial Pacific (Unganai and Kogan, 1998). The El Niño (i.e. warm phase of 123 

the ENSO) result in below average rainfall over greater parts of the region while the La Niña 124 

(i.e. cold phase of ENSO) results in above average rainfall which normally leads to flooding. 125 

Some of the strongest El Niño events are 1982/83 and 2015/16 rainfall seasons which resulted 126 

in severe droughts (Davis-Reddy & Vincent, 2017). These two ENSO phases do not necessarily 127 

occur in a sequence and have been reported to occur every three to seven years (OCHA, 2019). 128 

In terms of duration, El Niño events rarely go beyond one year whilst La Niña events can go 129 

up to three years (OCHA, 2019) reaching peak during the November to February for the 130 

summer rainfall regions and March to June for the winter rainfall regions.  131 

 132 

Greater part of the region’s summer rainfall is also associated with latitudinal movement of the 133 

Inter-Tropical Convergence Zone (ITCZ) and Congo air boundary (CAB) (Junginger and 134 

Trauth, 2012). CAB is a belt of converging airstreams that create a belt of low pressure which 135 

results in high rainfall (Marchant et al., 2007). During the summer, the ITCZ and CAB moves 136 

southwards causing widespread rainfall especially when the ITCZ and CAB converge (Nash 137 

and Endfield, 2002). The dry season occurs when the ITCZ and CAB moves northwards 138 

(Unganai & Kogan, 1998).  139 

 140 

Also important in regulating southern African rainfall is the Indian Ocean Dipole (IOD), which 141 

refers to the difference in sea surface temperatures in the eastern and western part of the Indian 142 

ocean (Marchant et al., 2007). The western Indian Ocean characterised by abnormally warm 143 

(SSTs) whilst and the eastern Indian Ocean is characterised by abnormally cold SSTs 144 

(Marchant et al., 2007). During the positive IOD warmer sea surface water moves towards the 145 

western Indian ocean which increases rainfall over Africa and causes drought in Australia. The 146 

negative IOD has an opposite effect, strong winds push warm water towards Australia which 147 

result in less rainfall over Africa . (Marchant et al., 2007). Unganai and Kogan (1998) noted 148 

that southern Africa’s climate is also governed by the semi-permanent subtropical high-149 

pressure systems and by the downward leg of the Hadley cell which results in low rainfall. As 150 

a result greater parts of southern African biomes are semi-arid (Unganai & Kogan, 1998) with 151 

recurrent droughts.  152 



2.1 Rainfall data 153 

The study investigated the spatio-temporal rainfall trends over southern African biomes using 154 

Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) v2 satellite rainfall data 155 

covering the period 1981-2016. The CHIRPS rainfall data was generated by the U.S. 156 

Geological Survey Earth Resources Observation and Science Center in collaboration with the 157 

Santa Barbara Climate Hazards Group at the University of California (Funk et al., 2014). These 158 

data are available online at: http://chg.geog.ucsb.edu/data/chirps/. CHIRPS rainfall is 159 

developed by blending satellite based and climate models rainfall estimates, precipitation 160 

climatology and rainfall data from meteorological stations (Funk et al., 2014). The resultant 161 

data is provided at pentad, dekadal and monthly temporal resolution on a 0.05o spatial 162 

resolution and is available from 1981 to present. The main advantages of the CHIRPS satellite 163 

rainfall data is that it incorporates more meteorological station rainfall data than other satellite 164 

rainfall estimates products which help to improve its accuracy (Shukla et al., 2014). The 165 

CHIRPS data set has been shown to correlate with other global data sets such as the Global 166 

Precipitation Climatology Project (GPCP) (Shukla et al., 2014).  167 

 168 

We analysed the rainfall trends at biome level (Figure 1). Biomes generally follow the main 169 

climatic regions (Mucina and Rutherford, 2006) which makes them ideal for rainfall trend 170 

analysis. The biome data used in the study is based on the Terrestrial Ecoregions of the World 171 

data developed by (Olson et al., 2001). These data can be downloaded freely from the WWF 172 

website (https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world). 173 

 174 

2.2 Rainfall trend analysis 175 

In this study, we analysed the seasonal annual rainfall trends using October to April for the 176 

summer rainfall biomes and May to September for the Fynbos biome which receive rainfall in 177 

winter. For October to April annual season, we divided the rainfall season into two main parts 178 

as follows; (a) the early part of the rainy season, October-November-December (OND), and 179 

(b) the mid to end of the rainfall season, January-February-March (JFM). The rationale behind 180 

splitting the season into two parts is that most parts of the vegetated landscape of southern 181 

Africa are predominantly deciduous with vegetation greening up during the October to 182 

December period (Chidumayo, 2001; Cho et al., 2017). Thus the variations of OND rainfall 183 

will have an impact on the early stages of vegetation development, while the JFM rainfall 184 

https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world


variations will impact the final phases of vegetation development (Mazvimavi, 2010). The 185 

division of the rainfall into two parts also help to capture trends that may not be identified in 186 

the total annual precipitation  187 

 188 

2.2.1 Intra-annual and Inter-annual patterns 189 

In the context of rainfall trend analysis, intra-annual refers to rainfall variation that occur at a 190 

time scale of 1 year and inter-annual refers to rainfall variation across the years. In order to 191 

understand intra-annual historical rainfall trends, we computed the rainfall z-score 192 

(standardised difference) from 10 days and seasonal rainfall data. The z-score defines the 193 

number of standard deviation (anomaly) from the average i.e. decadal or seasonal long-term 194 

average (1981-2016). Z-score values can either be positive or negative, indicating whether the 195 

parameter i.e. rainfall is above or below the decadal or seasonal long-term average and by how 196 

many standard deviations. Standard deviation within the range of 1 to -1 is considered to be 197 

within the normal range. We computed the rainfall z-score for each biome using the following 198 

(Eq. 1) 199 

i
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Where 
ijZ is the z-score; 

ijx is the raw input value to be standardised; ix  is the mean of the 201 

population and i is the standard deviation. 202 

 203 

2.2.2 Spatio-temporal trends 204 

To test the hypothesis of the presence of negative rainfall trends, we used a space-time cube 205 

approach which enables the detection of statistical hot (wet spells i.e. high rainfall clusters) and 206 

cold spots (dry spells i.e. low rainfall clusters) (Gates, 2017). A space time cube is a 3 207 

dimensional data structure which is based on geographic coordinates (x and y) and z coordinate 208 

representing time (Abdrakhmanov et al., 2017). The space-time cube approach is important in 209 

rainfall trend analysis and it was successfully used to analyse the anthrax epidemic among 210 

livestock in Kazakhstan over the period 1933-2016 (Abdrakhmanov et al., 2017). The same 211 

approach can be applied to spatio-temporal rainfall analysis. Analysing rainfall data over space 212 

and time can show previously unknown trends (Gates, 2017) and provide answers to questions 213 

such as: where are the space-time drought hot spots located? ; are these hot-spot patterns / 214 

trends new, intensifying, persistent, or sporadic hot-spot patterns? (ESRI, 2018). 215 



We analysed the rainfall space-time trends based on a space-time rainfall cube covering 125 x 216 

125km using the emerging hotspot tool in ArcGIS software (ESRI, 2018). Each cube (bin) 217 

represents the rainfall station location, time and the rainfall value. The rainfall space-time cube 218 

approach enables the detection of rainfall trend clusters through time and shows areas or 219 

clusters with increasing or decreasing rainfall We selected this tool because of ability to 220 

simultaneously handle space and time in trend analysis. This tool takes as input a space-time 221 

Network Common Data Form (NetCDF) cube and then identifies trends in data using Mann-222 

Kendall trend test (ESRI, 2016). The resulting trends from the emerging hotspot tool are 223 

classified either as new, intensifying, diminishing, and sporadic hot and cold spots (Figure 4) 224 

(ESRI, 2018). The Mann-kendall trend test, is a nonparametric test which is used for detecting 225 

trends in time series data and is extensively used in rainfall and river discharge time series data 226 

(Kendall, 1945). The Mann-kendall trend test correlation coefficient, tau which ranges from -227 

1 and 1 provides the direction and strength of the trend in a time series. The advantages of the 228 

Mann-Kendall test over the Spear-man's rho test is that it less affected by small numbers of 229 

extreme outliers and it can also work with missing data (Croux and Dehon, 2010).  230 

 231 

We first calculated the intensity of clustering for both high and low rainfall values based on the 232 

Getis-Ord Gi* statistic for each rainfall cube representing location of a weather station. The 233 

Getis-Ord Gi* statistic, introduced by Getis and Ord provides an indication of where 234 

observations with either low or high values cluster. Locations of high spatial associations / 235 

clustering will have positive z-score (Songchitruksa and Zeng, 2010). On the other hand, 236 

negative z-score provides an indication of clustering of low values .We then evaluated the 237 

trends for the dry and wet spells using the Mann-Kendall trend test to detect whether a 238 

decreasing or increasing trend is present in the rainfall space time cube (Kendall, 1945; Gates, 239 

2017). The resultant map of the rainfall trends with the associated z-score and p values is shown 240 

in Figure 5. 241 

 242 

2.2.3 Quantification of the magnitude of the trend (rainfall increase or decrease) 243 

We first computed pixel-wise Mann-Kendall tau correlation coefficient to establish the 244 

direction of the rainfall trends. To quantify the magnitude of the trend i.e. total decrease or 245 

increase of rainfall (mm) over time, we computed a pixel-wise linear regression using time 246 

(years) as independent and annual rainfall as dependent variables. Here, the slope of the 247 

regression which gives the increase or decrease of rainfall was computed using a linear model 248 

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmorecreatecube.htm#ESRI_SECTION1_F1EA94A3BA8940E0B56AB08A302D1C08


and raster package within the statistical software environment (R Core Team, 2018). The 249 

resultant average slope map was multiplied by the number of years (1981-2016) i.e. 36 years 250 

to determine the magnitude of the trend. 251 

3 RESULTS AND DISCUSSIONS 252 

3.1 Intra-annual and inter-annual rainfall trends 253 

Figure 2 displays the intra-annual variability based on 10-day rainfall z-scores for the 36-year 254 

period (1981-2016) aggregated over the biomes. Negative Z-scores, representing below normal 255 

rainfall were mostly recorded in recent years, between 2014-2016 seasons mostly in the arid 256 

and semi-arid biomes. These negative z-score (i.e. dry spell) mainly occur between the October 257 

to December period for most biomes except the montane biome (Figure2). 258 

 259 



 260 

Figure 2: Intra-annual rainfall trends based on 10-day rainfall z-scores. 261 



A summary of the inter-annual rainfall trends is presented in Figure 3. At the seasonal annual 262 

time scale and during the October to December period (Figure 3a and b), we observe negative 263 

rainfall trend in all biomes except for the savanna, nama karoo and montane biomes which 264 

show an increasing rainfall trend. More biomes (grassland, desert, nama karoo, savanna and 265 

montane) show an increasing rainfall trend during the January to March period (Figure 3c). 266 

This might be attributed to the fact that this is the period when most cyclones in Southern Africa 267 

to occur. At the annual time scale, the succulent karoo biome has the steepest decrease of 268 

rainfall (slope= -0.04991) (Figure 3a). This is followed by the forest biome (slope = -0.04947) 269 

(Figure 3b). The observed increasing rainfall trend at the annual time-scale in the nama karoo 270 

biome (Figure 3a) is not statistically significant for greater part of the biome (Figure 6b) 271 



 272 

Figure 3: Inter-annual trends for: (a) annual rainfall (October-April for summer rainfall 273 

biomes and May-September for winter rainfall biomes); (b) early rainfall season (October-274 

December) and (c) mid to late rainfall season (January-March)  275 

3.2 Spatio-temporal analysis 276 

The analysis of the rainfall space-time cube showed a decreasing rainfall trend (dry spells, blue 277 

colour (Figure 4) across all the arid biomes, which are located in the south and southwestern 278 

parts of the region covering mostly the karoo, desert, fynbos biomes and western parts of the 279 

grassland biome. The decreasing trend is also observed in the forest biome during the late part 280 



of the season (i.e. January to March period). Cluster of increasing rainfall trends (wet spells, 281 

brown colour) are mainly found in the montane, grassland and western and central parts of the 282 

savanna region. We did not observe significant trend in the space time rainfall cube over greater 283 

parts of the savanna and the forest biome (Figure 4a) 284 

 285 

We observed the intensification of the dry spells (clusters of low rain) over the fynbos and 286 

karoo biomes (Figure 4). This area has been noted by the South African National Biodiversity 287 

Institute (SANBI) as an area of high concentrations of taxa of conservation concern (SANBI, 288 

2017). The other concern is the persistent dry spells mainly over the forest biome during the 289 

January to March period (Figure 4c, blue colour).  290 

 291 

 292 

 293 

Figure 4: Space-time rainfall trend based on 125X125km grid for: (a) annual rainfall (October-April for summer 294 
rainfall biomes and May-September for winter rainfall biomes); (b) early rainfall season (October-December) 295 
and (c) mid to late rainfall season (January-March). 296 

 297 



Table 1: Regional summary of space-time rainfall trends.  298 

                     Wet spell        dry spell 

New                     0                 0 

Consecutive         0                 0 

Intensifying          0                 17 

Persistent             41               36 

Diminishing         4                 1 

Sporadic               26               16 

Oscillating           0                  0 

Historical             1                  0 

                       Wet spell        dry spell  

New                      0               5 

Consecutive         0               0 

Intensifying          1               16 

Persistent              33             39 

Diminishing         1                0 

Sporadic               12              26 

Oscillating            0                0 

Historical              1                0 

                           Wet spell        dry spell  

New                           0                   0 

Consecutive               0                   0 

Intensifying                0                  2 

Persistent                    48                38 

Diminishing                0                 6 

Sporadic                      10               39 

Oscillating                   0                 0 

Historical                     0                 0 

Seasonal annual rainfall October to December season rainfall January to March season rainfall 

 299 

Table 1 show the summary of the space-time rainfall trends for all biomes. What is of more 300 

concern is the intensification of the dry spells for all the three periods. This trend has negative 301 

consequences on the vegetation development especially for the south western biomes.  302 

To get an insight into the evolution of space-time rainfall trends shown in Figure 4, we 303 

developed a 3-dimensional map of the space-time rainfall cube (Figure 5). For the first time, 304 

we were able to simultaneously observe the spatio-temporal trends of wet and dry spell clusters 305 

over southern African biomes. We observed intense clustering of dry spells over the desert and 306 

karoo biomes (Figure 5).  307 



 308 

  309 

Figure 5: 3-dimensional visualisation of the rainfall space-time cube hot spot 310 

 311 

3.3 Magnitude of Rainfall change (mm) 312 

Results of the pixel-wise Mann-kendall trend analysis are presented in Figure 6a. Statistically 313 

significant (p<0.05) negative rainfall trend was mainly observed over the desert, succulent 314 

karoo, fynbos, northern part of the savanna and western parts of the grassland biome (Figure 315 

6a). We observed statistically significant increasing rainfall mainly over the central part of the 316 

southern African region covering the savanna biome. We did not observe any statistically 317 

significant trend for the montane biome (Figure 6a).  318 

 319 

 320 

 321 



 322 

Figure 6: a) Annual rainfall trend based on Mann-Kendall tau and associated p values      b) the magnitude of 323 

annual rainfall change i.e. rainfall increase (+) or decrease (-) in mm and associated p values  324 

 325 

The results from the pixel-wise linear regression showed a decrease in annual rainfall up to 441 326 

mm and an increase up to 508mm between 1981 and 2016 (Figure 6b). The highest statistically 327 

significant decrease is observed over the northern parts of the southern African region 328 

bordering the savanna and forest biome (Figure 6b). The highest increase in rainfall change 329 

(over a 36-year period) observed over the central parts of the region might be explained by the 330 

fact that this is area which is mostly affected by the tropical cyclones which have been on the 331 

increase in recent years. 332 

4. DISCUSSION AND CONCLUSION 333 

Historical rainfall trend information is important in many areas such as health, farming, 334 

ecosystems, hydrology, etc. We analysed CHIRPS satellite rainfall data to determine rainfall 335 

trends over a 36-year period for eight southern African biomes. The results of the Mann-336 

Kendall trend analysis revealed a negative rainfall trend mainly over the forest biome and 337 

southern western parts of the region (i.e. fynbos, desert and karoo biomes). Increasing rainfall 338 



trend was mainly observed in the central parts of the region and western parts of the savanna 339 

biome. Our results are in line with the findings of (Shongwe et al., 2009) who observed 340 

declining rainfall trends over the southwestern parts of the Southern African region and 341 

increasing trends in northern part of Mozambique, Zambia and Malawi 342 

 343 

Most of the areas with negative rainfall trends have been reported by (Sloat et al., 2018) to have 344 

a high coefficient of variation of rainfall (CVP) (unreliable rainfall patterns). The rainfall 345 

decline is largely attributed to the effects of warm phases of the El Niño-Southern Oscillation 346 

(ENSO) which result in drought conditions over southern Africa (Gaughan and Waylen, 2012). 347 

In recent years (2014-2017), El Niño events have been on the increase with the 2015-2016 El 348 

Niño being the strongest since the 1970s (weathertrends360, 2015). This explains the declining 349 

rainfall trends across the southern African biomes. It is also important to note that areas with 350 

increasing rainfall trend mostly over the Nama karoo biome are not statistically significant at 351 

5% significance level. One possible explanation might be the reliability of rainfall as reported 352 

by (Sloat et al., 2018).  353 

 354 

The declining rainfall trends will have negative impacts on the southern African population 355 

due to the low adaptive capacity (Kusangaya et al., 2013). For example, within the fynbos 356 

biome, the decline in rainfall activity has already led to water restrictions by the Cape town 357 

municipality in South Africa following the 2015-2017 drought (Western Cape Government, 358 

2019). The declining rainfall in the southern parts of the grassland biome which mainly covers 359 

greater parts of South Africa has a negative impact on livestock production. Within the 360 

grassland biome, livestock grazing is key for local communities as well as the beef industry. 361 

Sloat et al. (2018) in a study entitled “Increasing importance of precipitation variability on 362 

global livestock grazing lands” assessed the inter- and intra-annual precipitation-based threats 363 

to global rangelands based on rainfall concentration index, NDVI, coefficient of variation of 364 

rainfall (CVR) and livestock density data. The major finding of the study was that areas with 365 

unreliable rainfall, i.e. high CVR such as the grassland and savanna biome have low carrying 366 

capacity than less variable regions. The study further reports globally the rangelands have a 367 

CVR of 0.27, which is 25 percent more than all land surfaces combined (Patel, 2019). This 368 

high CVR coupled with the declining rainfall trends reported in this study affects the livestock 369 

carrying capacity (Patel, 2019). 370 



 371 

For management purpose, since most of the severe rainfall decreases have been observed in 372 

the northern savanna and western parts of grassland biomes and also considering the fact that 373 

these biomes are mostly used for grazing compared to any other activity (Patel, 2019), 374 

destocking is recommended. In addition (Sloat et al., 2018) recommends the efficient use of 375 

the biomes grazing landscape as well as the avoidance of cultivation in these marginal 376 

landscapes. Results from this study provides baseline data for climate change mitigation 377 

programmes as well as mapping drought hotspots. Future studies should focus on trend analysis 378 

based on day-count indices e.g. number of days with rainfall amount higher than 1mm as 379 

recommended by World Meteorological Organisation. 380 
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