Growth of MnO2 nanoflakes on TiO2 nanorods for pseudocapacitor

Liuye Mo; Haitao Zheng

Abstract:

In this work, we report the synthesis of TiO₂ (core)/MnO₂(shell) nanorods by a redox reaction and TiO₂ nanorods generated in-site from H-titanate nanorods during hydrothermal process. The MnO₂ nanoflakes were grown densely on TiO₂ nanorods to form core-shell nanorods. Owing to the strong TiO₂-MnO₂ interfacial interaction and enriched oxygen vacancies, TiO₂/MnO₂ nanorods are highly active and stable as capacitive electrodes. The quantitative analysis of XPS shows more oxygen vacancies were generated in the TiO₂/MnO₂ materials. The specific capacitance of TiO₂/MnO₂ is 368.9 F/g, more than double of 140.8 F/g on the MnO₂ materials. At 1.5 A/g, 92% of the initial capacitance of the TiO₂/MnO₂ was still retained after 3000 charge-discharge cycles. However, the specific capacitance on the pure MnO₂ materials lost 39% after 3000 cycles. Our results suggest that the improved capacitive properties of TiO₂/MnO₂ are closely related to enriched oxygen vacancies, unique structure, higher surface area, as well as interfacial interaction between TiO₂ and MnO₂.