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Abstract: In this article, we demonstrate selective excitation of second harmonic higher-order
modes inside a diode end-pumped solid-state laser resonator that comprises of a nonlinear
potassium titanyl phosphate (KTP) crystal and a digitally addressed holographic end-mirror in a
form of a reflective phase-only spatial light modulator (SLM). The emitted second harmonic
higher-order modes at 532 nm are generated by an intracavity nonlinear KTP crystal that is
pumped by high-order fundamental modes operating at 1064 nm. The fundamental modes are
digitally controlled by displaying a computer-generated hologram in the form of a grey-scale image
to the SLM screen for on-demand high-order modes. The phase matching of the fundamental
mode to the generated frequency-doubled mode is achieved by controlling the phase of the digital
hologram to either achieve a high or quasi-degree of orbital angular momentum conservation. We
show that we can intracavity generate frequency-doubled high-order Laguerre-Gaussian modes
and Hermit-Gaussian modes that are either quasi or fully reproducible in the far-field. To the best
of our knowledge, this is the first laser to generate frequency-doubled on-demand higher-order
modes inside the cavity at the visible (green) wavelength of 532 nm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Green laser beams generated using frequency doubling or wave mixing which is a nonlinear
process also known as second harmonic generation (SHG) technique have been extensively
used in laser detection [1], spectroscopy [2], laser ranging [3], ocean exploitation [4], medical
surgeries [5], particle manipulation [6], quantum communication [7], and military applications
[8]. The general scheme that has been prevalent for nonlinear wave mixing has normally involved
using laser beams with a Gaussian TEM00 profile since they are emitted by most laser resonators.
The generated green laser beam from either inside [9,10] or outside [11] the laser cavity will
then be customised and shaped using additional optical elements such as apertures, lenses and
diffractive optical elements to the desired beam profile. In this paper, we will demonstrate a novel
method that shows it is now possible to realise on-demand spatial shaping of frequency-doubled
laser modes within a laser cavity. The motivation for developing this novel method has been
to save cost and develop a compact system such that the normal approach of initial frequency
doubling the beam and then later manipulate the spatial profile of the beam will be seen to be not
worthwhile and cumbersome.

The nonlinear crystal that was utilised to exploit its birefringence to generate second harmonic
high order modes is Potassium Titanyl Phosphate (KTP) crystal [12,13]. The nonlinear KTP
crystal was chosen since it has a relatively high SHG coefficient, high damage threshold, great
optical nonlinearity and an excellent thermal stability [14,15]. It should be stated that much other
nonlinear crystals can be incorporated into the Green Digital Laser for frequency doubling or wave
mixing of high-order modes, such nonlinear crystals are BBO (β-barium borate), KDP (potassium
dihydrogen phosphate), LiNbO3 (lithium niobate), and LiB305 (lithium triborate) [16,17]. These
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nonlinear crystals have the appropriate optical properties such as strong birefringent, crystal
symmetry, high damage threshold and good transparency for both the fundamental pump beam
and the frequency-doubled or mixed beam [18–20].
In this article, we made use of our newly developed diode-end-pumped Nd: YAG solid-state

Digital Laser that operates at 1064 nm [21–25], to create the fundamental frequency for pumping
the intracavity nonlinear crystal so as to generate second harmonic frequency at 532 nm and
make the Digital Laser emits green laser beam, Green Digital Laser. The utilisation of the diode
laser as a source of energy for the Green Digital Laser provided an advantage of having a source
with a stable frequency, high brightness, long lifetime and better efficiency, especially when an
end-pump setup is used such that the pump mode and the fundamental mode are matched. The
second advantage of using the Green Digital Laser is its ability to generate and switching between
spatial high-order modes in real-time just by displaying a grey-scale digital hologram image
on the screen of the Spatial Light Modulator (SLM) that has been integrated as the end-mirror
of the resonator. The incorporation of the SLM in the Green Digital Laser cavity creates an
advantage of allowing extensive dynamic range of phase holograms to be introduced on the
fundamental mode inside the laser cavity such that the phase-matching inside the non-linear
crystal of the fundamental mode and the generated second harmonic mode produces a wide range
of spatial profiles that can either be out-of-phase, quasi-phase [9,26] or purely in-phase [11,27].
In this article we show for the very first time that we can in real-time, intracavity generate both
quasi-phase and purely in-phase frequency-doubled high-order Laguerre-Gaussian Modes and
Hermit-Gaussian modes respectively in a single laser resonator; and we further show that when
these high-order Gaussian modes are purely in-phase they are reproducible both in the near
field and far-field. We demonstrate this by playing a video that shows these frequency-doubled
high-order modes in the far-field.

2. Second harmonic generation principle

There are three types of frequency mixing; there is a second harmonic generation (SHG), sum
frequency generation (SFG) and difference-frequency generation (DFG). All these three frequency
mixing processes involve two pump waves, the fundamental frequencies, ω1 and ω2, incident
on a nonlinear medium that generates a new wave of frequency ω3. The generated frequency
ω3, could either be the sum or difference of ω1 and ω2, or the second harmonic frequency of
each fundamental frequency where both have the same frequency ω1, and the generated second
harmonic beam will have a frequency of ω2 = ω1 + ω1. These frequency mixing concepts can
be applied to other nonlinear optical interaction but in this article, we will mainly concentrate on
the second harmonic generation which is also termed as frequency doubling.
Frequency doubling is generated by the second susceptibility, if one consider a vector field

E = (Ex,Ey,Ez), the second order dielectric polarization P(2) can be written as follow:
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with the dielectric constant of ε0 = 8.85 × 10−12As/(Vm), and dij the nonlinearity coefficients.
Furthermore, for loss-free materials, only 10 out of 18 nonlinearity coefficients are independed,
also depending on the symmetry of the crystal, the number of the independed coefficients is
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considerably reduced so that most frequency doubling crystals will have only two or three
independents, and non-zero coefficients remaining. In the case of the KTP, the remaining
nonlinearity coefficients are shown in Table 1: If a field E(1) at the fundamental frequency ω1 is
incident onto the crystal, a field E(2) at the second harmonic frequency ω2 = 2ω1 is generated
at the expense of the fundamental frequency. If we consider the propagation in the z-direction
only, the transformation of the field and the electric polarisation into the complex notations is as
follows:

E(1) =
1
2

(
A(1)ei(ω1t−k1z) + C

)
(2)

P(1) =
1
2

(
P(1)c + P∗(1)c

)
. (3)

The electric field P acts as the source for both fields E(1) and E(2), which means that the
propagation of each wave is described by the following wave equation:

δ2E(1)

δz2
−

1
c2
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δt
= −

1
ε0

δ2P
δt2

, (4)

where c0 is the speed of light in the medium. The electric field polarization P is given by the
sum of the field E(1) + E(2). From Eq. (1), the amplitude A for the second harmonic and the
fundamental is given as follow:

2ik1
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and
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Table 1. Non-zero nonlinearity coefficient dmn for KTP.

dmn (×10−12 m/V) wavelength λ (nm)

d15 = d31 = ±(6.5± 0.5) 1064

d24 = d32 = ±(5.0± 0.5) 1064

d33 = 13.8 1064

where P2
c(ω) represents the components of P2

c that oscillates at the frequency ω. The SHG
process is then described by the interaction of the two coupled wave equations, Eqs. (5) and (6)
inside the nonlinear medium. The amplitudeA(2) only increases significantly for∆k = 2k1−k2 = 0,
this is also known as phase-matching. If we consider the frequency doubling as the annihilation
of two photons with energy ~ω1 into one photon with energy ~ω2, the phase-matching condition
is equivalent to the conservation of momentum:

~k1 + ~k1 = ~k2. (7)

Since the wavenumber is related to the frequency and the speed of light using k = ω/c, this
relation means that the fundamental wave and the second harmonic must propagate with the
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same speed to avoid destructive interference of the second harmonic along with the propagation
directions which then avoids dispersion. It is also possible to split the fundamental wave into
an extraordinary wave and an ordinary wave to attain phase matching. The parameter phase
mismatch, ∆k, is then used to assess the degree of these phase analogous phenomena.
When there is a phase mismatch, ∆k , 0, this means that different dipoles in the nonlinear

crystals oscillate in different phases causing destructive interference within the crystal which will
result to a low conversion efficiency of the SHG. This results in the fundamental pump frequency
being un-depleted such that the amplitude A(2)<<A(1), and the solution of the coupled equations,
Eqs. (5) and (6), for a crystal length, L, is given as:

A(2)(z = L) = −
iω1
n2c

deffA(1)
2 Sin(∆kL2 )

∆kL
2

e(
i∆kL
2 ). (8)

The above solution clearly shows that the phase mismatch analogous to the coupled equations
uses natural birefringence that exists in many nonlinear crystals for either phase-matching or
quasi-phase-matching. The term natural birefringence describes the dependency of the refractive
index on the direction of polarization of the beam. The angle tuning of the pump beam with
respect to the different axes of the nonlinear crystal allows for different polarization combinations
to be achieved where there is phase matching.

For nonlinear crystal with refractive index n, the intensities I1 and I2 of the fundamental wave
and the second harmonic wave are given as follow:

I2(z) = I1(0)tanh2

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n32ε0c30
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= I1(0)tanh2
[ z
L

] (9)

I1(z) = I1(0) − I2(z), (10)

where deff is the effective nonlinear coefficient. The conversion efficiency is defined as the
fraction of the fundamental beam power that is converted into the SHG:

ηSHG = tanh2
[ z
L

]
, (11)

where z is the crystal separation and L is the length of the crystal. It is clear from Eq. (11)
that at distance z = L, 57% of the fundamental beam power can be converted into the second
harmonic beam. For a KTP crystal of length 10 mm, the fundamental beam intensity, I1(0), that
will be required to convert 57% of the fundamental power into the SHG, where the fundamental
wavelength is 1064 nm, will be 0.026 GW/cm2. This is singificantly less than the KTP crystal
damage threshold of 3-3.5 GW/cm2 [28].
In circular symmetry, the power Pω of the Gaussian beam with beam radius w and peak

intensity I0 is given by:

Pω = I02π
∫ ∞

0
e[−2(r/w)

2]rdr when w2>0

= I0π
w2

2
.

(12)

It must be noted that increasing the Gaussian mode order and size of the fundamental pump beam
will lead to a low conversion efficiency of the SHG beam such that the wings of SHG structure
will be less pronounced since the wings of the pump will have less intensity. This will result in
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the intensity of the second harmonic field not to be perfectly Gaussian and the SHG power will
then be expressed as:

P2ω = I02π
∫ ∞

0
e[−2(r/w)

2]tanh2[z/Le(−r/w)]rdr. (13)

Due to the high-intensity level of the beam inside the laser resonator compared to the beam
intensity outside, we opted to place the KTP crystal inside the laser resonator to generate
frequency doubled laser beam, as shown in Fig. 1.

Fig. 1. Laser resonator model for intracavity frequency doubling from 1064 nm to 532 nm.

As stated before in our introduction, the fundamental beam at 1064 nm is generated by the
active medium Nd: YAG and focused on the KTP. From the chosen mirrors in Fig. 1 the
conversion efficiency of the KTP acts as the output coupling loss of the laser resonator. If one
considers fundamental beam power, Pω , incident on the KTP crystal and the power of the second
harmonic wave generated to be P2ω , then the effect of the KTP crystal on the fundamental beam
can be described by the reflectance R as follow:

R = 1 −
P2ω
Pω

(14)

= 1 − ηSHG. (15)
Thus, the average intensity of I of the fundamental beam inside the Nd: YAG crystal can be
calculated using steady-state conditions for round trip [29]:

R′ = e[(2g0l)/(1+2I/Is)+2α0l], (16)

where Is is the saturated intensity, g0l is the small-signal gain and the α0l is the loss per transit.
This steady-state condition is only valid for low signal gain, and high reflectance R because
the z-dependence of the fundamental wave intensity inside the KTP is neglected. The second
harmonic wave output is given as follow:

P2ω = A1Isα0l
©­«
√

g0l
α0l
− 1ª®¬ , (17)

where A1 is the cross-sectional area of the fundamental beam in the Nd: YAG. One must also
keep in mind that although if all the fundamental beam power can be converted into the second
harmonic, the conversion efficiency of the KTP crystal may be extremely low. Typically, for
diode-pumped Nd: YAG lasers with an efficiency of 48%, the conversion efficiency can be as
low as 9.5% [30].
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3. Higher-order laser modes

We will be looking at both circular and rectangular symmetry laser modes. The electric field
distribution of circular and rectangular laser modes can be written as follow, derived from wave
equation:

LGp,l(r, z) =

√
2p!

π(p + |l|)!
×

1
w(z)
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2r

w(z)

) |l |
× L |l |p
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× e−ikz × e−ilφ × eiψ(p, |l |,z),

(18)

and
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(19)

where Ll
p is the Laguerre polynomials [31,32] of order p and l; while Hn and Hm are Hermite

polynomials [32,33] of order n and m; and the Lauguerre-Gaussian mode Gouy phase ψ(p, l, z) =
(2p + |l| + 1)arctan( zz0 ) and for Hermite-Gaussian mode the Gouy phase is ψ(m, n, z) = (|m| +
|n| + 1)arctan( zz0 ). All other parameters have their usual meaning as defined in [34]. The
lowest-order beam of both Laguerre-Gaussian (LG0,0) and Hermite-Gaussian (HG0,0) beam has
a Gaussian beam profile and is obtained by setting p = l = 0 and n = m = 0, in Eqs. (18) and
(19) respectively. These solutions are often referred to as TEMpl and TEMmn beams, where
TEM stands for transverse electric magnetic, within the paraxial approximation, both electric and
magnetic fields of the EM wave are, in fact, approximately transverse to the z-direction. The
intensity distribution of the TEMpl consists of rings of a central loop for null l indices, and on the
other hand for null p indices they take a pattern of petal-like structure. The intensity distribution
is given by the absolute square of Eqs. (18) and (19).
For both circular and rectangular symmetries, the propagation and divergence of both LGpl

and HGmn modes respectively is shown to be:

wpl(z) = w0
√
(2p + |l| + 1) ×

√
1 +

(
z
z0

)2
, (20)

θpl = θ0
√
2p + |l| + 1 (21)

and

wm(z) = w0
√
(2m + 1) ×

√
1 +

(
z
z0

)2
, (22)

wn(z) = w0
√
(2n + 1) ×

√
1 +

(
z
z0

)2
, (23)

wm,n(z) =
wm(z) + wn(z)

2
, (24)

θm = θ0
√
2m + 1, (25)
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θn = θ0
√
2n + 1, (26)

where w0 and θ0 represents the waist radius and the angle of divergence of the lowest-order
fundamental Gaussian beam. The Rayleigh range is defined the same as in Gaussian beam using
the following equation:

z0 =
πw2

0
λ

. (27)

The beam radius describe by Eqs. (20) and (24) are as a function of the propagation distance
from the waist position.

4. Experimental methodology and concept

For the generation of high-order Laguerre-Gaussian (LGp,l) and high-order Hermit-Gaussian
(HGm,n) modes, the planoconcave diode end-pumped solid-state digital laser resonator [35] of
length 164 mm, was intracavity inserted with a nonlinear KTP crystal closer to the flat output
coupler mirror and a spatial light modulation (SLM) to act as a digital holographic end-mirror
of resonator cavity, as shown by the schematic of the experimental setup in Fig. 2. The flat
output coupler mirror reflectivity was 90% and the SLM (Hamamatsu LCOS-SLM X10468-03)
reflectivity was 95% at a wavelength of 1064 nm respectively. The resonator was designed to
form an L-shape in order to avoid illuminating and damaging the SLM with the residual 808
nm pump light by including a 45◦ mirror (M1) within the laser resonator cavity that was highly
reflective at 1064 nm and highly transmissive at 808 nm. The 1.1% neodymium-doped solid-state
gain crystal of 25 mm length and 4 mm diameter was mounted inside a 21 ◦C water-cooled
copper block. The Nd: YAG laser crystal was then end-pumped with a diode laser that could
deliver a maximum power of 75 W at an operating wavelength of 808 nm and a gain area with a
radius of 1.2 mm was excited within the centre of the Nd: YAG rod crystal.

Fig. 2. Schematic of the Nd:YAG crystal digital laser with a non-linear crystal KTP against
the output coupler of the resonator.

The SLM was encoded with a reflective grey-scale (0-255) digital holographic image that was
displayed on the screen of the SLM inside the laser resonator cavity. The holographic image
was encoded to simultaneously control both the phase and amplitude of the fundamental 1064
nm pump mode. The phase of the digital holographic image was used to control the mode size
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of the incident fundamental pump mode on to the KTP crystal and the amplitude of the digital
holographic image was used to control the type and order of the fundamental pump mode to
be either HGm,n or LGp,l respectively. Since the SLM was a phase-only device, yet most of the
desired holograms required both the amplitude and phase change to the field, the amplitude
effect was encoded on the phase-only SLM using the well-known method of complex amplitude
modulation [36,37].

The amplitude of the digital holographic image was encoded to have varying width thickness
that were designed to be 98% match each null of the LGp,l or HGm,n mode, for order p, l = 0, 1, 2
and m, n = 0, 1, 2 as shown in Fig. 3. The SLM was also encoded with digital holograms that
had varied the radius of curvature phases, R, from 200 mm to 500 mm with a step size of 50
mm. This was to easily control the mode radius size, w1, of the fundamental 1064 nm pump
mode, and most importantly to also control the angle of acceptance, ψj, of the fundamental mode
propagating inside the KTP crystal.

Fig. 3. The grey-scale (0-255) digital holograms that were displayed on the SLM in Fig. 2,
for the generation of high-order (LGp,l and HGm,n).

The angle tuning of the fundamental 1064 nm pump mode was achieved by varying the radius
of curvature of the end-mirror which allowed for various phase-matching conditions of the
natural birefringence properties of the nonlinear KTP crystal to be possible for both perfect and
quasi-phase-matching. The simulated angle of acceptance, ψj, of the fundamental pump mode
on to the KTP crystal decreases when the radius of curvature, R, of the holographic end-mirror,
is varied from R=200 mm, to R=400 mm, (ψj,R400 � ψj,R200), as shown in Fig. 4; When R=400
mm the fundamental pump mode propagating inside the KTP is collinear with almost a constant
radius size, w10 , of 258 µm which allowed for perfect phase matching; And when R=200 mm the
fundamental pump mode propagating inside the KTP crystal was at an acute angle which allowed
for quasi-phase-matching to occur as the radius size, w1 of the fundamental pump mode varied
inside the crystal from 204 µm to 160 µm. Therefore varying the R of the end-mirror allows for
the modulation of the nonlinear coefficients along the X and Y plane of the KTP to take place.
The propagation of the SHG mode with a radius size, w2, and an amplitude structure, A(2),

inside the KTP crystal is designed to be collinear and have a plane wavefront along the entire
crystal length, L, as the two faces of the crystal are designed to be flat. Therefore the fundamental
pump mode with an amplitude structure, A(1), that has a varying mode radius size, w1(z), along
the KTP crystal length, like in the case of tight focusing using a curved mirror of R=200 mm,
will result in the SHG mode not fully matching the phase, the mode structure profile and the
radius size of the fundamental pump mode along the entire crystal length from ZL to Z0, and
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Fig. 4. Schematic of the simulated resonator showing the angle of acceptance, ψj, of the
fundamental pump mode (LGp=0,l=0 or HGm=0,n=0) onto the KTP crystal for a 164 mm
cavity length with a holographic end-mirror of R=200 mm and R=400 mm. When R=400
mm, the ψj,4500 � ψj,R200 which allows for collinear propagation of the fundamental pump
mode inside the KTP crystal to occur with a constant mode radius size, w10 , of 258 µm
which allows for perfect collinear phase-matching and conservation of angular momentum
to be achieved. When R=200 mm, the fundamental pump mode propagates at an acute angle
inside the KTP crystal with varying mode radius size, w1(z), from 204 µm to 160 µm, which
enabled quasi-phase matching to take place.

this will result in the SHG mode not maintaining the mode structure profile of the fundamental
pump mode as illustrated in Fig. 5. But at Z0 to ZL=0 of the crystal length, both the fundamental
mode amplitude structures, A(1), and the frequency-doubled SHG mode amplitude structure, A(2),
are phase-locked and have the same plane wavefront as illustrated in Fig. 5, such that the laser
resonator will emit a frequency-doubled SHG mode structure profile, A(2), that will be similar to
the fundamental pump mode structure, A(1).
This is because along the propagation direction, Z, the fundamental pump mode acquires a

phase shift which differs from that of a plane wave even though the optical frequency is constant
and this phase difference is called the Gouy phase shift [27]:

ψ(z) = arctan
(
z
z0

)
= arctan

(
zλ
πw02

)
. (28)

This means that the phase fronts have to propagate somewhat faster leading to an effectively
increased local phase velocity. This phase difference is then translated to the created SHG
modes such that it results to a slight increased distanced between the wavefronts of modes, w20j ,
compared with the collinear plane wave mode ,w20 , of the same frequency. The electric field
distribution of the SHG modes in circular and rectangular laser modes taking into account the
Gouy phase shift can now be represent as:

SHG(LGp,l) =

L∑
j=0

LGp,l(r, z,ψj), (29)
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Fig. 5. Schematic of the frequency doubled SHG mode radius, w2j , from the KTP crystal
pumped with a varying fundamental mode radius sizes, w1(z), along the crystal length. The
schematic shows that the fundamental pump mode experiences various Gouy phases, ψ(zj),
inside the resonator such that inside the KTP crystals the SHG modes are generated with
different mode radius orders sizes, w20j . For j = 0, both w1 and w2 are collinear and perfect
phase matching will occur where the far-field and near-field of the SHG mode amplitude
structure of A(2) will be similar to the fundamental amplitude mode structure A(1). For j ≥ 0
quasi-phase matching of the w1 and w2 will occur where near-field of A(2) will be similar
to A(1) but not at the far-field. For j , 0 or j>0, phase matching of the fundamental mode
structure will not be achieved even though the laser will generate frequency doubled SHG
laser beam.

and

SHG(HGm,n) =

L∑
j=0

HGm,n(r, z,ψj), (30)

where

ψj(z) = arctan

(
zλ
πw2

2oj

)
, (31)

and
w2oj =

w1(zj)
√
2

. (32)

The ψj represents the different variation in the Gouy phases on the SHG modes with different
orders j. It must be understood that the phase shift of a Gaussian beam is not exactly the same as
for a plane wave. A Gaussian beam can be considered as a superposition of plane waves with
different propagation directions. Those plane wave components with propagation directions
different from the beam axis experience smaller phase shifts along the propagation direction,
z, and the overall phase shift will arise from a superposition of all these components. For
higher-order transverse modes such as LGp,l and HGm,n, the Gouy phase shift is stronger by a
factor of 2p + l + 1 and m + n + 1 respectively; and this show that the resonance frequencies
of higher-order modes in optical resonators will be high. This will then be compensated by
adjusting the radius of curvature, R, of the end-mirror such that the propagation wavefront is
collinear and plane inside the entire KTP crystal length.
From Eq. (32) it must be understood that when j = 0, the fundamental pump mode will be

collinear and have a plane wavefront inside the entire crystal length such that the Gouy phase
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shift will be constant with ψj=0. This will result in a perfectly phased matched high-order SHG
mode that will reproduce the profile structure of the high-order fundamental pump mode. For the
generation of quasi-phased high-order SHG modes, j ≥ 0, and this will result in some of the
high-order SHG modes experiencing a phase shift and others not, and those SHG modes that
experience a phase shift will produce a mode profile structure that will have a central maximum,
that will be surrounded by a phased locked SHG mode. For the generation of non-phased
high-order SHG modes, the structure of the fundamental mode will not be reproducible at all on
the frequency-doubled SHG mode. The intensity profile of the SHG mode will have mostly a
dominant central maximum only, when j>0, as all of the SHG modes will experience a Gouy
phase shift that will be out-of-phase with the fundamental pump mode, even though the laser will
be generating a frequency-doubled SHG laser beam.

The dimensions of the intracavity nonlinear KTP crystal was 3 mm × 3 mm× 3 mm and it was
mounted inside a copper block that was not temperature controlled. The nonlinear KTP crystal
was highly reflective for 532 nm on the left face diagonal of the crystal where the fundamental
1064 nm pump mode would be the first incident on the KTP crystal, and the right face diagonal
of the crystal was highly non-reflective for 532 nm. Both 1064 nm and 532 nm beams exited
the output coupler mirror (M2) parallel to each other. We used a beam splitter that acted as a
wavelength separator (WS) to separate the 1064 nm and 532 nm wavelengths beams. Lens f1 and
f2 were used to relay image the plane of the output coupler mirror for 1064 nm onto the CCD1,
and Lens f3 and f4 were used to relay image the plane of the output coupler mirror for 532 nm
onto CCD2 camera, for the characterization of the frequency-doubled SHG laser modes.

5. Results and discussions

The method used to excite high-order modes from the laser cavity was by employing computer-
generated hologram masks which were encoded as pixelated grey (0-255) images as shown in
Fig. 3 and displayed onto an SLM that also acted as an end mirror of the laser resonator [35].
The results of the observed intensity distribution profiles generated by the laser resonator for
Laguerre-Gaussian modes, LGp,l, and Hermite-Gaussian modes, HGm,n, operating at 1064 nm
are shown in Figs. 6(a) and 6(b) respectively, when the radius of curvature of the end-mirror
was set at R=200 mm. The 2D-intensity distribution profiles shown in Fig. 6 were captured
at the output coupler mirror of the laser resonator. The spatial profile of these fundamental
high-order modes remained constant both in the near-field and at the far-field. In addition, we
used a ModeScan 1780 to measure M2 (as shown in Fig. 6(a)), and we found that mode generated
were of good quality with only 8% error. This suggests that the generated fundamental laser
modes are as shown in [23,35,38]. The experimental results of the mode radius sizes, w1, of both
the fundamental high-order LGp,l and HGm,n modes at the output coupler were compared to the
theoretical solution shown in Fig. 7(a) and Fig. 7(b) respectively.
The results in Fig. 7 shows that the mode radius sizes, w1, of the high-order fundamental

(LGp,l and HGm,n) modes, ω, that are emitted by the laser resonator cavity were of appropriate
dimensions and within the experimental error. At a wavelength of 1064 nm these high-order
modes of LGp,l and HGm,n were used as the fundamental pump mode of frequency, ω, to pump
the non-linear KTP crystal to produce frequency double, 2ω, second harmonic generated (SHG)
high-order modes with similar intensity distribution structure profile. The results of pumping
the nonlinear KTP crystal with the fundamental high-order (LGp,l and HGm,n) modes, ω, for the
SHG of frequency-doubled high-order (LGp,l and HGm,n) modes, 2ω, is shown in Fig. 8 below
for both the near-field and far-field spatial profiles of the frequency-doubled modes, respectively,
when the radius of curvature of the end-mirror was set at R=200 mm.

The near-field spatial intensity profiles of the SHG LGp,l modes, 2ω, in Fig. 8(a) is similar to the
intensity profile of the fundamental LGp,l pump modes, ω shown in Fig. 6(a); But at the far-field
the spatial intensity profiles of the SHG LGp,l modes, 2ω, as shown in Fig. 8(b), is different from



Research Article Vol. 28, No. 11 / 25 May 2020 / Optics Express 16918

Fig. 6. The observed intensity profiles for the fundamental pump modes, ω, of LGp,l (for
p = 0, 1 & l = 0, 1, 2) and HGm,n (for m = 0, 1 & n = 0, 1, 2) high-order modes when the
radius of curvature of the end-mirror was set at R=200 mm.

Fig. 7. Shows the fundamental mode, ω, radius sizes, w1, as the function of mode-order
(LGp,l and HGm,n) at the output coupler when the radius of curvature of the end-mirror is
set at R=200 mm.

Fig. 8. The observed intensity profiles, 2ω of the SHG LGp,l modes at the near-field,
(a), and at the far-field, (b), respectively. At the near-field the SHG LGp,l modes, 2ω, is
phase-matched with the fundamental LGp,l pump modes, ω; While at the far-field the SHG
LGp,l modes, 2ω, is quasi-phased with the fundamental LGp,l pump modes, ω, as there is a
dominant central maximum.
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the fundamental LGp,l pump mode, ω, as there is an added central intensity maximum for LG0,2,
LG1,0,LG1,1 and LG1,2. The SHG of LG0,1 mode shows a slight deformation of the intensity
distribution structure profile at FF which also confirms that there was a quasi-phase-matching of
the fundamental pump mode. This phenomena also occurs for the SHG of HGm,n modes, 2ω, as
shown in Fig. 9, where the near-field spatial profiles of the SHG HGm,n modes, 2ω, is similar to
the fundamental HGm,n pump modes; But at the far-field the SHG HGm,n modes also have an
added central intensity maximum for the HG0,2 and HG0,3 modes. The SHG of the HG0,1 showed
that this mode was similar at near-field and far-field and also to the fundamental pump mode.

Fig. 9. The observed intensity profile, 2ω, of the SHG HGm,n modes at the near-field and at
the far-field, respectively. At the near-field the SHG HGm,n mode, 2ω, is phase-matched
with the fundamental HGm,n pump modes, ω; While at the far-field the SHG HGm,n mode,
2ω, is quasi-phased with the fundamental HGm,n pump mode, ω.

The non-reproducibility of the far-field spatial intensity profiles of the SHG LGp,l and SHG
HGm,n modes when compared to the near-field spatial intensity profiles, which is similar to the
fundamental pump mode, is due to quasi-phase-matching of the modes inside the KTP crystal.
The SHG high-order modes experience various Gouy phases, where some of the phases of the
SHG modes are partly in-phase and others out-phase with the fundamental pump mode.
The generation of high-order quasi-phased SHG modes at far-field shows that fundamental

pumpmode was not propagating perfectly collinearly inside the entire length of the nonlinear KTP
crystal. This resulted in some of the SHG modes to be in-phase at the near-field and some to be
out-of-phase with the fundamental pump mode. To achieve perfect phase-matching, the radius of
curvature, R, of the end-mirror was increased in steps of 50 mm by simply displaying rewritable
digital holograms of appropriate R on the SLM without any realignment of the laser resonator.
This incremental adjustment allowed for the evaluation of the correct radius of curvature to
be selected where the fundamental pump mode will have a constant mode radius, w10 , and a
collinear spatial profile of the mode that will have a plane wavefront along the entire length of
the KTP crystal.

We discovered that when the end-mirror is set at R=400 mm which equated to a fundamental
Gaussian (LG00 or HG00) mode radius size of w0=258 µm. The SHG high-order modes both at
the far-field and near-field, their intensity structure profiles were similar to the fundamental pump
mode profiles. This demonstrated that at R=400 mm the fundamental modes were perfectly
in-phase with the SHG modes and these results are shown in Fig. 10 for generation of both the
SHG HGm,n and SHG LGp,l modes. It is clear in Fig. 10 that the intensity structure profiles of
the SHG high-order modes are similar at the far-field and at the near-field for all the LGp,l and
HGm,n modes. We performed additional analysis of the emitted SHG LGp,l and HGm,n modes
radius sizes by comparing them to the theoretical values using Eqs. (20) and (22), where the
estimated fundamental Gaussian mode radius size, w0, of the resonator with an end-mirror of
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R=400 mm is 258 µm [39], which is then divided by
√
2 so as to phase-match the SHG modes as

shown by Eq. (32) since all these modes are generated by a stable resonator. Furthermore, we
used a ModeScan 1780 to measure M2 for SHG LGp, l (as shown in Fig. 10(b)), and we found
that mode generated were of reasonable quality with 11% error.

Fig. 10. The observed intensity profiles, 2ω, of SHG high-order modes for (a) HGm,n and
LGp,l modes at the near-field and far-field for in-phase fundamental pump modes, ω.

The experimental results of the SHG LGp,l and HGm,n mode radius sizes, w2 in Fig. 11 clear
shows that the resonator was emitting the correct SHG high-order modes when compared to
the theoretical values. The experimental mode radius sizes of SHG LGp,l were in very good
agreement with the theoretical values as most of the values were within the error margin. There
was also a general undervaluing of the HGm,n mode radius of HG0,2, HG1,0, HG1,1 and HG1,2.
All of these experimental deviations were due to misalignment of the laser resonator which
produced asymmetrical radius mode values for HGm,n modes and this is shown by the HG0,1 and
HG1,0 mode radii which were supposed to be of similar values as the two modes are reciprocal
and orthogonal in shape to another. The misalignment of the laser resonator caused the radius
size of the HG0,1 mode to increase by an equivalent value at which the HG1,0 radius mode
decreased, such that taking the average of the two theoretical values results to matching the
predicted theoretical value of the two modes.

Fig. 11. The SHG, 2ω, for (a) HGp,l and (b) LGp,l mode radius sizes, w2, as the function of
mode order at the output coupler when the radius of curvature of the end-mirror is set at
R=400 mm.

In addition, the laser resonator slope efficiency of the fundamental mode, ω, of LG0,0, and
LG0,3 are shown in Fig. 12(a). The slope efficiency for the LG0,0 is 4%, while for the LG0,3 is 8%.
The higher-order mode of LG0,3 has a high slope efficiency and laser threshold since it’s mode
volume is larger than LG0,0 and this is in very good agreement with previous results in [23,24].
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The slope efficiency for the SHG modes, 2ω, of LG0,0 is 0.2% and of LG0,3 is 0.1% as shown in
Fig. 12(b). The slope efficiency of the 2ω, LG0,0 is higher compared to the LG0,3 because the
SHG process is an intensity driven process and the 2ω, LG0,0 modes has more power per unit
area compared to LG0,3. The results show that the output power of the SHG modes to be on the
mill-watt range and the slope efficiency lines to be not very straight. This is because the KTP
crystal was not temperature controlled but was mounted on a copper heat sink and air-cooled.
The overall results demonstrate that the laser resonator was producing phase-matched SHG LGp,l
and HGm,n modes that are in good agreement with theory and also that maintain their intensity
mode structure both at the near-field and far-field.

Fig. 12. The output power in watts as the function of absorbed power in milliwatts for
LGp,l.

6. Conclusion remarks

We have successfully converted high-order Laguerre-Gaussian and Hermite-Gaussian modes
operating at 1064 nm to high-order Laguerre-Gaussian and Hermite-Gaussian modes operating
at 532 nm. The intensity profile distributions of the SHG beams at the far-field and the near-field
were comparable with a high degree, the M2 of the LG beams were measured and they are in
good agreement with theory. The next step in our research is to increase the slope efficiency of
both the 1064 nm and the 532 nm laser beams and measure the purity of the beams.

Funding

Council for Scientific and Industrial Research, South Africa (YREF022); Department of Science
and Technology, Republic of South Africa.

Acknowledgments

We thank the CSIR-National Laser Centre (South Africa) and the University of KwaZulu-Natal
staff members for their support.

Disclosures

The authors declare no conflicts of interest.



Research Article Vol. 28, No. 11 / 25 May 2020 / Optics Express 16922

References
1. E. Y. Chan, N. M. Goncalves, R. A. Haeusler, A. J. Hatch, and J. W. Larson, “Dna mapping using microfluidic

stretching and single-molecule detection of fluorescent site-specific tags,” Genome Res. 14(6), 1137–1146 (2004).
2. J. L. Hall, J. Ye, S. A. Diddams, L.-S. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable

lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J.
Quantum Electron. 37(12), 1482–1492 (2001).

3. J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Transactions on Geosci. Remote.
Sens. GE-23(4), 398–413 (1985).

4. G. G. L. S. Duo-Min He, “Laser gated-ranging for underwater robot vision in turbid waters,” (2002), pp. 11–23.
5. F. Bandello, R. Brancato, R. Lattanzio, G. Trabucchi, C. Azzolini, and A. Malegori, “Double-frequency nd: Yag

laser vs. argon-green laser in the treatment of proliferative diabetic retinopathy: Randomized study with long-term
follow-up,” Lasers Surg. Med. 19(2), 173–176 (1996).

6. Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing
micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).

7. J. Yin, J.-G. Ren, H. Lu, and Y. Cao, “Quantum teleportation and entanglement distribution over 100-kilometre
free-space channels,” Nature 488(7410), 185–188 (2012).

8. T. Wiener and S. Karp, “The role of blue/green laser systems in strategic submarine communications,” IEEE Trans.
Commun. 28(9), 1602–1607 (1980).

9. Y. Lin, K. Huang, and Y. Chen, “The formation of quasi-nondiffracting focused beams with second-harmonic
generation of flower laguerre–gaussian modes,” Laser Phys. 23(11), 115405 (2013).

10. L. Bell and S. Ngcobo, “Intracavity second harmonic generation for higher-order laser modes,” in Laser Resonators,
Microresonators, and Beam Control XXI, vol. 10904 (International Society for Optics and Photonics, 2019), p.
109041P.

11. A. Shapira, L. Naor, and A. Arie, “Nonlinear optical holograms for spatial and spectral shaping of light waves,” Sci.
Bull. 60(16), 1403–1415 (2015).

12. X. Li, X. Shen, and G. Li, “Cyclic variation of output energy with ambient temperature changes in intracavity ktp
frequency-doubling laser,” Optik (Munich, Ger.) 126(2), 279–282 (2015).

13. S. F. Liew, S. Knitter, S. Weiler, J. F. Monjardin-Lopez, M. Ramme, B. Redding, M. A. Choma, and H. Cao,
“Intracavity frequency-doubled degenerate laser,” Opt. Lett. 42(3), 411–414 (2017).

14. M. E. Hagerman and K. R. Poeppelmeier, “Review of the structure and processing-defect-property relationships of
potassium titanyl phosphate: a strategy for novel thin-film photonic devices,” Chem. Mater. 7(4), 602–621 (1995).

15. Z. Kecong and W. Ximin, “Structure sensitive properties of ktp-type crystals,” Chin. Sci. Bull. 46(24), 2028–2036
(2001).

16. D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer Science & Business Media, 2006).
17. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals, vol. 64 (Springer,

2013).
18. C. Defan and Y. Zhengtang, “Investigation on some properties of ktiopo 4 crystals,” J. Cryst. Growth 79(1-3),

974–977 (1986).
19. R. Ganeev, I. Kulagin, A. Ryasnyansky, R. Tugushev, and T. Usmanov, “Characterization of nonlinear optical

parameters of kdp, linbo 3 and bbo crystals,” Opt. Commun. 229(1-6), 403–412 (2004).
20. R. Weis and T. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A

37(4), 191–203 (1985).
21. T. Bell, S. Ngcobo, and A. Forbes, “Generation of laguerre-gaussian beams using a Solid State Digital laser,” in

Frontiers in Optics, (Optical Society of America, 2015), pp. FW6B–3.
22. T. Bell, A. Hasnaoui, K. Äit-Ameur, A. Forbes, and S. Ngcobo, “Intracavity generation of low-loss radial-order

Laguerre-Gaussian modes using digital holograms,” in SPIE LASE, vol. 9727 (International Society for Optics and
Photonics, 2016), p. 97271K.

23. T. Bell and S. Ngcobo, “Selective excitation of higher-radial-order laguerre-gaussian beams using a solid-state digital
laser,” J Laser Opt Photonics 3(2), 144 (2016).

24. T. Bell, A. Hasnaoui, K. Ait-Ameur, and S. Ngcobo, “Excitation of high-radial-order laguerre–gaussian modes in a
solid-state laser using a lower-loss digitally controlled amplitude mask,” J. Opt. 19(10), 105604 (2017).

25. T. Bell and S. Ngcobo, “Extra-cavity amplification of the digital laser modes using nd: Yag amplifier,” in CLEO:
QELS_Fundamental Science, (Optical Society of America, 2018), pp. JTu2A–177.

26. Z.-Y. Zhou, D.-S. Ding, Y.-K. Jiang, Y. Li, S. Shi, X.-S. Wang, and B.-S. Shi, “Orbital angular momentum light
frequency conversion and interference with quasi-phase matching crystals,” Opt. Express 22(17), 20298–20310
(2014).

27. J. Courtial, K. Dholakia, L. Allen, and M. Padgett, “Second-harmonic generation and the conservation of orbital
angular momentum with high-order laguerre-gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997).

28. F. Ahmed, “Laser damage threshold of ktiopo4,” Appl. Opt. 28(1), 119–122 (1989).
29. R. G. Brewer and E. Hahn, “Coherent two-photon processes: Transient and steady-state cases,” Phys. Rev. A 11(5),

1641–1649 (1975).

https://doi.org/10.1101/gr.1635204
https://doi.org/10.1109/3.970893
https://doi.org/10.1109/3.970893
https://doi.org/10.1109/TGRS.1985.289430
https://doi.org/10.1109/TGRS.1985.289430
https://doi.org/10.1002/(SICI)1096-9101(1996)19:2{{\mathsurround =\opskip $<$}}173::AID-LSM8{{\mathsurround =\opskip $>$}}3.0.CO;2-P
https://doi.org/10.1039/c1lc20478e
https://doi.org/10.1038/nature11332
https://doi.org/10.1109/TCOM.1980.1094858
https://doi.org/10.1109/TCOM.1980.1094858
https://doi.org/10.1088/1054-660X/23/11/115405
https://doi.org/10.1007/s11434-015-0855-3
https://doi.org/10.1007/s11434-015-0855-3
https://doi.org/10.1016/j.ijleo.2014.08.165
https://doi.org/10.1364/OL.42.000411
https://doi.org/10.1021/cm00052a004
https://doi.org/10.1007/BF02901124
https://doi.org/10.1016/0022-0248(86)90581-6
https://doi.org/10.1016/j.optcom.2003.10.046
https://doi.org/10.1007/BF00614817
https://doi.org/10.4172/2469-410X.1000e144
https://doi.org/10.1088/2040-8986/aa81f9
https://doi.org/10.1364/OE.22.020298
https://doi.org/10.1103/PhysRevA.56.4193
https://doi.org/10.1364/AO.28.000119
https://doi.org/10.1103/PhysRevA.11.1641


Research Article Vol. 28, No. 11 / 25 May 2020 / Optics Express 16923

30. W. J. Kozlovsky, C. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw nd:
yag laser using monolithic mgo: linbo/sub 3/external resonant cavities,” IEEE J. Quantum Electron. 24(6), 913–919
(1988).

31. H. E. Salzer and R. Zucker, “Table of the zeros and weight factors of the first fifteen laguerre polynomials,” Bull.
Amer. Math. Soc. 55(10), 1004–1013 (1949).

32. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Applied mathematics series, 1966).
33. H. E. Salzer, R. Zucker, and R. Capuano, Table of the zeros and weight factors of the first twenty Hermite polynomials

(US Government Printing Office, 1952).
34. B. A. Lengyel, Introduction to laser physics (John Wiley And Sons, 1966).
35. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4(1),

2289 (2013).
36. V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modul ation devices,”

Opt. Lett. 28(24), 2521–2523 (2003).
37. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding

of scalar complex fields,” J. Opt. Soc. Am. A 24(11), 3500–3507 (2007).
38. D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, “Intra-cavity generation of superpositions of laguerre–gaussian

beams,” Appl. Phys. B 106(3), 683–690 (2012).
39. L. Bergstein, “Modes of stable and unstable optical resonators,” Appl. Opt. 7(3), 495–504 (1968).

https://doi.org/10.1109/3.211
https://doi.org/10.1090/S0002-9904-1949-09327-8
https://doi.org/10.1090/S0002-9904-1949-09327-8
https://doi.org/10.1038/ncomms3289
https://doi.org/10.1364/OL.28.002521
https://doi.org/10.1364/JOSAA.24.003500
https://doi.org/10.1007/s00340-011-4775-x
https://doi.org/10.1364/AO.7.000495

