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Abstract: The South African National Research and Education Network (SA NREN) proves network connectivity 
and services to all tertiary education networks and research councils within South Africa. The NREN forms part 
of South Africa’s national integrated cyber infrastructure, as such, it is a potential target for cyber-attacks. Due 
to the large volume of traffic and decentralised nature of the SA NREN, monitoring, reporting and mitigating 
cyber-attacks is a complex problem. The NREN Cyber Incident Response Team (CSIRT) uses network flow data 
to identify early indicators of cyber-attacks. In this paper the focus will be on the mechanisms used to identify 
malicious botnet traffic using network flow analysis. 
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1. Introduction 

The South African National Research and Education Network (SA NREN) provides the backbone infrastructure 
for most of South African research and education institutions. This network operates similar to the American, 
ESnet, or the European SURFnet and CESNET organisations. These NRENs provide services for these research 
institutions such as network interconnectivity, large data transfer capability, data warehousing and data 
processing services. In the SA NREN, the backbone is maintained and secured through the collaboration of two 
institutions: the Tertiary Education and Research Network of South Africa (TENET) which is a service 
organisation which maintains the services running within the NREN and the South African National Research 
Network Competency Area (SANReN CA) both these organisations form part of the National Integrated Cyber 
Infrastructure System (NICIS) organisation. 

 
Figure 1: NICIS organogram 
Within the SANReN CA a Cyber Security Incident Team (CSIRT) was established in 2016 to address the growing 
concern of cyber threats against the NREN. Within the CSIRT various tools and mechanisms are used to detect 
network anomalies and investigate cyber-attacks. The CSIRT aims to provide a proactive cyber incident 
capability to the SA NREN user base. Thus the CSIRT monitors the NREN for signs of anomalies or abuse before 
it is reported to the SANReN CSIRT team. As part of this capability the CSIRT seeks to detect: Port scans, Brute 
force attacks, Denial of Service and Botnet detection. However, this paper focuses the work done within the 
CSIRT, regarding botnet detection using network flow analytics. 
The reason for using network flow analytics is primarily due to the reduced storage size requirement as appose 
to storing raw packet data. This has the additional benefit of protecting user privacy. Each academic entity 
within the NREN is entitled to their privacy. Network flow data allows the CSIRT to monitor the traffic flows 
without violating the user’s privacy. The negative trade off of not capturing data payloads is that it makes 
certain attacks, such as phishing email and drive-by downloads, nearly impossible to detect.  



 
 

Not all institutions within South Africa have similar budgets to address ICT or cyber-crime related issues. The 
SANReN CSIRT aims to supplement existing institutional ICT capabilities where needed. 
This paper describes the research effort by the SANReN CSIRT to detect Botnets by addressing the following 
key topics. Firstly the current research methodologies to detect malicious network activity is discussed in 
section 2.  Next, a brief overview of active botnet families, during the observation period is presented in 
section 3. In section 4 the network flow collection environment is explained. Section 5  showcases the results 
achieved by applying the research to our data set. In section 6 the paper concludes with our findings and 
recommendation for future work. 
 

2. Related Work 

For the purpose of this paper a botnet is defined as a collection of infected hosts (computers, routers, IoT 
devices, etc.), known as bots, which are controlled by a bot master via a collection of C2 servers to perform 
coordinated cyber-attacks. Based on the targets and C2 structures used these botnets can be classified into 
various botnet families or strains. 
Amini, et al. (2014) created a categorisation of techniques used to identify botnets using network flow data. 
These categories were as follows: 

 Correlation: These techniques uses statistical analysis to identify correlations between user access 
patterns and the number of unique flows. The DISCLOSURE system proposed by Bilge, et al. (2012) is 
an example of using correlation to detect botnet activity. 

 Clustering: This technique aims to cluster together similar traffic patterns into groupings of similar 
behavioural patterns.  This is the technique used by Amini, et al. (2014) to identify botnets. 

 IRC channel monitoring: IRC is a well-known communication channel used by botnets to perform 
Command and Control (C2) activities (Feily, et al., 2009, Amini, et al., 2014). These techniques focus 
on behavioural fatteners of IRC communications (Mazzariello, 2008). Network flow analysis does not 
provide new insight into the detection of IRC botnet detection and previous work by other research 
have covered these techniques in great detail (Mazzariello, 2008). 

 Machine learning algorithms: Due to the fact that Machine Learning (ML) algorithms are widely used 
to identify patterns in large data sets and to perform clustering on seemingly disjoint data sets 
(Wagner, et al., 2011). ML algorithms was used by Bilge, et al. (2012), Hofstede (2013) and Amini, et 
al. (2014) to assist with clustering and correlation detection. 

 DNS request monitoring: Botnets seek to hide their C2 server infrastructure by using Domain 
Generating Algorithms (DGA) and Fast-Flux techniques (Grill, et al., 2015, Erquiaga, et al., 2016). This 
results in an abnormally high number of DNS look-up requests from hosts which are infected by bots. 

DISCLOSURE is a botnet detection platform which uses network flow analysis to identify C2 servers within a 
network (Bilge, et al., 2012). The system uses the random forest machine learning algorithm to classify servers 
on a network as either benign or malicious. The DISCLOSURE system achieves this classification by first 
computing several features of the network flow data. The feature extraction algorithms focuses on flow-size, 
client access patterns and temporal behaviour as input for the classifier.   
The flow size features used by the DISCLOSURE system are the unique flow sizes (number of bytes) observed 
during a period, statistical features such as mean flow size and standard deviation from the mean flow size. 
The researchers also used autocorrelation to derive additional statistical features based on the flow size (Bilge, 
et al., 2012). 
Bilge, et al. (2012) theorized that benign user interaction with a server results in greater variation in flow sizes 
than that of a botnet C2 communication. Thus it would be expected that the standard deviation observed by 
benign servers would be greater that the deviation observed for C2. Furthermore benign servers should have a 
higher number of unique flow sizes compared to C2 server. These features assisted the classifier in classifying 
flows as either benign or malicious. 
DISCLOSURE used client access patterns to further classify potential C2 servers. Bilge, et al. (2012) monitored 
regular access patterns by creating a data series wherein the time delay between consecutive server access 
attempts from each client is captured. Then statistical analysis was performed based on the inter-arrival times 
of each client. Bilge, et al. (2012) theorized that bots communicate with C2 server in short regular burst in 
order to avoid detection.  
The final feature taken into consideration for the DISCLOSURE classifier is the temporal feature related to the 
time of the day it is expected for users to be more active. Thus it is uncommon for users to be equally active 



 
 

during the early hours of the day or late at night compared to the activity observed during the middle of the 
day. 
Amini, et al. (2014) used GNS3 network simulator to create a test environment for their cluster testing. Amini, 
et al. (2014) infected nodes within the network with the Zeus bot. Amini, et al. (2014) created their clusters by 
first running the simulated environment for a time period whilst collecting the network flow data. After 
concluding the experimental run benign, traffic was filtered based on whitelist rules and black list rules, 
resulting in two disjoint data sets. These data sets were then used to identify C2 flow events and create 
behaviour rules for identifying C2 communication activity. A critique of the methodology used within Amini, et 
al. (2014) work is that only one family of botnets was tested (namely Zeus) and the test was conducted on a 
small test network, less than ten nodes, with a known infection. During our own testing, the results obtained 
by Amini, et al. (2014) could not be replicated in a larger network were the existence of a botnet was 
unknown.   
Hofstede (2013) used the Exponentially Weighted Moving Average (EWMA), a ML algorithm, to detect network 
intrusions in real time. The EWMA algorithm reduces the significance of previous measurements based on the 
amount of time which has passed since the measurement was taken. Thus the weight of a measurement on 
the average measurement is reduced over time. Hofstede (2013) introduced a supplementary algorithm which 
they refer to as a seasonal EWMA. The seasonal algorithm takes into account that network traffic usage is 
influenced by the user’s utility of the network at a given time of day. Thus Hofstede (2013) selected a seasonal 
period of one day and averaged the EWMA results with the measurement taken at the same time the previous 
day. The seasonal algorithm extension is an alternative to the temporal feature extraction proposed Bilge, et 
al. (2012), both approaches consider the influence the time of day may have on network utility.  
Hofstede (2013) collected data from the CESNET backbone network over a 14-day period in 2012.  

3. Active Botnets During the Observation Period 

The network attack detection research within the SANReN CSIRT started in November 2017. Based on our 
current findings a large volume of the attacks are directed at Internet of Things (IoT) devices and specifically 
Huawei networked devices.  This is likely due to Huawei devices being specifically targeted by several botnets 
(Wijesinghe, et al., 2015, Antonakakis, et al., 2017). According to GlobalStats (2019), Huawei control 25.82% of 
South Africa’s mobile device market share, see Figure 2.   

 
Figure 2: South African mobile market share 
Since the start of this research several notable botnet families were observed in the wild. Since the SANREN 
CSIRT currently only captures IPFIX data we were unable to directly map the cellular operating system to the 
botnets observed during these attacks. However due to the large market share of Huawei devices and a 
number of botnets specifically targeting these devices the research conducted within the SANREN CSIRT 
focused on botnets which are known to target these devices. In this section a brief overview of the main 
botnet families will be provided. 



 
 

3.1 Mirai Botnet 

The earliest traces of the Mirai botnet was observed in August 2016. The Mirai botnet spreads like a network 
worm, it primarily targeted Internet of Things (IoT) devices. The most notable attacks performed by the Mirai 
botnet is the Distributed Denial of Service (DDoS) attack against OVH and Dyn.  
The botnet, originally infected new hosts by performing TCP SYN probes on TCP port 23 and TCP 2323 (Telnet). 
If the target responded to the TCP SYN request, the botnet would enter phase 2 of the infection step by 
performing a brute force login attack on the service. The Mirai botnet had a list of 62-preconfigired credentials 
which were known default credentials for vulnerable IoT devices. Once the bot successfully logged into the 
device a control message would be sent to a Mirai C2 server and a target specific malware payload would be 
installed on the newly infected device. The newly infected device would then start then start seeking out new 
devices to infect. Antonakakis, et al., (2017), identified 112 C2 domains and 92 IP addresses related to the 
Mirai botnet by using active and passive DNS. 

3.2 Satori Botnet 

Over time Mirai expanded its infection pattern by targeting TCP port 22 (Secure Shell, SSH), 80/8080/443 (web 
interface, HTTP/S), 7547 (CPE WAN Management Protocol, CWMP), 5555 (Android Debugging Bridge, ADB). 
The Satori strain, of the Mirai botnet family, exploited CVE-2014-8361 and CVE-2017-17215 via ports 37215 
and 52869 to exploit Huawei HG532e home routers without relying on the brute-force attack phase (Anubhav, 
2018). In July 2018, it was reported Satori targeted Android devices by sending a malicious payload to the ADB 
using port 5555(Pour, et al., 2019).  

3.3 GoldBrute Botnet 

The GoldBrute botnet performs a brute-force attack on servers which have TCP port 3389 (Remote Desktop 
Protocol, RDP) exposed to the internet (Marinho, 2019). In June 2019, it was reported that the GoldBrute 
botnet is performing an active attack on over 1.5 million RDP devices. According to Shodan, there are 3.8 
million devices (27 589 of which are in South Africa) currently connected on the internet which expose TCP 
port 3389. 
This botnet was controlled via a single C2 server, 104.156.249.231. Bots connect to the server over TCP port 
8333. Once the botnet successfully brute-forces a RDP server, the server is instructed to download the botnet 
payload from the following IP 104.248.167.144. The payload is an 80 megabyte Java application (Marinho, 
2019). After the application is downloaded the newly infected server will form part of the botnet and seek out 
other RDP servers to infect. The GoldBrute C2 server was discovered and taken down in July of 2019.  

4. Network flow data collection within SA NREN 

The network flow data is captured within the IPFIX data format. IPFIX is a vendor neutral format for storing 
network flow data, formerly known as NetFlow. The network flow data contains only the meta-data related to 
a network connection stream, with none of the packet content. At the bare minimum a network flow can be 
captured as a 6-tuple of information elements: source IP address, destination IP address, source port, 
destination port, protocol used and time-stamp. IPFIX is based on of NetFlow version 9 which uses 13-tuple to 
represent a network flow. Each network connection is usually represented by its own flow. These flows are 
exported to the IPFIX format by an IPFIX export device (usually routers or switches). In order to centralise the 
analysis process an IPFIX collector is used to fetch all IPFIX logs to a centralised server. Within the SA NREN 
there are ten primary IPFIX exporters which are used for our analysis. Each exporter is external to the research 
institutions and each collector collects the data from various institutions. Most of the IPFIX exporters export 
the flows at a 1:1 ration, however some of the exporters only export a sample of the observed flows. Table 1 
shows a list of network flow exporters within the SA NREN as well as their average flows. Each exporter 
exports well over a billion flows per day (These were the averages observed during the period 1 May 2019 till 
31December 2019). Processing such a large volume of data does present a significant challenge to the SANREN 
CSIRT.  
Table 1: Network flow exporters within SA NREN 
Device ID Ratio Average flows per day 
AMS1-IR1   1:1 2.44 x 1010 
CPT1_IR1   1:1 2.66 x 1010 
CPT1_PE2   1:50 6.37 x 109 



 
 

CPT3_PE1   1:50 1.64 x 109 
CPT3_PTA1  1:50 2.14 x 109 
ISD1_PE1    1:50 1.89 x 109 
JNB1_PE1    1:1 8.07 x 109 
LDN1-IR1   1:1 1.83 x 1010 
MTZ1_PE1 1:1 1.62 x 1010 
PTA1_PE2 1:1 4.94 x 109 
 
On average 1 terabyte of network flow data is captured each month. Due to the large volume of data to be 
processed a detection mechanism which is capable of scaling to the needs of the SA NREN is required.  
The SANReN CSRIT has an additional constraint in that the network flow data is captured on the SA NREN 
backbone infrastructure rather than within the specific research institutions themselves. This introduces 
constrains such an aggregated flows whereby network traffic flow through network aggregation points such as 
institutional firewall or Network Address Translation (NAT) devices. If flows are aggregated the true source or 
destination of a network flow may be obfuscated from the network flow logs.  
During our initial investigations it was observed that some institutions inject additional packet overhead into 
their network flow data. This data tends to be related to parity checks, GRE or NAT information. These 
alterations to the true packet size may influence the detection of malicious traffic if traffic size is used as an 
indicator.  
Another constraint placed on the SANReN CSIRT is that the NREN infrastructure is owned by the constituents 
and that the CSIRT can only provide advisories to the constituents. The CSIRT has no authority to take down 
any misbehaving nodes or block connectivity to potentially malicious nodes. In extreme cases TENET can be 
tasked with limiting network access but this is only as a last resort.   

5. Applying research to practise 

From the SANReN CSIRT’s perspective there are four main activities which are monitored using IPFIX data: 
 Port scans detection: Port scans are very prevalent on large scale networks and are not of critical 

interest to TENET, from a threat perspective. The greater concern is trends or sudden spikes in 
specific ports being scanned. 

 Brute-force login attack detection: Brute-force login attempts fall into a similar category of concern as 
port scans, in that they are prevalent on the SA NREN. However, brute-force attacks pose a 
significantly higher risk than port scans if a system is compromised. From TENET’s perspective 
detecting and preventing brute-force attacks aimed at key backbone infrastructure nodes are the 
highest priority for detection. 

 Distributed Denial of Service Attack detection: The IPFIX is used to identify potentially malicious nodes 
inside the SA NREN which participate in DDoS activities. Due to the meta data capture using network 
flows volumetric attacks are easily detectable. The SANReN CSIRT is more interested in protocol 
specific attacks. Specifically Distributed Reflection Denial of Service (DRDoS) attacks which uses SA 
NREN infrastructure to launch attacks against external services or service providers. 

 Botnet detection: From the SANReN CSIRT perspective the team is interested in detecting and 
monitoring botnet activity at a national level, including the spread of infection within tertiary 
institutions. TENET is concerned about their infrastructure being targeted by a large scale botnet 
attack or inadvertently hosting bots on the tertiary infrastructure. 

This paper focus specifically on the botnet detection component of the SANREN CSIRT efforts, however the 
detection efforts rely substantially on the prior work done to detect other threats to the SA NREN. 
TENET is responsible for AS2018 (https://ipinfo.io/AS2018), as The SANReN CSIRT needs to monitor several 
large blocks of IP addresses. In this section several incidences which occurred on these network ranges will be 
discussed. In order to mask the various institutions identities the IP blocks have been mapped to the private IP 
address space 10.0.0.0/24.  
The SANReN CSIRT does not rely on a single algorithm to detect abusive behaviour or cyber-attacks. Instead, 
the CSIRT rely on a combination of several algorithms to identify potentially malicious IP addresses. The CSIRT 
maintains a list of IPs of Interest (IPoI) which are tagged with labels, describing their potential malicious 
behaviour. The idea of tagging of IPs based on their behaviour was first proposed by Sweeney & Irwin (2017). 
For example if an IP is observed scanning port 22 (SSH) that IP will be tagged in the database with the tag “Port 



 
 

scan - 22”. IPs within the database can be assigned multiple labels since it is likely that a misbehaving node 
could potentially perform multiple suspicious activities. 
The SANReN CSIRT uses the IPFIX port scan signatures proposed by Grégr (2010) to classify port scan activity 
based on TCP flag combinations  

 
Figure 3: Stealthy port scan activity observed over /24 network range 
Figure 3 depicts a scatter diagram of an IPoI performing a SYN scan on a /24 network range within the SA 
NREN. The y-axis represents the ports being scanned and the x-axis represents the IP address range (which has 
been mapped to the range 10.0.0.0/24 for privacy concerns). The data depicted in Figure 3 is from a single IPoI 
over a period of one week. The IPoI was assigned labels for scanning ports 21-23, 51, 80-84, 143. 189 and 443. 
Based on the pattern observed this particular port scanner was performing a horizontal scan targeting specific 
ports over the network range. The port scan activity depicted in Figure 3 was observed over a 48 day period. 
During the period the scanner would scan on average three ports on 16 hosts spread across the /24 IP address 
space. These scans were so slow and distributed that the organisational firewalls and Intrusion Detection 
Systems (IDS) did not detect any abnormal activity. 

 
Figure 4: Coordinated block scan activity 
  
In contrast Figure 4 depicts an observation of an aggressive block scan activity. Based on the IPFIX data, the 
scanner only probed ports which were either between 8151 and 8450 or 9151 and 9350. This specific scanning 
activity, depicted in Figure 4, formed part of a coordinated scanning effort against one of the tertiary 
institutions within South Africa. During a 36 hour period, 9 source IPs originating from an internet service 
provider located in the Netherlands, were performing block scans against the tertiary network. The 9 source 



 
 

IPs never overlapped scanned port blocks, each had its own dedicated block it was scanning. On average the 
scanning IPs performed 173 probes per host every 18900 seconds (exactly 5 hours and 15 minutes). The 
activities observed in Figure 3 and Figure 4 resulted in the source IPs being added to the IPoI database. 
The brute-force attack detection algorithms within the SANReN CSIRT is based off of work done by Sperotto et 
al. (2009) and Hellemons et al. (2012).  
Sperotto et al. (2009) suggested that the number of packets observed per network flow (ppf) could be an 
indicator for the attack phases of a SSH brute-force login attack. By observing a time series of ppf observed 
during an attack Sperotto et al. (2009) was able to delineate between the pre-attack phase (scanning phase), 
attack phase and the post-attack phase (residue phase). 

 
Figure 5: Packets per flow observed during brute force SSH attack Sperotto et al. (2009) 
The experimental data used by Sperotto et al. is shown in Figure 5. The scanning phase the majority of ppf 
measurements are at most 2 and during the brute force attack phase the ppf value fluctuates between 8 and 
14 ppf. Sperotto et al. (2009) also noted that between each active brute force attempt a small period of 
inactivity was observed. By using the data collected during the attack Sperotto et al. (2009) derived the hidden 
state sequence of the Markov Model. Then by using the hidden sequence the researchers were able to 
calculate the transition probability between Markov states. 

 
Figure 6: Hidden Markov Model proposed by Sperotto et al. (2009) 
The Hidden Markov Model (HMM) to detect SSH attacks, proposed by Sperotto et al. (2009), is shown in Figure 
6. S1, S2, S3 represents the three phases of the brute force attack as defined by Hellemons et al. (2012). I1, I2, I3 
represents the state of inactivity as observed by Sperotto et al. (2009). It is important to note that based on 
the proposed model S1, S2, S3 can all proceed to the End state at any point. This implies that an attacker may 
stop during the attack. 
The probabilities shown within the HMM is specific to the attack observed by Sperotto et al. but a similar 
experimental design was used to define a more generic HMM used by the SANReN CSIRT. The work done by 
Sperotto et al. (2009) and Hellemons et al. (2012), was also further expanded upon by the SANReN CSIRT to 
include brute-force attack models for FTP and RDP brute-force attacks.  



 
 

 
Figure 7: FTP brute-force attack detection within SA NREN 
Figure 7 depicts a time series observation of an attempted FTP brute-force login attack against TENET 
infrastructure components hosted within the SA NREN. The attack pattern is similar to the one observed in 
Figure 5 by Sperotto et al. During the sensor testing conducted on the NREN network it was determined that 
fixed using ppf counts as was suggested by Sperotto et al. is not sufficient. Because the SANReN IPFIX 
collectors are on the TENET backbone the ppf values tended to higher than what was suggested by Sperotto et 
al. Upon investigation it was determined that security equipment on the SA NREN added additional overhead 
to the attacker’s network flows and as a result the SANReN CSIRT observed higher ppf values. Thus it is 
recommended that thorough testing and verification of sensor labelling be conducted rather than using the 
values suggested by Sperotto et al. directly. In order to detect coordinated attacks port scan activity was also 
considered in our HMM. The HMM thus also needed to be updated to account for attack models which start in 
S2 as depicted in Figure 6. 
On 28 February 2018, the world’s largest Distributed Reflective Denial of Service attack was launched using 
Memcached servers (Burke et al., 2018). During the attack five SA NREN servers were used to inadvertently 
attack remote servers. The key findings of the attack using SA NREN is discussed within the SANReN CSIRT’s 
previous publication (Burke et al., 2018), in this paper only the key findings will be highlighted.  

 
Figure 8: Summary of SA NREN DRDoS attack, February 2018 
During the attack five SA NREN servers were affected by the reflective attack. A summary of the traffic 
generated between 23 February 2018 and 8 March 2018 is presented in Figure 8. The attack was the first and 
largest attack detected to date using the IPFIX sensors within the SA NREN. After the attack the following rules 
were applied to the IPs detected during the attack to label the IPs with the IPoI database: 



 
 

 If the IP address belongs to a known legitimate user of Memcached service, label the IP as benign. If 
these benign services form part of an attack, the operators of the services was notified.  

 If the number of Memcached requests issued per day increased by more than 50% after 21 February, 
the IP was labelled as suspicious. 

 If the ratio of request traffic to response traffic generated by the IP was greater than 1:100, the IP was 
labelled as a victim. 

 If any of the other network flow sensors, deployed by the SANReN CSIRT, detected the IP as a port 
scanner, the IP was labelled as a port scanner. 

 If any of the port scanner IP addresses were found to only be scanning for port 11211 and using the 
Memcached protocol, it was assigned an additional label, memcached scanner. 

The rule set described above formed the bases for future DDoS attack patterns within the SA NREN. 
By combining the observations obtained from the port scan detection algorithms, the brute-force detection 
filters and the DDoS detection rule sets the SA NREN was able to collect a corpus of label IPoI data. This data 
was used to train Machine Learning (ML) algorithms to detect potential botnets within the SANReN.  
To further enhance the accuracy of the ML models it was supplemented with behavioural models based on 
patterns observed by common large botnets. For example, as was mentioned in Section 3.2, the Satori botnet 
Android IoT devices by delivering a malicious payload of ADB (port 5555) in July 2018 (Pour, et al., 2019). Based 
on the results obtained from the IPoI database it was determined that similar attack behaviour was observed 
within the SA NREN as early as 5 April 2018. 
The SANReN CSIRT built a botnet detection model based on the GoldBrute botnet attack pattern discussed in 
Section 3.3 and was able to detect similar attack traffic on 11, 15 and 22 September 2019. This despite the 
GoldBrute C2 servers being taken down in July 2019. The newly observed C2 servers observed to be hosted in 
Denmark, France, Brazil and Russia. 
The SANReN CSIR is currently tracking several variant of Mirai botnets which target IoT devices within the SA 
NREN. Based on the ports targeted by the botnets and the characteristics of the brute-force attacks used by 
the bots the ML algorithms are able to cluster the bots into distinct families. 

6. Conclusion and future work 

In this paper the current efforts of the SANReN CSIRT to detect botnets are discussed. The CSIRT uses a 
combination of attack sensors to label IPs based on their attack behaviour. This allows the CSIRT to track and 
label suspicious activity within the SA NREN. At present the majority of the research and detection is inward 
focused to protect the South African infrastructure. However in future the SANReN CSIR plans to make the IPoI 
database and label publically accessible for other NRENs to view and contribute. 
The botnet components of the SANReN IPFIX attack sensors are still reliant on attack models being built based 
on known botnet attack models and behavioural analysis. Current research is being conducted within the 
SANReN CSIRT to develop more generic sensors to detect unknown attack models.  
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