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Abstract.  This paper developed and evaluated a method for the detection of 

spots in microscopy images. Spots are subcellular particles formed as a result 

of biomarkers tagged to biomolecules in a specimen and observed via fluores-

cence microscopy as bright spots. Various approaches that automatically de-

tect spots have been proposed to improve the analysis of biological images. 

The proposed spot detection method named, detectSpot includes the following 

steps: 1) A convolutional neural network is trained on image patches contain-

ing single spots. This trained network will act as a classifier to the next step.  

(2) Apply a sliding-window on images containing multiple spots, classify and 

accept all windows with a score above a given threshold. (3) Perform post-

processing on all accepted windows to extract spot locations, then, (4) finally, 

suppress overlapping detections which are caused by the sliding window-

approach. The proposed method was evaluated on realistic synthetic images 

with known and reliable ground truth. The proposed approach was compared 

to two other popular CNNs namely, GoogleNet and AlexNet and three tradi-

tional methods namely, Isotropic Undecimated Wavelet Transform, Laplacian 

of Gaussian and Feature Point Detection, using two types of synthetic images. 

The experimental results indicate that the proposed methodology provides fast 

spot detection with precision, recall and F_score values that are comparable to 

GoogleNet and higher compared to other methods in comparison. Statistical 

test between detectSpot and GoogleNet shows that the difference in perfor-

mance between them is insignificant.   This implies that one can use either of 

these two methods for solving the problem of spot detection. 

Keywords:  Microscopy Images, Convolutional Neural Network, Spot Detec-

tion. 



                   

Fig. 1.  A sample of real fluorescence image with bright particles obtained using confocal 

microscopy. [1] 

1 INTRODUCTION 

 The ability to accurately detect and monitor sub-cellular structures in the biolog-

ical environment has potential in addressing open questions in biology, such as un-

derstanding the variations between pathological and normal situations in a cell. In-

vestigation and study of malaria [2], cancer [3], inflammatory processes and wound 

healing are examples of biological applications which can be tackled in various 

ways, ranging from biochemistry to microscopy imaging.  Detection of objects in 

images is one of the fundamental computer vision problems that arises in many real-

world applications ranging from surveillance [4], robotics [5] to biology [6]. Object 

detection involves two main steps: (1), classification (determining objects of interest 

in a given image and, (2), localization (computing the location of these objects in the 

image).                            

However, a lot of existing state-of-the-art methods often treat classification and 

localization separate with localization regarded as a difficult problem compared to 

classification.    

This work focuses on the detection of small bright particles, referred to as spots, 

in fluorescence microscopy images. These spots may represent, for example, chro-

mosomes, vesicles or genes in a cell depending on the staining method used. A set 

of identified spots is shown in Fig. 1. Accurate detection of spots is of significant 

interests for biomedical researchers as it plays a significant step for further analysis. 



A number of procedures in biology and medicine require the detection and counting 

of spots, for example, an individual’s health can be deduced based on the number of 

red and white blood cells. The man goal of spot detection is to find all spots in a 

given image. There exist several challenges which hinders the performance of spot 

detection methods, such as noise and inhomogeneity which exist in the background. 

Besides all these challenges, a lot of applications in bioimage analysis such as spot 

tracking [7], require high performance and reliable detection results which increases 

the need for efficiency.  

In the past years, several methods were developed for detecting spots in fluores-

cence microscopy images, some of these methods include Wavelets [8], Mathemati-

cal morphology [9]. A review of some of these methods can be found in [10, 11]. 

According to Smal et al. [10], existing methods for spot detection can be categorized 

into ‘supervised’ and ‘unsupervised’ methods.  Supervised methods are methods 

which require labeled data for training while unsupervised methods refer to methods 

which do not require training. Smal et al. [10] claimed supervised methods gives 

better detection results when tested to images with low signal-to-noise ratio (SNR). 

Convolutional neural network (CNN) is one of the popular in a family of deep 

learning techniques which based on the ImageNet2012 classification challenge, it 

managed to reduce the classification error rate by half. According to the study con-

ducted by He et al. [12] a well-trained CNN technique can outperform humans in 

identifying objects.  The CNNs have since been adopted to various applications in 

computer vision community [13] and medical image analysis [14]. There exist dif-

ferent forms of CNNs architectures in the literature, such as, AlexNet [15], VGGNet 

[16], ResNet and GoogLeNet [17] among others.  Despite the diverse range of their 

applications in different fields, the application of these methods to biological data is 

still lacking, especially for the detection of spots. Recent works suggest that CNNs 

can be used to resolve some of the existing challenges in biology [18, 19].  

Currently, there exist no technique based on CNN developed for spot detection in 

microscopy images. As such, this work proposes a method based on a deep convolu-

tional neural network with sliding-window approach capable of detecting spots in 

the presence of high levels of noise and high spot density, and with high accuracy in 

the presence of inhomogeneity in the background. 

 

This paper is organized as follows: Section 2 describes the methodology used in 

the study, while Section 3 presents the results and finally, Section 4 concludes the 

paper. 

 

 

 

 

 

 



2 MATERIALS AND METHODS 

2.1 Methodology 

2.1.1 Convolutional Neural Network (CNN) 

 

Convolutional neural network (CNN) ℎ is defined in [1] and described in equa-

tion (1) as composition of sequence of 𝐿 layers (ℎ1……ℎ𝐿) that maps an input vec-

tor 𝑥 to an output vector 𝑦, i.e., [1] 

 

𝑦 = 𝑓(𝑥; 𝑤1, … , 𝑤𝐿) 

                               = ℎ𝐿(∙ ; 𝑤𝐿)  ∘  ℎ𝐿−1(∙ ; 𝑤𝐿−1)  ∘ ∙∙∙ 
∘  ℎ2(∙ ; 𝑤2)  ∘  ℎ1(𝑥 ; 𝑤1) 

 

(1) 

where 𝑤𝑙  is the weight and bias vector for the 𝑙𝑡ℎ layer ℎ𝑙 and ℎ𝑙 is determined to 

perform one of the following: a) convolution with a bank of kernels; b) spatial pool-

ing; and c) non-linear activation. For any given 𝑁 training datasets {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , we 

can estimate the weights,  𝑤1 , … , 𝑤𝐿 by solving the optimization problem: 

 

augmax
𝑤1,…,𝑤𝐿

1

𝑁
∑ ℓ (𝑓(𝑥𝑖; 𝑤1, … , 𝑤𝐿))

𝑁

𝑖=1

 

 

      

(2) 

Where ℓ is defined as the loss function. The numerical optimization of equation 

(2) is often performed via backpropagation and stochastic gradient descent methods 

[20].  

 

 

 

 

 

 

 

 

 

 

 

Fig 2. An illustration of the traditional convolutional neural network which consists of 

two repeatable stages followed by the classifier. 



Table 1. Proposed CNN architecture. [1] 

Layer Kernel size, stride Output 𝒘 × 𝒉 × 𝒄 

 

Input 

Convolution 

ReLu 

Max-Pool 

 

− 

9 × 9, 1 

 

2 × 2, 1 

 

29 × 29 × 3 

21 × 21 × 32 

21 × 21 × 32 

20 × 20 × 32 

 

Convolution 

ReLU 

Max-Pool 

 

7 × 7, 1 

 

2 × 2,1 

 

14 × 14 × 64 

14 × 14 × 64 

13 × 13 × 64 

 

Convolution 

ReLu 

Max-Pool 

 
5 × 5, 1 

 

2 × 2, 1 

 

9 × 9 × 80 

9 × 9 × 80 

7 × 7 × 80 

 

FC 

ReLu+Dropout 

 

− 

− 

 

 

128 

128 

 

FC 

ReLu+Dropout 

 

− 

− 

 

 

128 

128 

 

FC 

Softmax 

 

− 

− 

 

2 

2 

 

 

2.1.2 Problem Formulation 

 

Consider a labeled grayscale training images patches denoted as 𝐼𝑖 ∈ 𝑅𝑤×ℎ×3, where 

𝑖 ranges from 1 to 𝑁 with dimensionality 𝑤 × ℎ × 3. The task is to develop a classi-

fier based on CNN to predict if patch, 𝐼𝑖  contains a spot or not. Image patches with a 

full spot contained in the image are labelled as positive, otherwise negative.  

 

2.1.3 Proposed CNN 

 

In general, a CNN achitecture can include some of these layers as shown in Fig 2 

described below:  

(1) Convolution layers, A convolutional layer exploits the local information 

encoded in the image by computing convolutions between the layer’s input 

(e.g., the original image or the output of a previous convolutional layer) and 

multiple convolution kernels. A convolution refers to the summation of the 

elementwise dot product of the values between the kernel the input image.  



(2) Pooling or down-sampling layers. Pooling layers (also known as down-

sampling layers) are usually added to the deep network to reduce the di-

mensionality of the feature maps but retain the most important information 

and are added just after the convolution layers.  

(3) Fully connected layers (FC): After the high-level of features are detected 

by the preceding convolution and pooling layers, a fully connected layer is 

attached to at the end of the network with the aim of converting the feature 

maps to a 1D feature vector. It performs a linear combination of the input 

vector with a weight matrix. 

 

Given the described building blocks for CNN, we propose CNN architecture for spot 

detection, named detectSpot as shown in Table 1. detectSpot consists of 5 layers (3 

convolution layers and 2 fully connected layers) with learnable weights. Rectified 

Liner Unit (ReLu) [21] are used as activation function for the first four layers pro-

ceeded with softmax for the last layer. To avoid overfitting, dropout with probability 

of 0.5 for the first two fully connected layers (FC) was introduced. The weights were 

initialized using truncated random normal. Cross-entropy loss was minimized using 

Adam optimization with the initial learning rate of 0.001. 

 

2.1.4 Sliding-Window 

 

A sliding window approach is adopted for detecting all spots positions in a given 

image. A sliding-window is an approach based on moving a rectangular window 

across an image as illustrated by red and green rectangles in Fig. 3. This is done in 

order to analyze subpart of the image and extract some information.  

 

 
Fig. 3. Illustration of sliding-window approach [1]. 

 

 

 

 



2.1.5 Dataset 

 

Image patches of size 29 × 29 sampled from a synthetic image of size 512 × 512 

were used for training a proposed CNN method. Patches containing spot center were 

classified as positive while negative patches are those without spot as denoted in 

equation (3). There was a disproportion between negative patches and positive 

patches, with the number of negative patches being large. In order to make training 

and validation set more balanced two measure were considered. Firstly, negative 

patches were randomly discarded so that there is 50* the number of positive patches, 

and secondly, each positive patch was rotated resulting in 4 extra patches. In total, 

21300 patches formed from images with a signal to noise ratio (SNR) in range (20, 

10, 5, 2, 1). Then, these image patches were divided as follows: 

 80% for training 

 20% evaluation  

 

Each of the positive patches has > 0.6 Jaccard-similarity with any ground truth spot 

while the negative patches has < 0.2 Jaccard-similarity. Jaccard-similarity is denot-

ed as: 

𝐽(𝑋𝑝𝑎𝑡𝑐ℎ, 𝑌𝑔𝑟𝑜𝑢𝑛𝑑) =
|𝑋𝑝𝑎𝑡𝑐ℎ∩𝑌𝑔𝑟𝑜𝑢𝑛𝑑|

|𝑋𝑝𝑎𝑡𝑐ℎ∪𝑌𝑔𝑟𝑜𝑢𝑛𝑑|
                                (3) 

 

2.1.6 Implementation and Training 

 

The proposed CNN was implemented on TFLearn [22], which is a tensorflow [23] 

wrapper that allows simple implementation and training of deep learning models. 

Adam [24] was used for the optimization of the algorithm. Linux machine with  

16GB RAM  and Nvidia GTX680 running TFLearn (v0.3) and tensorflow (v1.3.0) 

was used for training the network. 

2.2 Detection of Spots in Test Images 

The proposed CNN architecture, detectSpot is trained to classify an image patch as 

containing a spot or not. Fig. 4 illustrates the pipeline for the detection of spots using 

detectSpot method including some post-processing steps. To detect all spots in a 

given image, a window of size (𝑤 × ℎ) is run through the image.  At each iteration, 

the extracted window is passed onto a detectSpot to compute a probability S, which 

defines whether a spot is contained in the sub-window. Then, if S is bigger than a 

given threshold T, the corresponding window is considered to contain spot. All the 

windows which were classified as containing spots, were subject for further pro-

cessing to get spot centers (𝑥, 𝑦) including the bounding circles marking the spots 

location in an image. The proposed detectSpot contains two main important parame-

ters, window-size (𝑤 × ℎ) and stride. These parameters influence both speed and 

detection rate.  This approach can only detect spots with fixed size but it can be 

extended to spots with different sizes by introducing image pyramids. If one select a 



small stride value, e.g. stride = 1, this will give many overlapping detections of the 

same spot but at slightly different positions. So, to overcome this challenge, we de-

veloped a method that is capable of removing overlapping detections. The proposed 

approach group all nearby detections so that every spot is detected once. More de-

tails about this technique can be found in [1].  

 

         
 

Fig. 4. The proposed architecture for spot detection in microscopy images [1].  
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Fig. 5. Examples of synthetic images used for testing with approximately 50 spots 

per image. (a) Type A,  (b) Type B1, and (c) Type B2 [1]. 

 

2.2.1 Using Pre-Trained Models 

 

2.2.1.1 Pre-Trained Models 

 

The proposed detectSpot method was quantitatvely compared to two other CNNs 

methods, namely, AlexNet and GoogleNet.  

AlexNet: This method was proposed by Krizhevsky et al. [15] and won the 

ImageNet ILSVRC-2012 challenge. The model is made-up  of 8 layers (5 convolu-

tional layers and three fully connected layers).  

GoogleNet: This method won the ImageNet ILSVRC-2014 challenge and it was 

proposed by Szegedy et al. [17] from Google. This network has 12X fewer parame-

ters compared to AlexNet yet deeper (22 layers). The main contribution of Goog-

leNet is the introduction of inception module. 

2.3 Synthetic Datasets and Evaluation Criteria 

 

2.3.1 Synthetic Test Datasets 

 

To evaluate the performance of the methods, three kinds of synthetic datasets 

(Type A and Type  B1 and  B2) containing spots were used. These images were 

created using a framework proposed in [25]. Synthetic images are important because 

they contain ground truth information of each spot in an image, as a result this will 

demonstrate the effectiveness of the proposed detectSpot model as shown in Fig. 5. 

Each image contained 50 spots cluttered on the background of size 256 × 256 pix-

els. The,, a Gaussian noise was then added to the image dataset was corrupted by 

white noise. The following signal to noise ratios (SNR) levels was explored {10, 8, 

6, 4, 2, 1} where the spot intensity was 20 gray levels. The signal to noise ratio is 

defined as of spot intensity, 𝑆𝑃𝑚𝑎𝑥 , divided by the noise standard deviation, 𝜎𝑛𝑜𝑖𝑠𝑒 ,  

                                𝑆𝑁𝑅 =
𝑆𝑃𝑚𝑎𝑥

𝜎𝑛𝑜𝑖𝑠𝑒
                          (4) 

 



The Icy-plugin [26] was used to randomize the spots position in order to mimic 

properties available in real microscopy images. MATLAB was used to add spots and 

the OMERO.matlab-5.2.6 toolbox [27] was used to read and save images. 

 

2.3.2 Evaluation Criteria 

 

The well-known measures for evaluating various spot detection methods in mi-

croscopy images are F-measure, precision, and recall. Parameters involved in the 

computations include; TP, FP and FN which denote the number of true positives 

(number of detected spots that corresponds to the ground-truth), number of false 

positives (number of detected spots which do not correspond to the ground-truth) 

and number of false negatives (number of missed ground-truth spots), respectively. 

A detection result is labelled as TP if the overlap region, 𝑂𝑟 between the detection 

and ground-truth exceeds a predefined threshold T. Explanation of these measures ca 

be found in [1]. 

 

 

 

 
 

Fig. 6.   F_score  vs SNR curves for all six methods applied to two kinds of synthet-

ic images (a) Synthetic type A, and (b-c) Synthetic type B. 

 

 

 

 



3 Results 

The fully trained CNNs models along with the FPD [28], IUWT [29] and LoG 

[30], were each applied on two types of synthetic images described in Section 2.3.1 

as shown in Fig. 5 with a signal-to-noise ratio (SNR) in range {10, 8, 6, 4, 2, 1}. 

Table 2- Table 4 indicates the results for all six methods in terms of average preci-

sion, recall and 𝐹_𝑠𝑐𝑜𝑟𝑒 . These values were averaged for all SNR’s. Table 2 

indicates the results for type A synthetic images. Higher precision value is reported 

by AlexNet method on type A synthetic images indicating higher accuracy for 

relevant spots retrieval and less false spots detected. Furthermore, the GoogleNet 

method recorded larger values for recall rate and 𝐹_𝑠𝑐𝑜𝑟𝑒  followed by detectSpot 

method. Fig. 6(a) summarises the performance of all six methods on type A 

synthetic images on all SNR values. The results indicate that at high levels of SNR 

(≈ 8 and10) the difference in performance of the methods is negligible.   However, 

as SNR drops (< 4) the performance of the methods is reduced and at SNR = 1, 

deep learning methods reports higher 𝐹_𝑠𝑐𝑜𝑟𝑒  values compared to traditional 

methods. 

Table 3 and Table 4 presents the results for type B synthetic images. The results 

indicate that when the background is introduced into the synthetic images, de-

tectSpot method reports higher precision, recall and 𝐹_𝑠𝑐𝑜𝑟𝑒 values compared to all 

other methods in comparison. The performance of the AlexNet method is reduced 

significantly compared to its performance on Type A synthetic images. Fig. 6 (b-c) 

gives a clear indication of how each method performs on Type B synthetic images. 

 
Table 2. Evaluation metrics calculated on sythetic images for six detection methods. 

Model Precision Recall 𝐹_𝑠𝑐𝑜𝑟𝑒 

GoogleNet 0.833 0.751 0.784 

AlexNet 0.842 0.703 0.758 

detectSpot 0.836 0.740 0.782 

IUWT 0.728 0.689 0.705 

FPD 0.717 0.584 0.628 

LoG 0.656 0.650 0.652 

Table 3. Evaluation metrics calculated on realistic synthetic data.  B1. 

Method Precision Recall 𝐹_𝑠𝑐𝑜𝑟𝑒 

GoogleNet 0.717 0.585 0.633 

AlexNet 0.443 0.365 0.397 

detectSpot 0.803 0.614 0.675 

IUWT 0.618 0.587 0.598 

FPD 0.590 0.534 0.550 

LoG 0.647 0.552 0.583 

Table 4. Evaluation metrics calculated on realistic synthetic data. B2. 

Model Precision Recall 𝐹_𝑠𝑐𝑜𝑟𝑒 

GoogleNet 0.733 0.699 0.708 

AlexNet 0.567 0.476 0.502 

detectSpot 0.780 0.675 0.721 



IUWT 0.740 0.636 0.672 

FPD 0.620 0.548 0.571 

LoG 0.612 0.533 0.600 

 

 

 
 

Fig. 7. Illustrates the performance of each method on Type A synthetic images with 

SNR=10. Detected spots by each method are showed in red circles.(a) Original syn-

thetic image. (b) Spots detected by our approach, detectSpot. (c) Detected spots 

using GoogleNet. (d) Detected spots with AlexNet, and (e-g) represents the detected 

spots using, IUWT, LoG, and FPD respectively. 

 

The curves for each method in Fig. 6 indicate higher 𝐹_𝑠𝑐𝑜𝑟𝑒 values for all methods 

for SNR > 6 except for AlexNet method. However, as SNR drops from 4 to 1 most 

methods start to deteriorate at this point while detectSpot indicates higher 𝐹_𝑠𝑐𝑜𝑟𝑒 



value at SNR = 1. According to the curves in Fig. 6(c) for all SNR is the perfor-

mance of GoogleNet and detectSpot methods show small variability regarding f-

score values with both methods having higher 𝐹_𝑠𝑐𝑜𝑟𝑒 values at low SNRs. Tradi-

tional spot detection methods also give competitive results at higher SNRs especial-

ly the IUWT and LoG methods, and their performance is reduced as SNR decreases. 

Fig. 7 shows the detected spots for each method on Type A synthetic images with 

SNR=10.  

4 Statistical Significant Test 

    This section implements a comparison of the detection results from detectSpot 

and GoogleNet methods applied to the same sample, in order to check whether the 

methods provide similar results or not. The outcome of this test is the acceptance or 

rejection of the null hypothesis (𝐻0). To do this significant test, a student t-test will 

be used which compares the two means between two groups. A paired two tailed t-

test was considered to check the statistical significance of the results, with the null 

hypothesis (𝐻0) defined as; 𝜇1 − 𝜇2 = 0, with 𝜇 being the mean and the subscript 

{1,2} represents method one and two. The alternate hypothesis (𝐻𝑎) states the oppo-

site, 𝜇1 − 𝜇2 ≠ 0.  A Shapiro-Wilk test was used to confirm the normality of the 

data.  The chosen p-value was 0.05. Table 5 indicate the statistical results for two 

methods, detectSpot and GoogleNet, these two methods provide higher and compa-

rable 𝐹_𝑠𝑐𝑜𝑟𝑒  for all experiments compared to other methods. The p-values for 

detectSpot and GoogleNet are greater than 0.05 for all experiments, these indicate 

that the detection results between detectSpot and GoogleNet are statistical insignifi-

cant as a result these methods provide similar results. 

 

Table 5. P-values for detectSpot and GoogleNet  

 

Methods 

DATA SET 

NOBGND BGND1 BGND2 

detectSpot & 

GoogleNet 

 

> 0.05 

 

> 0.05 

 

> 0.05 

 

5 Conclusions 

The detection of spots is an important step towards the analysis of microscopy im-

ages. A number of different automated approaches have been developed to perform 

the task of spot detection. In this study, we have presented an automated approach 

for the detection and counting of spots in microscopy images, termed detectSpot. 

The proposed approach is based on a convolutional neural network with a sliding-

window based approach to detect multiple spots in images. The comparative exper-

iments demonstrated that the GoogleNet and detectSpot methods achieved compara-



ble performance compared to the AlexNet method and other traditional spot detec-

tion methods. We also have shown that rather training a CNN from scratch, 

knowledge transfer from natural images to microscopy images is possible. A fine-

tuned pre-trained CNN can give results which are comparable to fully trained CNN. 
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