
Information Processing Letters 147 (2019) 82–87
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Efficient pattern matching in degenerate strings with the

Burrows–Wheeler transform ✩

J.W. Daykin a,b,c,e, R. Groult d,c, Y. Guesnet c, T. Lecroq c,∗, A. Lefebvre c,
M. Léonard c, L. Mouchard c, É. Prieur-Gaston c, B. Watson e,f

a Department of Computer Science, Aberystwyth Univ., Wales, UK and Mauritius
b Department of Informatics, King’s College London, UK
c Normandie Univ., UNIROUEN, LITIS, 76000 Rouen, France
d Modélisation, Information et Systèmes (MIS), Univ. Picardie Jules Verne, Amiens, France
e Department of Information Science, Stellenbosch Univ., South Africa
f CAIR, CSIR Meraka, Pretoria, South Africa

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 December 2017
Received in revised form 11 January 2019
Accepted 8 March 2019
Available online 15 March 2019
Communicated by Marek Chrobak

Keywords:
Algorithms
Burrows–Wheeler transform
Degenerate
Pattern matching
String

A degenerate or indeterminate string on an alphabet � is a sequence of non-empty subsets
of �. Given a degenerate string t of length n and its Burrows–Wheeler transform we
present a new method for searching for a degenerate pattern of length m in t running
in O (mn) time on a constant size alphabet �. Furthermore, it is a hybrid pattern matching
technique that works on both regular and degenerate strings. A degenerate string is said
to be conservative if its number of non-solid letters is upper-bounded by a fixed positive
constant q; in this case we show that the search time complexity is O (qm2) for counting
the number of occurrences and O (qm2 + occ) for reporting the found occurrences where
occ is the number of occurrences of the pattern in t. Experimental results show that our
method performs well in practice.

© 2019 Published by Elsevier B.V.
1. Introduction

A degenerate or indeterminate string x on an alphabet
� is a sequence of non-empty subsets of �. Degenerate
strings date back to the groundbreaking paper of Fischer
& Paterson [5]. Then a solid letter is a singleton. Non-solid
letters are called degenerate letters. This generalization of
a regular (or solid) string, from letters to subsets of let-
ters, arises naturally in diverse applications: in musicology,

✩ The first author was part-funded by the European Regional Develop-
ment Fund through the Welsh Government, Grant Number 80761-AU-137
(West).

* Corresponding author.
E-mail address: thierry.lecroq@univ-rouen.fr (T. Lecroq).
https://doi.org/10.1016/j.ipl.2019.03.003
0020-0190/© 2019 Published by Elsevier B.V.
for instance the problem of finding chords that match with
single notes; search tasks allowing for occurrence of errors
such as with web interfaces and search engines; bioinfor-
matics activities (DNA sequences and proteins analysis);
and cryptanalysis applications.

For solid strings, the main approaches for computing all
the occurrences of a given non-empty pattern p in a given
non-empty text t have been window-shifting techniques,
and applying bit-parallel processing to achieve fast pro-
cessing – for expositions of classic string matching algo-
rithms see [2]. More recently the Burrows–Wheeler trans-
form (BWT) has been tuned to this search task, where all
the occurrences of the pattern p can be found as a prefix
of consecutive rows of the BWT matrix, and these rows are
determined using a backward search process.

https://doi.org/10.1016/j.ipl.2019.03.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:thierry.lecroq@univ-rouen.fr
https://doi.org/10.1016/j.ipl.2019.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2019.03.003&domain=pdf

J.W. Daykin et al. / Information Processing Letters 147 (2019) 82–87 83
The degenerate pattern matching problem for degener-
ate strings p and t over � of length m and n respectively
is the task of finding all the positions of all the occurrences
of p in t , that is, computing every j such that ∀ 1 ≤ i ≤ |p|
it holds that p[i] ∩ t[i + j] �= ∅. Following the first signifi-
cant contribution to this problem by Fischer and Paterson
[5], interest over the years has produced a faster algorithm
by Kalai [9], and practical methods by Smyth et al. [12].

Variants of degenerate pattern matching have recently
been proposed. A degenerate string is said to be conserva-
tive if its number of degenerate letters is upper-bounded
by a fixed positive constant q. Crochemore et al. [3] con-
sidered the matching problem of conservative degenerate
strings and presented an efficient algorithm that can find,
for given degenerate strings p and t of total length n con-
taining q degenerate letters in total, the occurrences of p
in t in O (nq) time, i.e. linear in the size of the input.

Our contribution is to implement degenerate pattern
matching by modifying the existing Burrows–Wheeler pat-
tern matching technique using the standard RAM model
of computation. Given a degenerate string t of length n,
searching for either a degenerate or solid pattern of length
m in t is achieved in O (mn) time; in the conservative sce-
nario with at most q degenerate letters in the pattern and
in t , the search complexity is O (qm2) for counting the
number of occurrences and O (qm2 + occ) for reporting the
found occurrences where occ is the number of occurrences
of the pattern in t – competitive for short patterns. This
formalizes and extends the work implemented in BWB-
BLE [8]. The rest of the paper is organized as follows. In
Section 2 we give notation and recall basic definitions.
The following Section 3 presents the previous work on the
problem. Then in Section 4 we provide proofs for pattern
matching in degenerate strings with the Burrows–Wheeler
transform. In Section 5 we consider the case of pattern
matching in conservative degenerate strings. We discuss
our experimental results in Section 6.

2. Notation and definitions

Consider a finite totally ordered alphabet � of con-
stant size σ which consists of a set of letters. The order
on letters is denoted by the usual symbol <. A string is
a sequence of zero or more letters over �. The set of all
strings over � is denoted by �∗ and the set of all non-
empty strings over � is denoted by �+ . Note we write
strings in mathbold such as x, y. The lexicographic order
(lexorder) on strings is also denoted by the symbol <.

A string x over �+ of length |x| = n is represented by
x[1. . n], where x[i] ∈ � for 1 ≤ i ≤ n is the i-th letter of x.
The symbol � gives the number of elements in a specified
set.

The concatenation of two strings x and y is defined as
the sequence of letters of x followed by the sequence of
letters of y and is denoted by x · y or simply x y when no
confusion is possible. A string y is a substring of x if x =
u yv , where u, v ∈ �∗; specifically a string y = y[1. . m] is
a substring of x if y[1. . m] = x[i. . i + m − 1] for some i,
where 1 ≤ i ≤ n − m + 1. Strings u = x[1. . i] are called pre-
fixes of x, and strings v = x[i. . n] are called suffixes of x of
length n for 1 ≤ i ≤ n. The prefix u (respectively suffix v)
BackwardSearch(p,m,BWT,n, C)

1 (i, j,k) ← (1,n,m − 1)

2 while i ≤ j and k ≥ 1 do
3 c ← p[k]
4 (i, j,k) ← (C[c]+ rankc(BWT, i −1)+ 1, C[c]+ rankc(BWT, j),k −1)

5 if i ≤ j then
6 return (i, j)
7 else return ⊥

Fig. 1. Backward search for a pattern p in the BWT of a string x.

is a proper prefix (suffix) of a string x if x �= u, v . A string
y = y[1. . n] is a cyclic rotation of x = x[1. . n] if y[1. . n] =
x[i. . n]x[1. . i − 1] for some 1 ≤ i ≤ n (for i = 1, y = x).

Definition 1 (Burrows–Wheeler transform). The BWT of x is
defined as the pair (L, h) where L is the last column of the
matrix Mx formed by all the lexorder sorted cyclic rota-
tions of x and h is the index of x in this matrix.

The BWT is easily invertible via a linear LF last first
mapping [1] using an array C indexed by all the letters
c of the alphabet � and defined by: C[c] = �{i | x[i] < c}
and rankc(x, i) which gives the number of occurrences of
the letter c in the prefix x[1. . i]. A property of the LF map-
ping is that the i-th occurrence of a letter c in the last
column L has the same rank as the i-th occurrence of c in
the first column F which can be calculated using the array
C and the function rank. Traversing the letters repeatedly
between L and F recovers the input.

Given the BWT of x it is easy to find the number of oc-
currences of a pattern p of length m in x by performing
a right to left, that is backwards, scan of p as computed
by the pseudocode in Fig. 1. Note that although the BWT
is defined as a pair, Definition 1, for the backwards search
technique, the convention for the argument list is to de-
scribe the last column L in the BWT matrix as the string
BW T . The procedure returns an interval (i, j) such that
p is a prefix of Mx[k] for i ≤ k ≤ j, or, it returns ⊥ if p
is not a prefix of any rows of Mx . Hence the number of
occurrences of the pattern is given by the size of the in-
terval. The positions of the occurrences can be computed
with the help of a full or sampled suffix array of x: a suf-
fix array SA gives the starting positions of the suffixes of x
in lexicographical order, so that SA[i] is the starting posi-
tion of the i-th smallest suffix of x; a sampled SA has been
sampled at a subset of its indices thus providing succinct-
ness.

In [4], Daykin and Watson present a simple modifica-
tion of the classic BWT, the degenerate Burrows–Wheeler
transform which, analogously to the classic case, exhibits
clustering of letters in degenerate strings – the focus here
is applications of the transforms to pattern matching.

Given an alphabet � we define a new alphabet �� as
the non-empty subsets of �: �� =P(�) \ {∅}, where P is
the usual power set. Formally a non-empty indeterminate
or degenerate string x is an element of �+

� . We extend the
notion of prefix on degenerate strings as follows. A degen-
erate string u is called a degenerate prefix of x if |u| ≤ |x|
and u[i] ∩ x[i] �= ∅ ∀1 ≤ i ≤ |u|.

A degenerate string is said to be conservative if its num-
ber of degenerate letters is upper-bounded by a fixed pos-
itive constant q.

84 J.W. Daykin et al. / Information Processing Letters 147 (2019) 82–87
Definition 2. A degenerate string y = y[1. . n] is a degen-
erate cyclic rotation of a degenerate string x = x[1. . n] if
y[1. . n] = x[i. . n]x[1. . i − 1] for some 1 ≤ i ≤ n (for i =
1, y = x).

Given an order on �� denoted by the usual symbol
<, we can compute the BWT of a degenerate string x in
the same way as for a regular string; here we apply lex-
order.

3. Previous work

In [8] the authors present a bioinformatics software tool
called BWBBLE that enables performing pattern matching
on a pan-genome (collection of genomes of individuals
of the same species) that they called a reference multi-
genome. BWBBLE can take into account various types of
differences between the different genomes. For substitu-
tions it basically aligns the different genomes and the
symbol at each position of the reference multi-genome
is composed of the union of the symbols of the differ-
ent genomes at this position. More specifically, it consid-
ers strings of �+

� where � = {A, C, G, T}. Each element
of � is represented as a 4-bit integer power of 2 (2i

with i ∈ {0, 1, 2, 3}), where an element S ∈ �� is rep-
resented by

∑
{s∈S} s. Then instead of using the natural

order on integers it uses a Gray code [7] (also known
as the reflected binary code) to order the elements of
�� . With the Gray code two successive values differ only
by one bit, such as 1100 and 1101, which enables min-
imizing the number of separate intervals associated with
each of the four symbols of �. Then the authors gen-
eralize the usual backward search technique, shown in
Fig. 1, for searching in a reference multi-genome but
they do not provide any proofs of correctness. In the
next section we provide a proof of correctness of the
generalization of the backward search for the degenerate
Burrows-Wheeler transform. We also show that adjacent
intervals generated during the backward search can be
merged.

4. Searching for a degenerate pattern in a degenerate
string

Let p and t be two degenerate strings over �� of
length m and n respectively. We want to find the po-
sitions of all the occurrences or matches of p in t i.e.
we want to compute every j such that ∀ 1 ≤ i ≤ |p| it
holds that p[i] ∩ t[i + j] �= ∅. For determining the match-
ing we will apply the usual backward search but at each
step we may generate several different intervals which
will be stored in a set H . Then step k (processing p[k]
with 1 ≤ k ≤ m) of the backward search can be formalized
as follows: 1Step(H, k, C, BWT = (L, h), p) = (((r, s)) | r =
C[c] +rankc(L, i −1) +1, s = C[c] +rankc(L, j), r ≤ s, (i, j) ∈
H, c ∈ �� and c ∩ p[k] �= ∅).

Then for 1 ≤ i ≤ m − 1, Step(m, C, BWT, p) =
1Step({(1, n)}, m, C, BWT, p) and Step(i, C, BWT, p) =
1Step(Step(i + 1, C, BWT, p), i, C, BWT, p). In other words,
Step(i, C, BWT, p) applies step m through to i of the back-
ward search.
DegenerateBackwardSearch(p,m,BWT = (L,h),n, C)

1 (H,k) ← ({(1,n)},m)

2 while H �= ∅ and k ≥ 1 do
3 H ′ ← ∅
4 for (i, j) ∈ H do
5 for c ∈ �� such that c ∩ p[k] �= ∅ do
6 H ′ ← H ′ ∪ {(C[c] + rankc(L, i − 1) + 1, C[c] + rankc(L, j))}
7 (H,k) ← (H ′,k − 1)

8 return H

Fig. 2. Backward search for a degenerate pattern in the BWT of a degen-
erate string.

Lemma 1. The interval (i, j) ∈ Step(k, C, BWT, p) if and only if
p[k. . m] is a degenerate prefix of Mt[h] for i ≤ h ≤ j.

Proof. =⇒: By induction. By definition of the array C ,
p[m] is a degenerate prefix of Mt [h], for i ≤ h ≤ j when
(i, j) ∈ Step(m, C, BWT, p). So assume that the property is
true for all integers k′ such that k < k′ ≤ m. If (r, s) ∈
Step(k, C, BWT, p) then r = C[a] + ranka(BWT, i − 1) + 1
and s = C[a] + ranka(BWT, j) with r ≤ s, where (i, j) ∈
Step(k + 1, C, BWT, p), a ∈ �� and a ∩ p[k] �= ∅. Thus by
the definition of the BWT, p[k. . m] is a degenerate prefix
of rows of Mt [h] for r ≤ h ≤ s.

⇐=: By induction. By definition, if p[m] is a degenerate
prefix of Mt [h] for r ≤ h ≤ s then (r, s) ∈ Step(m, C, BWT, p).
So assume that the property is true for all integers k′ + 1
such that k < k′ ≤ m. If p[k + 1. . m] is a degenerate prefix
of Mt [h] for i ≤ h ≤ j, then (i, j) ∈ Step(k + 1, C, BWT, p).
When p[k. . m] is a degenerate prefix of Mt [h] for r ≤ h ≤ s,
then (r, s) ∈ 1Step(Step(k + 1, C, BWT, p), i, C, BWT, p) =
Step(k, C, BWT, p) by definition of the array C and the rank
function.

We conclude that the property holds for 1 ≤ k ≤ m. �
Corollary 2. The interval (i, j) ∈ Step(1, C, BWT, p) if and only
if p is a degenerate prefix of Mt[h] for i ≤ h ≤ j.

The proposed algorithm, see Fig. 2, computes
Step(1, C, BWT, p) by first initializing the variable H with
{(1, n)} and then performing steps m to 1, while exiting
whenever H becomes empty.

The following two lemmas show that the number of
intervals in H cannot grow exponentially.

Lemma 3. The intervals in 1Step({(i, j)}, k, C, BWT, p) do not
overlap.

Proof. 1Step({(i, j)}, k, C, BWT, p) will generate one inter-
val for every distinct letter c ∈ �� such that c ∩ p[k] �= ∅.
Thus these intervals cannot overlap. �
Lemma 4. The intervals in 1Step({(i, j), (i′, j′)}, k, C, BWT, p)

with i ≤ j < i′ ≤ j′ do not overlap.

Proof. From Lemma 3, the intervals generated from (i, j)
do not overlap, and similarly the intervals generated from
(i′, j′) do not overlap.

Let (r, s) be an interval generated from (i, j), and let
(r′, s′) be an interval generated from (i′, j′). Formally, let
r, s, c be such that r = C[c] + rankc(BWT, i − 1) + 1, s =

J.W. Daykin et al. / Information Processing Letters 147 (2019) 82–87 85
C[c] + rankc(BWT, j), c ∈ �� and c ∩ p[k] �= ∅. Let r′, s′, c′
be such that r′ = C[c′] + rankc′ (BWT, i′ − 1) + 1, s′ = C[c′] +
rankc′ (BWT, j′), c′ ∈ �� and c′ ∩ p[k] �= ∅.

If c �= c′ then (r, s) and (r′, s′) cannot overlap since
C[c] ≤ r ≤ s < C[c] + �{i | t[i] = c} and C[c′] ≤ r′ ≤ s′ <

C[c′] + �{i | t[i] = c′}. Otherwise, if c = c′ then since
j < i′ , it follows that rankc(BWT, j) < rankc(BWT, i′ − 1) + 1
and thus (r, s) = (C[c] + rankc(BWT, i − 1) + 1, C[c] +
rankc(BWT, j)) and (r′, s′) = (C[c] + rankc(BWT, i′ − 1) +
1, C[c] + rankc(BWT, j′)) do not overlap. �
Corollary 5. Let H be a set of non-overlapping intervals. The
intervals in 1Step(H, k, C, BWT, p) do not overlap.

We can now state the complexity of the degenerate
backward search.

Theorem 6. The algorithm DegenerateBackwardSearch(p,

m, BWT, n, C) computes a set of intervals H, where (i, j) ∈ H if
and only if p is a degenerate prefix of consecutive rows of Mt [k]
for i ≤ k ≤ j, in time O (mn) for a constant size alphabet.

Proof. The correctness comes from Corollary 2. The time
complexity mainly comes from Lemma 3 and the fact that
the alphabet size is constant. �

From Corollary 5, the number of intervals at each step
of the backward search cannot exceed n. However, in prac-
tice, it may be worthwhile decreasing the number of inter-
vals further: the next lemma shows that adjacent intervals
can be merged. In order to easily identify adjacent in-
tervals we will now store them in a sorted list-like data
structure as follows. For two lists I and J the concatena-
tion of the elements of I followed by the elements of J is
denoted by I · J .

We proceed to define the operation Mrg that con-
sists in merging two adjacent intervals: Mrg(∅) = ∅ and
Mrg((i, j)) = ((i, j)), Mrg(((i, j), (j +1, j′)) · I) = Mrg(((i, j′))
· I), Mrg(((i, j), (i′, j′)) · I) = ((i, j)) · Mrg(((i′, j′)) · I) for
i′ > j + 1. The next lemma justifies the merging of adja-
cent intervals in H .

Lemma 7. Mrg(1Step(((i, j), (j + 1, j′)), k, C, BWT, p)) =
Mrg(1Step(((i, j′)), k, C, BWT, p)).

Proof. For a letter c ∈ �� such that c ∩ p[k] �= ∅ the
intervals generated from (i, j) and (j + 1, j′) are, by def-
inition, necessarily adjacent which shows that if (p, q) ∈
Mrg(1Step(((i, j), (j + 1, j′)), k, C, BWT, p)) then (p, q) ∈
Mrg(1Step(((i, j′)), k, C, BWT, p)). The reciprocal can be
shown similarly. �

This means that H can be implemented with an ef-
ficient data structure such as an interval tree typically
implemented as red-black trees adapted for storing non-
overlapping and non-adjacent intervals.

Complete example. Let t = {c, e} · {c, d} · {a, b, c} · {a, e} ·
{a, b, c}. Then by renaming {a, b, c} as A, {a, e} as B,
{c, d} as C and {c, e} as D, t = DCABA and with the or-
der A < B < C < D we have BWT(t) = CBADA see [4] for
the ordering technique.

i
1 D C A B A
2 C A B A D
3 A B A D C
4 B A D C A
5 A D C A B

i F L
1 A B A D C
2 A D C A B
3 B A D C A
4 C A B A D
5 D C A B A

cyclic rotations of t Mt

Thus the array C is as follows:

A B C D
C 0 2 3 4

Let p = {c} · {a, b} · {a} and let us search for p in t with
the algorithm DegenerateBackwardSearch.

p[3] = {a} ∩ A = {a, b, c} �= ∅ and p[3] = {a} ∩ B = {a, e} �=
∅.

Without merging With merging
1Step(((1,5)),3, C,BWT, p) = 1Step(((1,5),3, C,BWT, p) =

((1,2), (3,3)) ((1,3))

F L
→B 1 A C
→E 2 A B
⇒ 3 B A

4 C D
5 D A

F L
→B 1 A C

2 A B
→E 3 B A

4 C D
5 D A

p[2] = {a, b} ∩ A = {a, b, c} �= ∅ and p[2] = {a, b} ∩ B =
{a, e} �= ∅.

Without merging With merging
1Step(((1,2), (3,3)),2, C,BWT, p) = 1Step(((1,3)),2, C,BWT, p) =

((1,1), (3,3)) ((1,1), (3,3))

F L
⇒ 1 A C

2 A B
⇒ 3 B A

4 C D
5 D A

F L
⇒ 1 A C

2 A B
⇒ 3 B A

4 C D
5 D A

p[1] = {c} ∩ A = {a, b, c} �= ∅, p[1] = {c} ∩ C = {c, d} �= ∅
and p[1] = {c} ∩ D = {c, e} �= ∅.

Without merging With merging
1Step(((1,1), (3,3)),1, C,BWT, p) = 1Step(((1,1), (3,3)),1, C,BWT, p) =

((1,1), (4,4)) ((1,1), (4,4))

F L
⇒ 1 A C

2 A B
3 B A

⇒ 4 C D
5 D A

F L
⇒ 1 A C

2 A B
3 B A

⇒ 4 C D
5 D A

→B stands for the beginning of an interval, →E for the
end of an interval and ⇒ for an interval of one element.
Thus p has two occurrences in t .

5. Degenerate pattern in a conservative degenerate string

For conservative degenerate strings the search complex-
ity can be reduced.

Theorem 8. Let t and p be two conservative degenerate strings
over a constant size alphabet such that their total number of

86 J.W. Daykin et al. / Information Processing Letters 147 (2019) 82–87
Fig. 3. (a): Running times for searching for a degenerate pattern of length 8 in a solid string of various lengths with σ = 4. (b): Running times for searching
for several degenerate patterns of length 8 in a solid string of length 250 MB with σ = 8. (c): Running times with DBS for searching for degenerate patterns
in a conservative degenerate string of length 250 MB with σ = 4 and 25M degenerate letters when the list of intervals is implemented with a red-black
tree or with a linked list. (d): Running times for searching for one degenerate pattern of length 8 in a conservative degenerate string of variable length
with 500, 000 degenerate letters.
degenerate letters is bounded by a constant q. Then given the
BWT of t , all the intervals in the BWT of occurrences of a pattern
p of length m can be detected in time O (qm2).

Proof. The largest number of intervals at the first step of
the backward search is O (1) for solid letters and q for the
degenerate letters. Then at each step the q intervals for
the degenerate letters will generate q other intervals while
each interval corresponding to a solid letter will gener-
ate O (1) intervals for solid letters and q intervals for the
degenerate letters. Since there are m steps the result fol-
lows. �
Corollary 9. Let t and p be two conservative degenerate strings
over a constant size alphabet such that their total number of
degenerate letters is bounded by a constant q. Then given the
BWT of t , the occurrences of p of length m can be reported in
time O (qm2 + occ) where occ is the number of occurrences of
p in t .
6. Experiments

We ran algorithm DegenerateBackwardSearch (DBS)
for searching for the occurrences of a degenerate pattern in
different random strings: solid strings, degenerate strings
and conservative degenerate strings. The alphabet consists
of subsets of the DNA alphabet encoded by integers from 1
to 15. Solid letters are encoded by powers of 2 (1, 2, 4 and
8) as in [8]. Then intersections between degenerate letters
can be performed by a bitwise and operation. But contrary
to [8] we used the natural order on integers. The patterns
have also been randomly generated.

We additionally ran the adaptive Hybrid pattern-match-
ing algorithm of [12], and, since the alphabet size is small
we also ran a version of the Backward-Non-Deterministic-
Matching (BNDM) adapted for degenerate pattern match-
ing (see [10]). The Hybrid and BNDM are bit-parallel algo-
rithms and have only been tested for pattern lengths up
to 64. The source of our method is available at https://
github .com /YGuesnet /dbwt and the inputs have been made

https://github.com/YGuesnet/dbwt
https://github.com/YGuesnet/dbwt

J.W. Daykin et al. / Information Processing Letters 147 (2019) 82–87 87
compatible to those of [3]. However we excluded the algo-
rithm in [3] from the comparison since it is more general
and performs slower than the two previously mentioned
algorithms. For the computation of the BWT we used the
SAIS library [11] and the SDSL library [6]. All the experi-
ments have been performed on a computer with a 3.5 GHz
i7-4800MQ processor and 16 GB RAM.

We performed various experiments and select four of
them for presentation here. For DBS the measured times
exclude the construction of the BWT but include the re-
porting of the occurrences using a suffix array. This can be
justified by the fact that, in most cases, strings are given
in a compressed form through their BWTs. Fig. 3(a) shows
the searching times for a degenerate pattern of length 8
in solid strings of various lengths with an alphabet of size
4, where clearly when the length of the string increases
the advantage of using DBS also increases. Fig. 3(b) shows
the searching times for various numbers of degenerate pat-
terns of length 8 in a solid string with an alphabet of size
8. Running times include preprocessing times for all meth-
ods. It can be seen that when enough patterns have to
be searched for in the same string then it is worth us-
ing the new DBS algorithm. Fig. 3(c) shows the searching
times with DBS for various numbers of degenerate pat-
terns of length 8 in degenerate strings with an alphabet
of size 4 when intervals are stored with red-black trees or
with linked lists. As expected, for efficiency it is worth us-
ing an advanced data structure, such as red-black trees, for
merging intervals. All times are in seconds. Fig. 3(d) shows
the searching times for a degenerate pattern of length 8 in
conservative degenerate strings of various lengths (for each
length the strings contain 10% of degenerate letters).

References

[1] M. Burrows, D.J. Wheeler, A Block Sorting Lossless Data Compression
Algorithm, Tech. Rep. 124 Digital Equipment Corporation, 1994.

[2] C. Charras, T. Lecroq, Handbook of Exact String Matching Algorithms,
King’s College Publications, 2004.

[3] M. Crochemore, C.S. Iliopoulos, R. Kundu, M. Mohamed, F. Vayani,
Linear algorithm for conservative degenerate pattern matching, Eng.
Appl. Artif. Intell. 51 (2016) 109–114.

[4] J.W. Daykin, B. Watson, Indeterminate string factorizations and de-
generate text transformations, Math. Comput. Sci. 11 (2) (2017)
209–218.

[5] M.J. Fischer, M.S. Paterson, String matching and other products, in: R.
Karp (Ed.), Proceedings of the 7th SIAM-AMS Complexity of Compu-
tation, 1974, pp. 113–125.

[6] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: plug
and play with succinct data structures, in: SEA, 2014, pp. 326–337.

[7] F. Gray, Pulse code communication, U.S. Patent No. 2,632,058, 1953.
[8] L. Huang, V. Popic, S. Batzoglou, Short read alignment with popula-

tions of genomes, Bioinformatics 29 (13) (2013) i361–i370.
[9] A. Kalai, Efficient pattern-matching with don’t cares, in: Proceedings

of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
vol. 2, 2002, pp. 655–656.

[10] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings - Prac-
tical on-Line Search Algorithms for Texts and Biological Sequences,
CUP, 2002.

[11] G. Nong, S. Zhang, W.H. Chan, Two efficient algorithms for linear
time suffix array construction, IEEE Trans. Comput. 60 (10) (2011)
1471–1484.

[12] W.F. Smyth, S. Wang, An adaptive hybrid pattern-matching algorithm
on indeterminate strings, Int. J. Found. Comput. Sci. 20 (06) (2009)
985–1004.

http://refhub.elsevier.com/S0020-0190(19)30053-5/bib42573934s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib42573934s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib434C3034s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib434C3034s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib43494B4D563136s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib43494B4D563136s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib43494B4D563136s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib44573137s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib44573137s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib44573137s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib46503734s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib46503734s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib46503734s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib67626D7032303134736561s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib67626D7032303134736561s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib627762626C65s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib627762626C65s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib4B3032s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib4B3032s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib4B3032s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib4E5232303032s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib4E5232303032s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib4E5232303032s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib73616973s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib73616973s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib73616973s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib53573039s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib53573039s1
http://refhub.elsevier.com/S0020-0190(19)30053-5/bib53573039s1

	Efﬁcient pattern matching in degenerate strings with the Burrows-Wheeler transform
	1 Introduction
	2 Notation and deﬁnitions
	3 Previous work
	4 Searching for a degenerate pattern in a degenerate string
	5 Degenerate pattern in a conservative degenerate string
	6 Experiments
	References

