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A degenerate or indeterminate string on an alphabet � is a sequence of non-empty subsets 
of �. Given a degenerate string t of length n and its Burrows–Wheeler transform we 
present a new method for searching for a degenerate pattern of length m in t running 
in O (mn) time on a constant size alphabet �. Furthermore, it is a hybrid pattern matching 
technique that works on both regular and degenerate strings. A degenerate string is said 
to be conservative if its number of non-solid letters is upper-bounded by a fixed positive 
constant q; in this case we show that the search time complexity is O (qm2) for counting 
the number of occurrences and O (qm2 + occ) for reporting the found occurrences where 
occ is the number of occurrences of the pattern in t. Experimental results show that our 
method performs well in practice.

© 2019 Published by Elsevier B.V.
1. Introduction

A degenerate or indeterminate string x on an alphabet 
� is a sequence of non-empty subsets of �. Degenerate 
strings date back to the groundbreaking paper of Fischer 
& Paterson [5]. Then a solid letter is a singleton. Non-solid 
letters are called degenerate letters. This generalization of 
a regular (or solid) string, from letters to subsets of let-
ters, arises naturally in diverse applications: in musicology, 
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for instance the problem of finding chords that match with 
single notes; search tasks allowing for occurrence of errors 
such as with web interfaces and search engines; bioinfor-
matics activities (DNA sequences and proteins analysis); 
and cryptanalysis applications.

For solid strings, the main approaches for computing all 
the occurrences of a given non-empty pattern p in a given 
non-empty text t have been window-shifting techniques, 
and applying bit-parallel processing to achieve fast pro-
cessing – for expositions of classic string matching algo-
rithms see [2]. More recently the Burrows–Wheeler trans-
form (BWT) has been tuned to this search task, where all 
the occurrences of the pattern p can be found as a prefix 
of consecutive rows of the BWT matrix, and these rows are 
determined using a backward search process.
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The degenerate pattern matching problem for degener-
ate strings p and t over � of length m and n respectively 
is the task of finding all the positions of all the occurrences 
of p in t , that is, computing every j such that ∀ 1 ≤ i ≤ |p|
it holds that p[i] ∩ t[i + j] �= ∅. Following the first signifi-
cant contribution to this problem by Fischer and Paterson 
[5], interest over the years has produced a faster algorithm 
by Kalai [9], and practical methods by Smyth et al. [12].

Variants of degenerate pattern matching have recently 
been proposed. A degenerate string is said to be conserva-
tive if its number of degenerate letters is upper-bounded 
by a fixed positive constant q. Crochemore et al. [3] con-
sidered the matching problem of conservative degenerate 
strings and presented an efficient algorithm that can find, 
for given degenerate strings p and t of total length n con-
taining q degenerate letters in total, the occurrences of p
in t in O (nq) time, i.e. linear in the size of the input.

Our contribution is to implement degenerate pattern 
matching by modifying the existing Burrows–Wheeler pat-
tern matching technique using the standard RAM model 
of computation. Given a degenerate string t of length n, 
searching for either a degenerate or solid pattern of length 
m in t is achieved in O (mn) time; in the conservative sce-
nario with at most q degenerate letters in the pattern and 
in t , the search complexity is O (qm2) for counting the 
number of occurrences and O (qm2 + occ) for reporting the 
found occurrences where occ is the number of occurrences 
of the pattern in t – competitive for short patterns. This 
formalizes and extends the work implemented in BWB-
BLE [8]. The rest of the paper is organized as follows. In 
Section 2 we give notation and recall basic definitions. 
The following Section 3 presents the previous work on the 
problem. Then in Section 4 we provide proofs for pattern 
matching in degenerate strings with the Burrows–Wheeler 
transform. In Section 5 we consider the case of pattern 
matching in conservative degenerate strings. We discuss 
our experimental results in Section 6.

2. Notation and definitions

Consider a finite totally ordered alphabet � of con-
stant size σ which consists of a set of letters. The order 
on letters is denoted by the usual symbol <. A string is 
a sequence of zero or more letters over �. The set of all 
strings over � is denoted by �∗ and the set of all non-
empty strings over � is denoted by �+ . Note we write 
strings in mathbold such as x, y. The lexicographic order 
(lexorder) on strings is also denoted by the symbol <.

A string x over �+ of length |x| = n is represented by 
x[1. . n], where x[i] ∈ � for 1 ≤ i ≤ n is the i-th letter of x. 
The symbol � gives the number of elements in a specified 
set.

The concatenation of two strings x and y is defined as 
the sequence of letters of x followed by the sequence of 
letters of y and is denoted by x · y or simply x y when no 
confusion is possible. A string y is a substring of x if x =
u yv , where u, v ∈ �∗; specifically a string y = y[1. . m] is 
a substring of x if y[1. . m] = x[i. . i + m − 1] for some i, 
where 1 ≤ i ≤ n − m + 1. Strings u = x[1. . i] are called pre-
fixes of x, and strings v = x[i. . n] are called suffixes of x of 
length n for 1 ≤ i ≤ n. The prefix u (respectively suffix v) 
BackwardSearch(p,m,BWT,n, C)

1 (i, j,k) ← (1,n,m − 1)

2 while i ≤ j and k ≥ 1 do
3 c ← p[k]
4 (i, j,k) ← (C[c]+ rankc(BWT, i −1)+ 1, C[c]+ rankc(BWT, j),k −1)

5 if i ≤ j then
6 return (i, j)
7 else return ⊥

Fig. 1. Backward search for a pattern p in the BWT of a string x.

is a proper prefix (suffix) of a string x if x �= u, v . A string 
y = y[1. . n] is a cyclic rotation of x = x[1. . n] if y[1. . n] =
x[i. . n]x[1. . i − 1] for some 1 ≤ i ≤ n (for i = 1, y = x).

Definition 1 (Burrows–Wheeler transform). The BWT of x is 
defined as the pair (L, h) where L is the last column of the 
matrix Mx formed by all the lexorder sorted cyclic rota-
tions of x and h is the index of x in this matrix.

The BWT is easily invertible via a linear LF last first 
mapping [1] using an array C indexed by all the letters 
c of the alphabet � and defined by: C[c] = �{i | x[i] < c}
and rankc(x, i) which gives the number of occurrences of 
the letter c in the prefix x[1. . i]. A property of the LF map-
ping is that the i-th occurrence of a letter c in the last 
column L has the same rank as the i-th occurrence of c in 
the first column F which can be calculated using the array 
C and the function rank. Traversing the letters repeatedly 
between L and F recovers the input.

Given the BWT of x it is easy to find the number of oc-
currences of a pattern p of length m in x by performing 
a right to left, that is backwards, scan of p as computed 
by the pseudocode in Fig. 1. Note that although the BWT 
is defined as a pair, Definition 1, for the backwards search 
technique, the convention for the argument list is to de-
scribe the last column L in the BWT matrix as the string 
BW T . The procedure returns an interval (i, j) such that 
p is a prefix of Mx[k] for i ≤ k ≤ j, or, it returns ⊥ if p
is not a prefix of any rows of Mx . Hence the number of 
occurrences of the pattern is given by the size of the in-
terval. The positions of the occurrences can be computed 
with the help of a full or sampled suffix array of x: a suf-
fix array SA gives the starting positions of the suffixes of x
in lexicographical order, so that SA[i] is the starting posi-
tion of the i-th smallest suffix of x; a sampled SA has been 
sampled at a subset of its indices thus providing succinct-
ness.

In [4], Daykin and Watson present a simple modifica-
tion of the classic BWT, the degenerate Burrows–Wheeler 
transform which, analogously to the classic case, exhibits 
clustering of letters in degenerate strings – the focus here 
is applications of the transforms to pattern matching.

Given an alphabet � we define a new alphabet �� as 
the non-empty subsets of �: �� =P(�) \ {∅}, where P is 
the usual power set. Formally a non-empty indeterminate
or degenerate string x is an element of �+

� . We extend the 
notion of prefix on degenerate strings as follows. A degen-
erate string u is called a degenerate prefix of x if |u| ≤ |x|
and u[i] ∩ x[i] �= ∅ ∀1 ≤ i ≤ |u|.

A degenerate string is said to be conservative if its num-
ber of degenerate letters is upper-bounded by a fixed pos-
itive constant q.
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Definition 2. A degenerate string y = y[1. . n] is a degen-
erate cyclic rotation of a degenerate string x = x[1. . n] if 
y[1. . n] = x[i. . n]x[1. . i − 1] for some 1 ≤ i ≤ n (for i =
1, y = x).

Given an order on �� denoted by the usual symbol 
<, we can compute the BWT of a degenerate string x in 
the same way as for a regular string; here we apply lex-
order.

3. Previous work

In [8] the authors present a bioinformatics software tool 
called BWBBLE that enables performing pattern matching 
on a pan-genome (collection of genomes of individuals 
of the same species) that they called a reference multi-
genome. BWBBLE can take into account various types of 
differences between the different genomes. For substitu-
tions it basically aligns the different genomes and the 
symbol at each position of the reference multi-genome 
is composed of the union of the symbols of the differ-
ent genomes at this position. More specifically, it consid-
ers strings of �+

� where � = {A, C, G, T}. Each element 
of � is represented as a 4-bit integer power of 2 (2i

with i ∈ {0, 1, 2, 3}), where an element S ∈ �� is rep-
resented by 

∑
{s∈S} s. Then instead of using the natural 

order on integers it uses a Gray code [7] (also known 
as the reflected binary code) to order the elements of 
�� . With the Gray code two successive values differ only 
by one bit, such as 1100 and 1101, which enables min-
imizing the number of separate intervals associated with 
each of the four symbols of �. Then the authors gen-
eralize the usual backward search technique, shown in 
Fig. 1, for searching in a reference multi-genome but 
they do not provide any proofs of correctness. In the 
next section we provide a proof of correctness of the 
generalization of the backward search for the degenerate 
Burrows-Wheeler transform. We also show that adjacent 
intervals generated during the backward search can be 
merged.

4. Searching for a degenerate pattern in a degenerate 
string

Let p and t be two degenerate strings over �� of 
length m and n respectively. We want to find the po-
sitions of all the occurrences or matches of p in t i.e. 
we want to compute every j such that ∀ 1 ≤ i ≤ |p| it 
holds that p[i] ∩ t[i + j] �= ∅. For determining the match-
ing we will apply the usual backward search but at each 
step we may generate several different intervals which 
will be stored in a set H . Then step k (processing p[k]
with 1 ≤ k ≤ m) of the backward search can be formalized 
as follows: 1Step(H, k, C, BWT = (L, h), p) = (((r, s)) | r =
C[c] +rankc(L, i −1) +1, s = C[c] +rankc(L, j), r ≤ s, (i, j) ∈
H, c ∈ �� and c ∩ p[k] �= ∅).

Then for 1 ≤ i ≤ m − 1, Step(m, C, BWT, p) =
1Step({(1, n)}, m, C, BWT, p) and Step(i, C, BWT, p) =
1Step(Step(i + 1, C, BWT, p), i, C, BWT, p). In other words, 
Step(i, C, BWT, p) applies step m through to i of the back-
ward search.
DegenerateBackwardSearch(p,m,BWT = (L,h),n, C)

1 (H,k) ← ({(1,n)},m)

2 while H �= ∅ and k ≥ 1 do
3 H ′ ← ∅
4 for (i, j) ∈ H do
5 for c ∈ �� such that c ∩ p[k] �= ∅ do
6 H ′ ← H ′ ∪ {(C[c] + rankc(L, i − 1) + 1, C[c] + rankc(L, j))}
7 (H,k) ← (H ′,k − 1)

8 return H

Fig. 2. Backward search for a degenerate pattern in the BWT of a degen-
erate string.

Lemma 1. The interval (i, j) ∈ Step(k, C, BWT, p) if and only if 
p[k. . m] is a degenerate prefix of Mt[h] for i ≤ h ≤ j.

Proof. =⇒: By induction. By definition of the array C , 
p[m] is a degenerate prefix of Mt [h], for i ≤ h ≤ j when 
(i, j) ∈ Step(m, C, BWT, p). So assume that the property is 
true for all integers k′ such that k < k′ ≤ m. If (r, s) ∈
Step(k, C, BWT, p) then r = C[a] + ranka(BWT, i − 1) + 1
and s = C[a] + ranka(BWT, j) with r ≤ s, where (i, j) ∈
Step(k + 1, C, BWT, p), a ∈ �� and a ∩ p[k] �= ∅. Thus by 
the definition of the BWT, p[k. . m] is a degenerate prefix 
of rows of Mt [h] for r ≤ h ≤ s.

⇐=: By induction. By definition, if p[m] is a degenerate 
prefix of Mt [h] for r ≤ h ≤ s then (r, s) ∈ Step(m, C, BWT, p). 
So assume that the property is true for all integers k′ + 1
such that k < k′ ≤ m. If p[k + 1. . m] is a degenerate prefix 
of Mt [h] for i ≤ h ≤ j, then (i, j) ∈ Step(k + 1, C, BWT, p). 
When p[k. . m] is a degenerate prefix of Mt [h] for r ≤ h ≤ s, 
then (r, s) ∈ 1Step(Step(k + 1, C, BWT, p), i, C, BWT, p) =
Step(k, C, BWT, p) by definition of the array C and the rank 
function.

We conclude that the property holds for 1 ≤ k ≤ m. �
Corollary 2. The interval (i, j) ∈ Step(1, C, BWT, p) if and only 
if p is a degenerate prefix of Mt[h] for i ≤ h ≤ j.

The proposed algorithm, see Fig. 2, computes
Step(1, C, BWT, p) by first initializing the variable H with 
{(1, n)} and then performing steps m to 1, while exiting 
whenever H becomes empty.

The following two lemmas show that the number of 
intervals in H cannot grow exponentially.

Lemma 3. The intervals in 1Step({(i, j)}, k, C, BWT, p) do not 
overlap.

Proof. 1Step({(i, j)}, k, C, BWT, p) will generate one inter-
val for every distinct letter c ∈ �� such that c ∩ p[k] �= ∅. 
Thus these intervals cannot overlap. �
Lemma 4. The intervals in 1Step({(i, j), (i′, j′)}, k, C, BWT, p)

with i ≤ j < i′ ≤ j′ do not overlap.

Proof. From Lemma 3, the intervals generated from (i, j)
do not overlap, and similarly the intervals generated from 
(i′, j′) do not overlap.

Let (r, s) be an interval generated from (i, j), and let 
(r′, s′) be an interval generated from (i′, j′). Formally, let 
r, s, c be such that r = C[c] + rankc(BWT, i − 1) + 1, s =
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C[c] + rankc(BWT, j), c ∈ �� and c ∩ p[k] �= ∅. Let r′, s′, c′
be such that r′ = C[c′] + rankc′ (BWT, i′ − 1) + 1, s′ = C[c′] +
rankc′ (BWT, j′), c′ ∈ �� and c′ ∩ p[k] �= ∅.

If c �= c′ then (r, s) and (r′, s′) cannot overlap since 
C[c] ≤ r ≤ s < C[c] + �{i | t[i] = c} and C[c′] ≤ r′ ≤ s′ <

C[c′] + �{i | t[i] = c′}. Otherwise, if c = c′ then since 
j < i′ , it follows that rankc(BWT, j) < rankc(BWT, i′ − 1) + 1
and thus (r, s) = (C[c] + rankc(BWT, i − 1) + 1, C[c] +
rankc(BWT, j)) and (r′, s′) = (C[c] + rankc(BWT, i′ − 1) +
1, C[c] + rankc(BWT, j′)) do not overlap. �
Corollary 5. Let H be a set of non-overlapping intervals. The 
intervals in 1Step(H, k, C, BWT, p) do not overlap.

We can now state the complexity of the degenerate 
backward search.

Theorem 6. The algorithm DegenerateBackwardSearch(p,

m, BWT, n, C) computes a set of intervals H, where (i, j) ∈ H if 
and only if p is a degenerate prefix of consecutive rows of Mt [k]
for i ≤ k ≤ j, in time O (mn) for a constant size alphabet.

Proof. The correctness comes from Corollary 2. The time 
complexity mainly comes from Lemma 3 and the fact that 
the alphabet size is constant. �

From Corollary 5, the number of intervals at each step 
of the backward search cannot exceed n. However, in prac-
tice, it may be worthwhile decreasing the number of inter-
vals further: the next lemma shows that adjacent intervals 
can be merged. In order to easily identify adjacent in-
tervals we will now store them in a sorted list-like data 
structure as follows. For two lists I and J the concatena-
tion of the elements of I followed by the elements of J is 
denoted by I · J .

We proceed to define the operation Mrg that con-
sists in merging two adjacent intervals: Mrg(∅) = ∅ and 
Mrg((i, j)) = ((i, j)), Mrg(((i, j), ( j +1, j′)) · I) = Mrg(((i, j′))
· I), Mrg(((i, j), (i′, j′)) · I) = ((i, j)) · Mrg(((i′, j′)) · I) for 
i′ > j + 1. The next lemma justifies the merging of adja-
cent intervals in H .

Lemma 7. Mrg(1Step(((i, j), ( j + 1, j′)), k, C, BWT, p)) =
Mrg(1Step(((i, j′)), k, C, BWT, p)).

Proof. For a letter c ∈ �� such that c ∩ p[k] �= ∅ the 
intervals generated from (i, j) and ( j + 1, j′) are, by def-
inition, necessarily adjacent which shows that if (p, q) ∈
Mrg(1Step(((i, j), ( j + 1, j′)), k, C, BWT, p)) then (p, q) ∈
Mrg(1Step(((i, j′)), k, C, BWT, p)). The reciprocal can be 
shown similarly. �

This means that H can be implemented with an ef-
ficient data structure such as an interval tree typically 
implemented as red-black trees adapted for storing non-
overlapping and non-adjacent intervals.

Complete example. Let t = {c, e} · {c, d} · {a, b, c} · {a, e} ·
{a, b, c}. Then by renaming {a, b, c} as A, {a, e} as B, 
{c, d} as C and {c, e} as D, t = DCABA and with the or-
der A < B < C < D we have BWT(t) = CBADA see [4] for 
the ordering technique.

i
1 D C A B A
2 C A B A D
3 A B A D C
4 B A D C A
5 A D C A B

i F L
1 A B A D C
2 A D C A B
3 B A D C A
4 C A B A D
5 D C A B A

cyclic rotations of t Mt

Thus the array C is as follows:

A B C D
C 0 2 3 4

Let p = {c} · {a, b} · {a} and let us search for p in t with 
the algorithm DegenerateBackwardSearch.

p[3] = {a} ∩ A = {a, b, c} �= ∅ and p[3] = {a} ∩ B = {a, e} �=
∅.

Without merging With merging
1Step(((1,5)),3, C,BWT, p) = 1Step(((1,5),3, C,BWT, p) =

((1,2), (3,3)) ((1,3))

F L
→B 1 A C
→E 2 A B
⇒ 3 B A

4 C D
5 D A

F L
→B 1 A C

2 A B
→E 3 B A

4 C D
5 D A

p[2] = {a, b} ∩ A = {a, b, c} �= ∅ and p[2] = {a, b} ∩ B =
{a, e} �= ∅.

Without merging With merging
1Step(((1,2), (3,3)),2, C,BWT, p) = 1Step(((1,3)),2, C,BWT, p) =

((1,1), (3,3)) ((1,1), (3,3))

F L
⇒ 1 A C

2 A B
⇒ 3 B A

4 C D
5 D A

F L
⇒ 1 A C

2 A B
⇒ 3 B A

4 C D
5 D A

p[1] = {c} ∩ A = {a, b, c} �= ∅, p[1] = {c} ∩ C = {c, d} �= ∅
and p[1] = {c} ∩ D = {c, e} �= ∅.

Without merging With merging
1Step(((1,1), (3,3)),1, C,BWT, p) = 1Step(((1,1), (3,3)),1, C,BWT, p) =

((1,1), (4,4)) ((1,1), (4,4))

F L
⇒ 1 A C

2 A B
3 B A

⇒ 4 C D
5 D A

F L
⇒ 1 A C

2 A B
3 B A

⇒ 4 C D
5 D A

→B stands for the beginning of an interval, →E for the 
end of an interval and ⇒ for an interval of one element.
Thus p has two occurrences in t .

5. Degenerate pattern in a conservative degenerate string

For conservative degenerate strings the search complex-
ity can be reduced.

Theorem 8. Let t and p be two conservative degenerate strings 
over a constant size alphabet such that their total number of 
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Fig. 3. (a): Running times for searching for a degenerate pattern of length 8 in a solid string of various lengths with σ = 4. (b): Running times for searching 
for several degenerate patterns of length 8 in a solid string of length 250 MB with σ = 8. (c): Running times with DBS for searching for degenerate patterns 
in a conservative degenerate string of length 250 MB with σ = 4 and 25M degenerate letters when the list of intervals is implemented with a red-black 
tree or with a linked list. (d): Running times for searching for one degenerate pattern of length 8 in a conservative degenerate string of variable length 
with 500, 000 degenerate letters.
degenerate letters is bounded by a constant q. Then given the 
BWT of t , all the intervals in the BWT of occurrences of a pattern 
p of length m can be detected in time O (qm2).

Proof. The largest number of intervals at the first step of 
the backward search is O (1) for solid letters and q for the 
degenerate letters. Then at each step the q intervals for 
the degenerate letters will generate q other intervals while 
each interval corresponding to a solid letter will gener-
ate O (1) intervals for solid letters and q intervals for the 
degenerate letters. Since there are m steps the result fol-
lows. �
Corollary 9. Let t and p be two conservative degenerate strings 
over a constant size alphabet such that their total number of 
degenerate letters is bounded by a constant q. Then given the 
BWT of t , the occurrences of p of length m can be reported in 
time O (qm2 + occ) where occ is the number of occurrences of 
p in t .
6. Experiments

We ran algorithm DegenerateBackwardSearch (DBS) 
for searching for the occurrences of a degenerate pattern in 
different random strings: solid strings, degenerate strings 
and conservative degenerate strings. The alphabet consists 
of subsets of the DNA alphabet encoded by integers from 1 
to 15. Solid letters are encoded by powers of 2 (1, 2, 4 and 
8) as in [8]. Then intersections between degenerate letters 
can be performed by a bitwise and operation. But contrary 
to [8] we used the natural order on integers. The patterns 
have also been randomly generated.

We additionally ran the adaptive Hybrid pattern-match-
ing algorithm of [12], and, since the alphabet size is small 
we also ran a version of the Backward-Non-Deterministic-
Matching (BNDM) adapted for degenerate pattern match-
ing (see [10]). The Hybrid and BNDM are bit-parallel algo-
rithms and have only been tested for pattern lengths up 
to 64. The source of our method is available at https://
github .com /YGuesnet /dbwt and the inputs have been made 

https://github.com/YGuesnet/dbwt
https://github.com/YGuesnet/dbwt


J.W. Daykin et al. / Information Processing Letters 147 (2019) 82–87 87
compatible to those of [3]. However we excluded the algo-
rithm in [3] from the comparison since it is more general 
and performs slower than the two previously mentioned 
algorithms. For the computation of the BWT we used the 
SAIS library [11] and the SDSL library [6]. All the experi-
ments have been performed on a computer with a 3.5 GHz 
i7-4800MQ processor and 16 GB RAM.

We performed various experiments and select four of 
them for presentation here. For DBS the measured times 
exclude the construction of the BWT but include the re-
porting of the occurrences using a suffix array. This can be 
justified by the fact that, in most cases, strings are given 
in a compressed form through their BWTs. Fig. 3(a) shows 
the searching times for a degenerate pattern of length 8
in solid strings of various lengths with an alphabet of size 
4, where clearly when the length of the string increases 
the advantage of using DBS also increases. Fig. 3(b) shows 
the searching times for various numbers of degenerate pat-
terns of length 8 in a solid string with an alphabet of size 
8. Running times include preprocessing times for all meth-
ods. It can be seen that when enough patterns have to 
be searched for in the same string then it is worth us-
ing the new DBS algorithm. Fig. 3(c) shows the searching 
times with DBS for various numbers of degenerate pat-
terns of length 8 in degenerate strings with an alphabet 
of size 4 when intervals are stored with red-black trees or 
with linked lists. As expected, for efficiency it is worth us-
ing an advanced data structure, such as red-black trees, for 
merging intervals. All times are in seconds. Fig. 3(d) shows 
the searching times for a degenerate pattern of length 8 in 
conservative degenerate strings of various lengths (for each 
length the strings contain 10% of degenerate letters).
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