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ABSTRACT 

Trees provide low-cost organic inputs, with the potential to improve livelihoods for 

rural communities. Understanding foliar nutrients of tree species is crucial for 

integration of trees into agroecosystems. The study explored nitrogen (N), 

phosphorus (P), potassium (K) and calcium (Ca) concentrations of nine browse 

species collected from the bushveld region of South Africa using wet analysis and 

laboratory spectroscopy in the region 400–2500nm, along with partial least squares 

(PLS) regression. We further explore the relationship between canopy reflectance of 

Sentinel-2 image and foliar N, P, K & Ca. Laboratory spectroscopy was significant for 

N estimation, while satellite imagery also revealed useful information about the 

estimation of nitrogen at landscape level. Nitrogen was highly correlated with 

spectral reflectance (R2=0.72, p<0.05) for winter and (R2=0.88, p<0.05) for summer, 

whilst prediction of phosphorus potassium and calcium were considered not accurate 

enough to be of practical use. Modelling the relationship using Sentinel-2 data 

showed lower correlations for nitrogen (R2=0.44, p<0.05) and the other nutrients 

when compared to the dried samples. The findings indicate that there is potential to 

assess and monitor resource quality of indigenous trees using nitrogen as key 

indicator. This multi-level remote sensing approach has promise for providing rapid 

plant nutrient analyses at different scales. 
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1. Introduction 

1.1 Trees and livelihoods 

Trees are important natural assets, which play vital economic and environmental 

roles. They constitute fodder for livestock or they can be incorporated into the soil to 

improve fertility (Chepape et al., 2011; Akinnifesi et al., 2010). Fodder trees and 

shrubs contain appreciable amounts of nutrients that are deficient in other feed 

resources such as grasses especially during dry seasons (Lukhele & van Ryssen, 

2000). The integration of trees in production landscapes is known as agroforestry. 

The system bestows a wide range of ecosystem benefits to improve the quality of life 

of rural households (Mbow et al., 2014). 

Due to the persistent threat of food shortages, projected climate change and rising 

prices of agricultural inputs, agroforestry has experienced special interest from 

research and development communities (Garrity et al., 2006). It is considered a cost-

effective and ecologically sound approach to enhance food security particularly in the 

era of adverse environmental conditions (Mbow et al., 2014).  

Indigenous trees demonstrate the potential to supplement exotic species due to the 

minimal impact they have on the environment (Mukolwe, 1999; Lukhele & van 

Ryssen, 2000; Tegegne, 2008). Possible applications include establishment of 

indigenous multipurpose trees on agro-ecological systems and on sensitive sites 

such as riparian zones, water-stressed catchments and land cleared of alien plants 

to improve land management and protect biodiversity (Everson et al., 2011).  

1.2 Science-based agroforestry 

The resource quality varies with the plant species, plant parts, the stage of maturity 

and whether the plant nodulates and fix nitrogen or not (Palm et al., 2001). Plant 

materials are classified by taxonomic family, genus and species. The nutrient 

composition of some browse species has been investigated using conventional wet 

techniques (e.g. Lukhele & Ryssen, 2000). Methods based on tissue analysis have 

been widely applied due to their reliability. However, they are costly because they 

require use of reagents, time-consuming and destructive (Muñoz-Huerta et al., 

2013). A significant barrier to plant mineral analysis in general is the price versus the 
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perceived value by farmers (Rossa et al., 2015). To overcome these limitations, 

efforts have been directed to the study and development of spectroscopy. 

1.3 Laboratory spectroscopy 

Absorption of electromagnetic radiation in the near infrared (NIR) and other parts of 

the electromagnetic spectrum reflects the molecular composition of a sample (Rossa 

et al., 2015). The technique is widely accepted as a tool for analysis in fields such as 

agriculture and the food industry (İlknur ŞEN, 2003). The equipment used can record 

spectra for solid and liquid samples with no pre-treatment, provide spectra quickly 

and predict the physical and chemical parameters (van Maarschalkerweerd et al., 

2015).  

Quantification of macronutrients and micronutrients by NIR spectroscopy in soils has 

been demonstrated by various studies (e.g. İlknur ŞEN, 2003; Awiti et al., 2007). It is 

reported that measurement of soil N demonstrated good results whilst calibrations 

for P and K in soil were less successful (Ward et al., 2011). Leaf spectroscopy has 

been used in analysis of macro- and micronutrients content in various crops (Riley & 

Cánaves, 2002; Yarce & Rojas, 2012). 

1.4 Nutrient estimation using remote sensing 

Monitoring foliar nutrients using traditional methods of leaf harvesting and 

transportation to laboratories for analysis implies a number of difficulties. Species of 

interest are sometimes inaccessible, because of dense overgrowth or they could be 

located in swamps (van Deventer et al., 2015). Remote sensing techniques 

complement ground based monitoring systems. They essentially involve the ability to 

detect and characterise unique patterns of nutrient phenology across species, 

seasons and regions (Cho et al., 2012). 

In spite of the advances made in mapping foliar nutrients using remote sensing, the 

relationship between foliar nutrient concentration and spectral reflectance across 

species, season and ecosystems remains poorly understood (Ramoelo et al., 2015). 

The relationship between foliar nutrients and spectral information of multipurpose 

trees in relation to seasonal variation is of significance in resource characterisation 

(van Deventer et al., 2015). 
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The recent availability of time series of Sentinel-2 imagery at fine spatial resolution 

(10m) and high temporal frequency represents a significant step in the use of 

satellite data for monitoring forest resources (Simonetti et al., 2017). The study 

therefore tested this method. The results offer an opportunity for monitoring and 

mapping nitrogen rich species that could be promoted in agroecosystems. 

1.5 Study aim 

The aim of the study was to investigate the utility of spectral data at the laboratory 

level and space-borne platforms in predicting the leaf nitrogen (N), phosphorus (P), 

potassium (K) and calcium (Ca) content of leguminous and non-legumes species in 

the Lowveld region of South Africa. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The workflow conceptualizing the processes followed in the study.  
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2. Materials and methods 

2.1 General description of the study area 

The study was conducted at the Wits Rural Facility (24°33'S; 31°1'E), in the central 

Lowveld, South Africa. The soil type is predominantly shallow sandy lithosols. The 

vegetation is typically lowland savanna, dominated by members of the 

Combretaceae (e.g. Combretum collinum, C. apiculatum and Terminalia sericea); 

and Mimosoideae (e.g. Vachellia gerrardii, V. swazica and Dichrostachys cinerea). 

The mean annual rainfall is 665±123mm, received mostly during the summer 

months. The mean annual temperature is approximately 22oC (Shackleton, 2001). 

2.2 Data collection 

2.2.1 Plant species investigated in the study 

The data comprised of three (3) broad-leaved leguminous, 3 fine-leaved leguminous 

trees and 3 non-legume species, hereafter referred to as “groups” (Table 1). 

Table 1: Tree species investigated in the study 

Species Family Group Foliage 

Bauhinia galpinii Fabaceae 

 

Broad-leaved, 

leguminous 

Deciduous  

Philenoptera violacea Fabaceae Broad-leaved, 

leguminous 

Deciduous  

Schotia brachypetala Fabaceae Broad-leaved, 

leguminous 

Evergreen 

Peltophorum africanum Fabaceae Narrow-leaved, 

leguminous 

Evergreen 

Dichrostachys cinerea Fabaceae Narrow-leaved, 

leguminous 

Evergreen 

Vachellia gerrardii Fabaceae Narrow-leaved, 

leguminous 

Evergreen 

Combretum apiculatum Combretaceae Broad-leaved, 

non-leguminous 

Deciduous  

Terminalia sericea Combretaceae Broad-leaved, 

non-leguminous 

Deciduous  

Euclea natalensis Ebenaceae Broad-leaved, 

non-leguminous 

Evergreen 

(Van Wyk & Van Wyk, 2013; http://pza.sanbi.org/ [accessed: 22 September, 2016]). 

http://pza.sanbi.org/
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2.2.2 Leaf sampling and handling 

Leaf samples were collected on 22 August 2016 (dry season) and again on 13 

January 2017 (wet season). Leaf samples were, as much as possible, collected from 

different positions and directions of the crown (top, middle, south, east, etc.). Five 

samples were collected for each species. Samples were put in paper bags and 

labelled. Sampling points (waypoints) were recorded using Garmin eTrex30, global 

positioning system (GPS) instrument. In the laboratory the samples were oven-dried 

at 60oC for 48 hours, and then ground and sieved through a 1mm screen (Campbell 

& Plank, 1997). Samples were placed in polythene bottles and stored in a cabinet, 

pending chemical and spectral analyses (Lukhele & van Ryssen, 2003). 

2.3 Chemical analysis 

Foliar nitrogen was determined following the Dumas dry oxidation combustion 

method (Dumas, 1831). The finely milled sample was used directly on a Carlo Erba 

NA 1500 Carbon/Nitrogen/Sulphur Analyzer, using approximately 10mg sample, 

weighed into a tin foil container for each determination. The instrument uses gas 

chromatography (GC) to separate the gases and yield nitrogen in the form of N2 gas 

(Jimenez & Ladha, 1993). 

Potassium, calcium and phosphorus were determined by optical emission 

spectroscopy using the Spectro Genesis inductively coupled plasma optical emission 

spectrometer (ICP-OES). Approximately 0.3g of each sample was digested in the 

Kjeldahl wet oxidation process as described by Kovacs et al. (1996). The elements 

are then determined by optical emission spectroscopy with inductively coupled 

plasma excitation. 

Descriptive statistics on foliar nutrients (N, P, K and Ca) were computed using 

ANalysis Of VAriance (ANOVA) programmed into the R statistical software. 

Statistical tests compared nutrient variation between (i) the species; (ii) dry and wet 

seasons; and (iii) between broad-leaved legumes, narrow-leaved legumes and non-

legumes.  
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2.4 Spectral measurements 

2.4.1 Recording of spectra 

The spectral reflectance of dried and ground foliage was measured using FieldSpec® 

3 spectroradiometer (Analytical Spectral Devices Inc., Boulder, Colorado, USA). The 

instrument has a sampling interval of 1nm from 350nm to 2500nm spectral region 

(Awiti et al., 2007). Samples were placed on a spectrally black surface to minimize 

the background spectral noise. The radiance spectra were normalized against a 99% 

white reference to produce relative reflectance spectra for each measurement. Five 

spectral measurements were taken on each sample, which were then averaged to 

obtain representative spectra. 

2.4.2 Data pre-treatment 

Due to some noise in the 350-399nm spectral region, the interval was excluded from 

the analyses (Awiti et al., 2007).The raw data were subjected to “continuum removal” 

using the prospectr package of the R software (Stevens & Ramirez-Lopez, 2015). 

The treatment is necessary for minimization of the scattering effect (Curran et al., 

2001) and it standardises isolated absorption features for comparison purposes 

(Clark & Roush, 1984; Clark, 1999; Kokaly & Clark, 1999). The continuum-removed 

spectra were used to develop models through the method of chemometrics (Garcia 

& Filmoser, 2017). 

2.4.3 Constructing the models 

Partial least squares regression (PLSR) was used to model relationship between the 

chemical and spectral measurements of samples. Forty-five (45) samples were used 

to build the models for winter and summer respectively. Chemical data determined 

by the reference methods were pasted alongside spectra (400-2500nm). Functions 

of the following packages programmed into the R software were used: pls, 

chemometrics, ChemometricsWithR, prospectr and inspectr. 

Validation of the model was done using “leave one out” cross validation (LOOCV) 

because of small number of observation (Mevik & Wehrens, 2007). The root mean 

square error (RMSE), the coefficient of determination (R2) and the p values were 



8 
 

considered as statistic measure of precision and accuracy (Garcia & Filmoser, 2017; 

Ramoelo & Cho, 2018). 

The script for fitting the model was: 

NleafChem <- plsr(Nitrogen ~ crALLSPECTRA, ncomp = 10, data = leafTrain, 

validation = "LOO"). 

This fits a model with 10 components and includes leave-one-out (LOO) cross-

validated predictions. We then get an overview of the fit and validation results with 

the summary method as follows: summary(NleafChem). The optimum number of 

components was determined using the local minimum of RMSE of the model 

developed using 10 components (Mevik & Wehrens, 2007). 

2.5 Sentinel-2 data 

2.5.1 Image acquisition and pre-processing 

Sentinel-2 images covering the study area were downloaded from 

http://glovis.usgs.gov/ [retrieved: 28 June, 2017]. Atmospheric correction was 

performed using Image Correction Plugin for Snap Toolbox Software (iCOR), 

previously known as OPERA (Sterckx et al., 2015). The iCOR plugin for the Sentinel-

2 Snap Toolbox is scene and sensor generic atmospheric correction algorithm that 

can handle land and water targets (VITO, 2017). 

All input data required for the atmospheric correction are derived from the image 

itself or delivered through pre-calculated look-up-tables. Through the use of a single 

atmospheric correction implementation, discontinuities in the reflectance between 

land and the highly dynamic water areas are reduced (Ramoelo & Cho, 2018). 

Table 2: List of Sentinel-2 images used in the study 

Product ID Date 

S2A_OPER_MSI_L1C_TL_MPS__20160812T112604_A005952_T36JUT_N02.04 2016-08-12 

S2A_MSIL1C_20170119T074231_N0204_R092_T36JUT_20170119T075734 2017-01-19 

(https://glovis.usgs.gov/app [accessed: 28 June 2017]). 

http://glovis.usgs.gov/
https://glovis.usgs.gov/app
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In order to extract multispectral data, the images were pre-processed wherein digital 

numbers were converted to surface reflectance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Workflow of iCOR atmospheric correction algorithm. (Adapted from: 

https://blog.vito.be/remotesensing/icor_available [accessed: 12 Jan 2018]). 

LUT = Look-up-Table, SZA = Solar Zenith Angle, VZA = View Zenith Angle, RAA = 

Relative Azimuth Angle, DEM = Digital Elevation Model, TOA = Top-of-Atmosphere, 

AOT = Aerosol Optical Thickness, SIMEC = Similarity Environment Correction, L2 = 

Level 2 Atmospherically Corrected. 

2.5.2 Point extraction 

Spectral reflectance of georeferenced ground points (GPS coordinates of the 

sampled trees) were extracted from the image. Trees with larger canopies were 

purposively sampled (Ramoelo et al., 2014); and their chemical, hyperspectral and 

multispectral spectral (Sentinel-2) measurements were modelled. Due to the fewer 

number of trees with large canopies, the dataset comprised of combined dry and wet 

seasons’ measurements.  
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2.5.3 Spectral bands and indices 

This study utilised eight Sentinel-2 MSI bands that are critical for characterisation of 

vegetation (Skidmore et al., 2010; Ramoelo et al., 2014). The bands are centred at 

490nm, 560nm, 665nm, 705nm, 740nm, 783nm, 842nm and 865nm (Table 3). 

Table 3: Description of Sentinel-2 bands used in the study 

Spectral Band 
Central 

wavelength 
(nm) 

Band width 
(nm) 

Resolution 

Band 2 – blue 490nm 65nm 10m 

Band 3 – green 560nm 35nm 10m 

Band 4 – red 665nm 30nm 10m 

Band 5 – vegetation 
red edge 

705nm 15nm 20m 

Band 6 – vegetation 
red edge 

740nm 15 nm 20m 

Band 7 – vegetation 
red edge 

783nm 20nm 20m 

Band 8 – NIR 842nm 115nm 10m 

Band 8b – vegetation 
red edge  

865nm 20nm 20m 

ESA (2015); retrieved from http://www.gdal.org/frmt_sentinel2.html [15 September, 

2017]). 

Conventional and red-edge based vegetation indices such as modified simple ratio 

mSR705 (B06 - B01) / (B05 - B01); normalized difference vegetation index - NDVI (B08 - 

B04) / (B08 + B04); red-edge normalized difference vegetation index - RE NDVI (B08 - 

B06) / (B08 + B06); NDVI-Green (B03 * (B08 - B04) / (B08 + B04), were computed 

(Ramoelo et al., 2014; http://www.sentinel-hub.com/eotaxonomy/indices [accessed: 

26 October, 2017]). A total of eighteen bands and vegetation indices were used as 

an input into the model. 

2.5.4 Modelling nutrient composition using Sentinel-2 data 

Partial least squares regression (PLSR) was used to model relationships between 

leaf chemical composition and multispectral data from Sentinel-2. The model was 

implemented using the pls package in R programming language. Validation of the 

model was done using ‘leave one out’ cross validation (Mevik & Wehrens, 2007). 

http://www.gdal.org/frmt_sentinel2.html%20%5b
http://www.sentinel-hub.com/eotaxonomy/indices
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The root mean square error (RMSE), coefficient of determination (R2) as well as p 

values were considered as statistic measures of precision and accuracy (Garcia & 

Filmoser, 2017; Ramoelo & Cho, 2018). 

3. Results and discussion 

3.1 Descriptive statistics 

The composition of the foliage from the different species is presented in Table 4. 

Table 4: Descriptive analysis of the chemical data  

 Nitrogen 
(g/100g) 

Phosphorus 
(g/100g) 

Potassium 
(g/100g) 

Calcium 
(g/100g) 

Season D W D W D W D W 

n 45 45 45 45 45 45 45 45 

Max 2.43 3.54 0.22 0.23 1.02 1.67 3.27 1.82 

Mean 1.753 2.372 0.098 0.135 0.619 0.916 1.562 0.852 

Min 0.71 1.55 0.06 0.07 0.33 0.47 0.52 0.30 

SD 0.405 0.514 0.030 0.043 0.179 0.290 0.607 0.328 

CV (%) 23.1 21.7 30.2 31.4 28.9 31.6 38.8 38.5 

SD = standard deviation; CV = coefficient of variation; D = dry season; W = wet 
season 

Figure 3 shows the boxplots of the nutrient levels among the species in both 

seasons. The highest concentration of nitrogen was recorded in in Philenoptera 

violacea specimen during summer; and the lowest was in Terminalia sericea 

specimen during winter. Phosphorus concentration was highest in Dichrostachys 

cinerea during summer, whilst the lowest was recorded in Terminalia sericea during 

winter. Potassium was highest in Philenoptera violacea foliar during summer, and 

was lowest in Combretum apiculatum during winter. The highest amount of calcium 

was recorded in Dichrostachys cinerea leaves during winter, while the lowest was 

recorded in Combretum apiculatum during summer. 
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Figure 3: Foliar nutrient variation by species in the dry (D) and wet (W) seasons 
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The Shapiro–Wilk test showed that nitrogen was normally distributed, while 

phosphorus, potassium and calcium were not. There was more variability in nitrogen 

content during winter (CV=23.1%) compared to summer (CV=21.7%).  

Philenoptera violacea contain significantly higher (p<0.05) levels of nitrogen 

compared with other species except with Dichrostachys cinerea. The findings 

corroborate the work by du Toit (2003), which showed foliar nitrogen concentrations 

for Philenoptera violacea in the Lowveld savanna were more than 3% in summer. 

The non-leguminous species Terminalia sericea contained significantly lower 

(p<0.05) amounts of nitrogen compared with most species, except for Peltophorum 

africanum and Euclea natalensis. 

The results of foliar nitrogen variation between groups are shown in Figure 4. The 

concentration was significantly lower (p<0.05) in non-leguminous plants than in 

leguminous plants during summer, while the difference between broad-leaved and 

narrow leaved legumes was not significant. During winter, nitrogen concentration 

was significantly lower (p<0.05) in non-legumes than in broad-leaved legumes while 

the difference in mean nitrogen between narrow-leaved legumes and non-legumes 

was not significant. 

Leaf nitrogen is related to protein (Majeke et al., 2008). The higher protein content in 

leguminous plants is due to the action of nitrogen-fixing bacteria that habitat root 

nodules of leguminous plants (Hungria & Franco, 1993; Jacobs et al., 2007). 

Nonetheless, the potential to fix nitrogen needs to be explored for each species due 

to significant variability among leguminous spiecies. For instance the results 

revealed that the nitrogen content of Peltophorum africanum, which is a leguminous 

plant, was among the lowest of the plant species investigated. 

In terms of phosphorus, broad-leaved legumes contained significantly higher 

(p<0.05) concentration than narrow-leaved legumes and non-leguminous species. 

The difference between narrow-leaved legumes and the non-legumes was not 

significant. Differences in potassium and calcium between the three groups were not 

significant. Seasonal effect was significant (p<0.05) for all the four nutrients. 

Concentrations of nitrogen, phosphorus and potassium were significantly higher 

(p<0.05) in summer than in winter, whereas calcium was significantly higher (p<0.05) 

in winter (Figure 5). 

https://www.sciencedirect.com/science/article/pii/S0254629906001268#bib4
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Green plants generally have higher nutrient concentrations due to active metabolic 

activities (e.g. photosynthesis) portraying vigour and health of vegetation. During dry 

periods, nutrients are generally translocated from leaves to the roots (Majeke et al., 

2008). The interaction effect between the groups and seasons was significant 

(p<0.05) for nitrogen; this could be attributed to changes soil conditions (temperature 

and humidity) on the activity of nitrogen-fixing bacteria in leguminous species 

(Jacobs et al., 2007). 

 

   Figure 4: Foliar nutrient variation by group across the two seasons. 

BLL.D = Broad leaved legume – dry season; NLL.D = Narrow leaved legume – dry 

season; NOL.D = Non-legume – dry season; BLL.W = Broad leaved legume – wet 

season; NLL.W = Narrow leaved legume – wet season; NOL.W = Non legume – wet 

season. 
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Figure 5: Foliar nutrient concentration between dry and wet seasons. 
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3.2. Nutrient concentration and spectral reflectance of dried leaf samples. 

Table 5 is a summary of the performance of the statistical models developed to 

relate foliar nutrients measured by reference methods to hyperspectral data obtained 

from laboratory spectroscopy. Figures 6 to 9 show the graphical output of the 

models. There was a significant relationship between foliar nitrogen concentration 

and hyperspectral reflectance of ground leaf samples for both summer (R2=0.88, 

p<0.05) and winter seasons (R2=0.76, p<0.05). 

The coefficient of variation for nitrogen was lower in summer (CV=21.7%) compared 

to winter (CV=23.4%); consequently the predictive accuracy was higher in summer 

(R2=0.88) than in winter (R2=0.76). A similar trend was observed with the prediction 

of phosphorus. The study corroborates the findings by Ramoelo et al. (2014), that 

prediction of leaf N is higher during the period of peak productivity. During the wet 

season, plants have more vigour and high levels of nutrients and photosynthetic 

pigments such as chlorophyll (Kumar et al., 2003; Majeke et al., 2008). 

The relationships between foliar phosphorus, potassium and calcium concentrations 

and hyperspectral reflectance of ground leaf samples were generally low (Table 5). . 

The predictive capability of Ca was reasonably higher in winter (R2=0.43) than in 

summer (R2=0.01).  

Table 5: Performance of the models on the estimation of foliar nutrients 

       using spectrometer data 

Season n Nutrient RMSEP R2 p values 

 < 0.05 

Winter 45 

N 0.21 0.76 Yes 

P 0.02 0.49 Yes 

K 0.17 0.08 Yes 

Ca 0.45 0.43 Yes 

Summer 45 

N 0.18 0.88 Yes 

P 0.03 0.41 Yes 

K 0.26 0.20 Yes 

Ca 0.32 0.01 Yes 

 

Commented [Moses@1]: Verify your p values 

Commented [Moses@2]: Are u sure the p was < 0.05 

Commented [Moses@3]: Are u sure the p was < 0.05 



17 
 

The results demonstrate that spectral reflectance of dried and ground leaf samples, 

coupled with partial least squares regression can be applied as a fast analytical 

technique to evaluate nitrogen content of species in the lowveld ecosystem. Work by 

Galvez-Sola et al. (2015) using dry leaf spectroscopy on lemon, mandarin, orange 

and grapefruit found high accuracy (R2=0.96) regarding the estimation of nitrogen as 

well as acceptable estimates for potassium, iron and zinc. In yerba mate plants (Ilex 

paraguariensis), the prediction was good for phosphorus and copper but not for 

potassium and calcium (Rossa et al., 2015). These data show that the leaf spectral 

response depends on the species studied; thus for each species it is necessary to 

make the appropriate calibrations. 

 

Figure 6: Cross-validated RMSEP curves for hyperspectral vs chemical: winter 
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Figure 7: Cross-validated predictions for hyperspectral vs chemical data: winter. 

 

 

 

 

 

 

1.0 1.5 2.0

1
.0

1
.5

2
.0

Nitrogen, 4 comps, validation

measured

p
re

d
ic

te
d

0.10 0.15 0.20

0
.0

5
0
.1

0
0
.1

5

Phosphorus, 4 comps, validation

measured

p
re

d
ic

te
d

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Potassium, 4 comps, validation

measured

p
re

d
ic

te
d

0.5 1.0 1.5 2.0 2.5 3.0

0
.5

1
.0

1
.5

2
.0

2
.5

Calcium, 5 comps, validation

measured

p
re

d
ic

te
d

R2=0.49 R2=0.76 

R2=0.08 
R2=0.43 



19 
 

 

 

 

 

Figure 8: Cross-validated RMSEP curves for hyperspectral vs chemical: summer 
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Figure 9: Cross-validated predictions for hyperspectral vs chemical data: 

 summer 
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3.3. Relationship between foliar nutrient concentrations and Sentinel-2 data 

Table 6 shows the performance of models relating chemical composition to spectral 

reflectance. The graphical output of the model is shown as Figure 10. 

Table 6: Performance of models for estimating foliar nutrients using data from 

both dry and wet seasons 

 

Season n Nutrient RMSE R2 p values 

< 0.05 

C
o

m
b

in
e

d
 

d
a

ta
s

e
t 

19 N 0.22 0.44 Yes 

19 P 0.04 0.04 Yes 

19 K 0.27 0.23 Yes 

19 Ca 0.41 0.25 Yes 

 

 

Figure 10: Cross-validated predictions for Sentinel-2 data: wet and dry seasons.  
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Using Sentinel-2 data, the prediction accuracy for nitrogen was higher compared to 

that of potassium, phosphorus and calcium. Phenology is a major factor of this 

outcome;  most of the vegetation indices particularly Red Edge based indices 

depend on the vegetation vigour and greenness (Kumar et al., 2003). There was 

weak correlation (R2=0.44, p<0.05) between foliar nitrogen composition and the 

predictions made by the PLS model. As outlined by Garcia Sanchez et al. (2017), R2 

values that are less than 0.75, although not acceptable for practical application, they 

may be useful for monitoring purposes. It is assumed that the models could perform 

better with improved sampling techniques and the use of larger datasets.  

Estimation of leaf nutrients using Sentinel-2 data yielded low performances, which 

could be attributed to low dimensionality of the data. PLS regression performs better 

when number of observations and exploratory variables are in their tens to hundreds 

and even thousands (Wold et al., 2001). Ramoelo et al. (2015) demonstrated that 

machine learning techniques, such as random forest improved the estimation of leaf 

nitrogen by 49% and are quite robust if well parameterized. 

5. Conclusion 

Spatial and taxonomic variation in leaf chemistry is recognized as important both for 

the functional role that trees play in  ecosystems as well as their response to 

environmental change. The study combined field campaigns, chemical analysis, 

laboratory spectroscopy on dry leaves as well as multispectral data of vegetation to 

identify opportunities for scaling leaf chemical – spectral relationships to canopies. 

The analysis was done in the context of the foliar nutrients, as elements of resource 

quality. 

Science based on imaging spectroscopy and techniques has been driven by the 

assumption that improved identification of particular spectral features leads to better 

estimation of foliar chemicals. Season specific analysis showed that wet season 

models performed better than those of dry season. Various literature indicate that 

performance of models depend on elements being analysed and the plant species. 

This study demonstrated some potential for hyperspectral data to estimate leaf 

nitrogen using PLS regression. Nonetheless foliar nutrient estimation using Sentinel-

2 data did not show potential for practical application in the estimation of leaf 

minerals. 
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