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A B S T R A C T

Increasing global urbanisation is leading to a rise in the number of people living in informal settlements,
challenging our ability to achieve sustainable development goals. As a consequence of high building density,
inadequate building methods and flammable building materials, informal settlements are highly vulnerable to
the devastating impacts of fire. Databases on historic fire occurrence, location and extent are scarce, especially in
the Global South. This paper explores the potential for remote sensing technologies to fill this gap. Two case
studies in Cape Town representing fire of different extent and build back characteristics, are used to demonstrate
that Sentinel-1 and Sentinel-2 data can be used to detect known historic informal settlement fire. A pixel based
approach applied to Sentinel-2 band 2 reflectance and Sentinel 1 backscatter and interferometry are highlighted.
The concept of spatial autocorrelation is explored with both Sentinel-2 and 1 data showing that a 3 x 3 pixel
standard deviation kernel and hotspot analysis can complement the pixel approach. Further research is required
to test these methods within a time series change detection algorithm to identify unknown historic informal
settlement fires. .

1. Introduction

Informal settlements are residential areas where inhabitants have no
security of tenure and are often located in geographically and en-
vironmentally hazardous or undesirable areas. Variously referred to as
slums, shanty towns or favelas, they are indicative of poverty and in-
adequate living conditions [1], usually lack basic services and the
housing may not comply with current planning and building regula-
tions [1]. Due to the global urbanization process increasing the total
number, as well as the share (relative to rural dwellers), of urban
dwellers worldwide [2], the number of informal settlement dwellers is
rising as a consequence. While informal settlements are a global urban
phenomenon, they are seen to be a consequence of rising urbanisation
in developing countries [3] in particular. Urban infrastructural devel-
opment can no longer keep pace with rising population growth [3] and
rapidly increasing poverty and informal settlements characterise urban
conditions in the Global South [4]. The most deprived and excluded
form of informal settlement characterised by poverty, are known as
slums where, in addition to insecure tenure, slum dwellers lack access
to public space and green areas and are constantly exposed to eviction,
disease and violence [5].

Informal settlements vary widely between and within cities. They
are generally characterised by dwelling units of a make-shift nature
with construction methods of dubious quality [6]. Commonly recycled
materials [7] such as metal sheeting, cardboard, plastic, timber, con-
crete and other material (Fig. 1a) are used in construction. Spatially,
informal settlements are characterised by high roof density, a lack of
public or green open space in close proximity to residential areas, small
substandard building sizes, an organic layout [8], irregular and narrow
streets and non-uniform building orientation [9]. [7,10] provide pho-
tographic evidence of the many forms of informal settlements.

Due to their construction and landscape characteristics, informal
settlements are vulnerable to a range of natural and anthropogenic
hazards. In particular, poor infrastructure and the use of domestic fuels
for heating and cooking makes informal settlement communities vul-
nerable to fire hazards [11]. Fires are devastating to inhabitants as
often all personal belongings, clothing and important documents are
lost and fatalities sometimes occur [12]. Fires are reported to be often
started by cooking on open fires, using unstable stoves and combustible
fuels, and unsafe electrical connections [13]. Fires then spread quickly
due to high density of dwellings which also impedes fire fighters access
to the scene [12]. Further, specific social factors play a role in fire
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ignition and spread including ignorance of fire safety practice alongside
the broader challenges of poverty and other forms of deprivation and
marginalisation [13]. Since informal settlements are characterized as
generally unplanned and lacking in formal infrastructure, when a fire
breaks out, lack of fire hydrants and water supplies together with in-
adequate road access prevent fire fighters efficiently tackling the fire
[13].

Fires which typically burn in the formal planned housing built en-
vironment are usually limited to the room/building of fire origin due to
a design philosophy of compartmentation [14] i.e. sub-dividing struc-
tures into compartments with fire-resisting walls and floors. Informal
settlement dwellings, however, are not created with such a philosophy,
therefore, each dwelling unit can potentially be conceptualised as a
discrete fuel package, with a range of properties relating to ignition and
fire intensity. These “fuel packages” are non-uniform both in size and
distribution over large areas. Flame radiation, direct flame impinge-
ment, and fire brands (small particle of ignited material being carried in
buoyant air flows) are the main spread mechanism, all of which are
affected by topography and wind.

In the event of a fire in an informal settlement, poor construction
methods and flammable construction material contribute towards rapid
fire development resulting in collapse of small dwellings (Fig. 1 b) in as
little as 2–5min [15]. Combustible insulating materials, such as card-
board, which is often used to clad the insides of the steel sheet walls of
dwellings, once ignited, can increase the speed of fire development and
may cause the walls to buckle and collapse [15]. The high density and
close proximity of individual dwellings as well as the presence of
combustible material within and between dwellings, cause fires to
spread rapidly between dwellings.

Cities were for many years considered as polluters and threats to the
environment however, urban areas are now being seen as places where
economic, social and environmental development can take place
through Sustainable Development Goals (SDG) [2]. However, with in-
formal settlements growing at a faster rate than any other urban de-
velopment [7], this will be challenging. SDG no 11 aims to “make cities
and human settlements inclusive, safe, resilient and sustainable” and

identifies as a specific target, “access for all to adequate, safe and af-
fordable housing and basic services and upgrade slums” by 2030.

SDG Goal no 11 further aims to substantially increase the number of
cities and human settlements adopting and implementing integrated
policies and plans towards inter alia resilience to disasters by 2020 [5]
with the Sendai Framework aiming to substantially reduce global dis-
aster mortality by 2030 [16]. The Sendai Framework sets out priorities
for action in order to achieve this goal through (1) understanding dis-
aster risk, (2) strengthening disaster risk governance to manage disaster
risk, (3) investing in disaster risk reduction for resilience, and (4) en-
hancing disaster preparedness for effective response and to “Build Back
Better” in recovery, rehabilitation and reconstruction [16]. Thus the
frameworks and policies are in place globally to support the improve-
ment of living conditions and reduce disaster risk for those who cur-
rently find themselves in inadequate housing in informal settlements.

To meet this goal, understanding of factors influencing fire spread is
necessary. It has already been stated that informal settlements have a
propensity to fire ignition and their vulnerability is thought to increase
with high building density, use of inadequate building methods and
flammable building materials, as this is understood to enable rapid fire
spread from the dwelling of origin. To test the impact of spatial layout,
density and type of building materials etc. on the rate of spread from
dwelling of origin, reliable data on fire incidence and impact is required
but is rarely available in low- and middle-income countries (LMIC)
[13]. Where data does exist, the lack of standard operating procedures,
inconsistencies in record taking and the lack of formal data repositories
imply that few historical records are readily accessible. For example,
the City of Cape Town has a fire incidence database available online,
with the location of fires identified on a map grid with resolution ap-
proximately 800m×800m. Often multiple blocks are entered for one
fire making the identification of the exact fire location very difficult.
Since databases on fire occurrence, location and extent are scarce, the
potential role of remote sensing technologies to populate an inventory
of informal settlement fires should be considered. With a spatial data-
base of historic informal settlement fire which have spread beyond the
dwelling of origin, it becomes possible to start analysing the particular
risk factors contributing towards the propensity for spread.

Remote sensing is a key tool in monitoring long term environmental
and anthropogenic change and satellite remote sensing is particularly
useful for detecting change over time due to the availability of long
term records and regular, repetitive image capture. The literature has
revealed that satellite remote sensing technology is not yet being used
for informal settlement historic fire detection and given the synoptic,
objective and repeatable nature of remote sensing, an investigation into
the possibilities of using this technology to build a spatial database of
informal settlement fires is timeous.

Mapping a fire extent with remote sensing is essentially a classifi-
cation process whereby spectrally homogeneous pixels (in this case, a
burn scar) are identified and placed into a feature information class. In
this way, the extent and shape of the feature are determined or mapped
and can be vectorised and analysed post-classification in relation to
neighbouring features or changes detected over time. Methods which
only consider bi-temporal images, assuming a known fire with one
image captured pre-fire and the other post-fire, can be investigated to
understand the spectral response of the surface to fire. These methods
however assume that a remote sensing image is available pre and post-
fire.

Change detection on the other hand, identifies a significant change
from one date to the next but that change is detected at the unit of
analysis level (usually the pixel). This is a distinct and unique challenge
for identifying unknown historic informal settlement fires using remote
sensing as, in order to capture the changes which occur on the land
surface, high temporal resolution imagery is required. Ideally (1) a pre-
fire image, (2) an immediate post-fire but pre-rebuild image, and (3) a
post rebuild image should be present in a time series in order to detect
the fire event. However, data with temporal resolution high enough to

Fig. 1. a) Imizamo Yethu informal settlement in Cape Town illustrating the
makeshift nature of building methods and materials, narrow pathways and
combustible materials between dwellings, b) collapse of a dwelling due to a fire
and c) new dwellings constructed from starter building kits provided by City of
Cape Town post-fire.
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capture these events (such as MODIS) typically has inadequate spatial
resolution for informal settlements.

This paper aims to demonstrate that, using two case studies in the
City of Cape Town, informal settlement fires which spread beyond
dwelling of origin can be detected using Sentinel-1 and Sentinel-2 data.
The case studies demonstrate observed change for two separate known
fires (the first in Imizamo Yethu and the second in Kosovo) using (1)
optical data (Sentinel-2) and (2) synthetic aperture radar (SAR) data
(Sentinel-1) firstly in a pixel based approach. The concept of spatial
autocorrelation in the fire detection concept is then explored through
applying a 3 x 3 standard deviation kernel and hot spot analysis to both
Sentinel-2 and Sentinel-1 products. General conclusion from the case
studies are presented in Section 3 as is the potential of applying these
techniques within change detection algorithms to detect unknown in-
formal settlement fires.

2. Case studies

Informal settlement fires result in abrupt and rapid change as
dwellings are completely destroyed and collapse or are partially de-
stroyed and torn down post-fire for rebuild. Communities affected by
informal settlement fires tend to re-establish themselves very quickly as
inhabitants have no alternative accommodation and re-erect their
structures rapidly so as not to lose the land they have occupied [12]. In
other cases, the fire event is used to initiate reblocking, a process of
upgrading informal settlements through spatial reconfiguration in order
for services and infrastructure to be installed [17] and in these cases,
rebuild happens over a longer time period. From a remote sensing fire
detection perspective, there are thus two differing scenarios: the first is
where rebuild takes place almost immediately post-fire and the second
is where a process of reblocking and service provision results in a
slower build back over the course of weeks or even months. For the
purposes of demonstration, two fires, one in Imizamo Yethu and the
other in Kosovo, representing different environments, extents and re-
build scenarios are selected in the City of Cape Town (Fig. 2).

The first settlement of Imizamo Yethu, established in 1991 has a
long history of fire [18]. It was originally designed to accommodate
3000 people with a plan to build brick houses on individual serviced
sites [11]. However once established, a major influx of new residents
occurred [11] and by 2011, according to Ref. [19], no substantial im-
provements had been implemented. A ratio of one toilet to eleven
households (http://ismaps.org.za/desktop.html#) was observed and
the exact number of occupants was unknown but estimated in the re-
gion of 16 000 to 36 000 [19] with a settlement density given as 228
households per hectare (http://ismaps.org.za/desktop.html#). The
settlement is located on steep mountain land with a height difference of
130m from the bottom to the top of the settlement, with the main
access roads at the bottom of the settlement, thus limiting the ability of
emergency services to access the upper parts of the settlement as the
roads deteriorate with steepness of slope [20]. Further, should a fire
start in the lower part of the settlement, the settlement is at greater risk
of fire spread as fire spreads faster upslope as flames tilt over potential
fuel, increasing radiation, causing direct flame contact and convective
heat transfer to potential fuel [21].

The Imizamo Yethu case study is a fire (Fig. 3) which burned on 11
March 2017. It covered a large spatial extent (4.2 ha) through part of
the settlement on the slope of the mountain, it included a large portion
of vegetation, and because of the reblocking process which was put in
place after the fire, rebuild was not immediate and is not complete to
date (https://ewn.co.za/2018/09/28/court-cases-stall-city-of-ct-s-
imizamo-yethu-reblocking-project). This fire killed 4 people, de-
stroyed 2194 homes and left 9700 people homeless and is described in
detail by Ref. [22]. This fire was widely covered by the media (e.g.
http://ewn.co.za/2017/03/13/imizamo-yethu-residents-pick-up-
pieces-after-fire).

The second settlement of Kosovo, located approximately 4 km

southwest of Cape Town International Airport on City of Cape Town
land, was established 10–15 years ago. Kosovo is characterized by
overcrowding with a density of 212 households per hectares (http://
ismaps.org.za/desktop.html#) and a high water table making it prone
to seasonal flooding and health risks associated with inadequate drai-
nage and sanitation services [23] as there is only one toilet per three
households (http://ismaps.org.za/desktop.html#). High summer tem-
perature, wind-blown sand and seasonal fire exacerbate living condi-
tions for residents of this settlement [23]. The Kosovo case study is a
smaller fire (730 m2) which was unreported in the media but was re-
corded in the City of Cape Town fire incidence database (https://web1.
capetown.gov.za/web1/opendataportal/DatasetDetail?DatasetName=
Fire%20incidence). This fire took place on 21 December 2017 in the
Kosovo informal settlement (Fig. 3), on level topography and affected
fewer than twenty dwellings which were rebuilt almost immediately
post-fire (Google Earth imagery confirmed dwellings were rebuilt by 30
December 2017).

The two case studies thus represent different spatial and temporal
scales and will demonstrate that Sentinel 1 and 2 data (SAR and optical,
respectively) can detect fires in both these scenarios.

2.1. Mapping informal fire occurrences - pixel based approaches using
optical and SAR data

2.1.1. Sentinel-2
The potential for the use of remote sensing to identify informal

settlements historically affected by fires and to map fire extent have
been recognised by observing satellite data captured before and after a
fire event [24]. When observing satellite imagery of an informal set-
tlement pre- and post-fire (Fig. 4), the large scale collapse of dwellings
is apparent as both a change in image texture as well as spectral
characteristics which is likely to be a remote sensing indicator of a fire
event. The City of Cape Town provide victims of fires with starter
building kits (Fig. 1c) to enable them to rebuild their homes [25] and
the new roofing material is more reflective (Fig. 4c) than the old ma-
terial which may have been discoloured and degraded (Fig. 4a). This
morphological and spectral response change due to a fire event is thus
distinguishable in the visible wavelengths in aerial photography or
satellite imagery. New roofs erected for reasons other than fire will also
exhibit the same response. In a preliminary assessment of the spectral
response of an informal settlement fire with a quick post fire rebuild
[24], proposed a hypothesised roof albedo response curve (Fig. 4d). The
premise is that by charting variation in surface albedo over time, de-
tection of the distinctive shape of the theoretical informal settlement
fire curve will indicate an informal settlement fire. Thus, when viewing
time series of albedo, the albedo will gradually decrease with age of the
roofs, drop off vertically post-fire and increase sharply shortly there-
after to a higher level than pre-fire albedo with the introduction of new
roofing material.

[26] demonstrated the detection of a fire on 28 November 2015 in
Masiphumelele, Cape Town using albedo [27] calculated from Landsat
ETM + surface reflectance in Google Earth Engine however it was
found that differences in scene brightness resulted in some false change
being detected. Using the local variance method on SPOT 6 data,
Wheeler also found the optimal spatial resolution for informal settle-
ment mapping in Cape Town to be 9 m [26], indicating that a sensor
such as Sentinel-2 with a resolution of 10m in some bands may be an
optimal choice for Cape Town informal settlements. Analyzing Sentinel-
2 data [28], revealed that out of the high resolution bands (blue, green,
red and near-infrared at 10m), the difference between pre and post fire
reflectance was most pronounced in the blue band. Further, ASTER
Spectral library [29] reveal lower reflectance by oxidized galvanized
steel sheets (described as completely oxidized, weathered, galvanized
bare steel from roof and vent covers. Sample No.: 0525UUUSTLa) than
reflectance by galvanized steel sheets (Sample No.: 0526UUUSTLa) in
all the high-resolution Sentinel-2 bands (Fig. 5) thus excluding the
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benefit of using a ratio approach with these bands. It should also be
noted that a larger discrepancy is present in the shortwave infrared
bands however the reduced spatial resolution of these bands excluded
them from this study. To avoid a potential confounding influence of
vegetation, the green and more importantly the near infrared band

should be avoided due to chlorophyll being highly reflective of light in
these portions of the electromagnetic spectrum (EMS). Thus, either the
blue or red band should be suitable to detect the change in surface
reflectance in event of an informal settlement fire. The temporal fre-
quency of Sentinel-2 is 10 days since June 2015 and 5 days since March

Fig. 2. City of Cape Town informal settlements with the locations of Imizamo Yethu and Kosovo indicated.

Fig. 3. The extent of the fires in the two case studies - Imizamo Yethu (left) and Kosovo (right).
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2017 when Sentinel-2A and Sentinel-2B were launched, respectively.
Therefore, the high temporal and spatial resolution of Sentinel-2 blue
band is used to demonstrate that informal settlement fires, at two dif-
ferent spatial and temporal scales in Cape Town, can be detected using
a freely available Sentinel-2 data.

The Sentinel-2 MSI: MultiSpectral Instrument, Level-1C blue band (B2)
was selected, downloaded and preprocessed (atmospheric correction using
Dark Object Subtraction (DOS-1) within the Semi-Automatic Classification
Plugin version 6.2.8 [30] in QGIS 3.4. In the first instance, B2 alone is used
to illustrate that the fire event and its effect can be observed visually at
Sentinel-2 spatial and temporal resolution. In the case of the Imizamo
Yethu fire, an image captured 9 days before the fire on 2 March 2017
(Image id: 20170302T081841_20170302T084108_T34HBH), the day after
the fire (Image id: 20170312T082001_20170312T084235_T34HBH)
and five months after the fire (Image id:
20170804T081559_20170804T084931_T34HBH) were selected to test if
B2 reflectance would follow the hypothesised roof albedo response curve,

even though rebuild was only partial five months post-fire.
With reflectance measured as a ratio from zero to one, where zero

equals complete absorption and one equals 100% reflectance, a simple
threshold classification of B2 reflectance (Fig. 6) shows pre-fire (2
March 2017) reflectance to be largely in the region of 0.15–0.25, with
the vegetated areas showing lower reflectance values (expected due to
chlorophyll absorption) [31]. reported reflectance from metal roofing
to range from approximately 0.15 for old roofing to just over 0.2 for
new roofing in the blue portion of the EMS. This indicates a mix of both
old and new roofing in the area pre-fire. The day after the fire (12
March 2017), the reflectance drops to below 0.15 for most of the burn
area and five months after the fire (4 August 2017), B2 reflectance
values exceed 0.25 in those regions of the settlement (northwest) where
dense rebuilding has occurred. The pre and post fire zonal statistics of
the fire extent (Table 1) confirm the proposed roof albedo response
curve (Fig. 4), at least in the blue band, for all statistics except the
minimum reflectance value. Despite rebuild not being complete by 4

Fig. 4. Morphology change as consequence
of fire which occurred on 26 Dec 2015 in
Imizamo Yethu, Cape Town; a) pre-fire
image showing degraded and discoloured
roof material; b) collapse and charring of
dwellings immediately post-fire; c) post-fire
rebuild with new roofing material. Source
of imagery: GoogleEarth; d) hypothesised
roof albedo response curve with lettering
referring to event shown in the figure.

Fig. 5. Spectral response from the ASTER spectral library [29] of galvanised steel and oxidised galvanised steel indicating lower reflectance of oxidised galvinised
steel in all four of the high resolution Sentinel-2 bands.
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August 2017, the mean and median reflectance of the burnt area in-
creased by 27.7% and 8.0% respectively from their pre-fire values. The
difference between the mean and median values and the very high
maximum value recorded post fire indicate sun glint from new roofs is a
factor influencing mean values. The use of the median in analyses may
therefore represent more realistic values than using the mean.

In Kosovo, the rebuild took place extremely quickly and although an
image was available the day after the fire (22 December 2017), the high
cloud cover on that day (30%) prevented its use. Thus, a pre-fire image
captured on 28 September 2017 (Image id:
20170928T082001_20170928T084418_T34HBH) and a post-rebuild
image captured on 11 January 2018 (Image id:
20180111T082309_20180111T084759_T34HBH) were selected and
this illustrates cases where images immediately post-fire and pre-re-
build are not available.

The pre-fire (28 September 2017) reflectance in B2 was almost ex-
clusively in the 0.15–0.25 range, indicating a mix of new and old roofs.
The post-fire image (11 January 2018) revealed an increase in B2 re-
flectance to over 0.25 for the majority of the burned area. The high-
resolution aerial photograph captured in February 2018 (Fig. 7 b)
confirms the presence of new roofs in the fire extent. As with the case of
Imizamo Yethu, the zonal statistics (Table 2) corroborate this with an
increase in all statistics post fire, even though an image captured im-
mediately post fire and pre-rebuild is not available and thus the dip in
reflectance is not captured. The Kosovo fire revealed an increase in
post-fire reflectance of 65.5% and 65.4% when considering the mean
and median respectively. This increase in reflectance exceeds the re-
flectance post-fire recorded in the Imizamo Yethu case study, likely

since in Kosovo, the rebuild was complete and in Imizamo Yethu, the
aerial photograph taken in February 2018 (Fig. 6 b) reveals open
ground where dwellings have not yet been replaced.

The spectral changes after a fire event are likely to vary on a case-by
case basis. For example, in areas that don't benefit from the distribution
of starter building kits as part of disaster relief efforts, the rebuilt homes
may not present such high reflectance differences if recycled or re-
claimed materials are used. In these cases, an alternative to the optical
approach may be required. An approach using synthetic aperture radar
data can be considered as a complimentary tool for identifying burned
areas in informal settlement. In general, when using optical data, the
difference in the spectral response of areas affected by fires and areas
unaffected by fire are used for burned area extraction. Similar princi-
ples can be applied when using Synthetic Aperture Radar (SAR) data,
where different SAR backscatter responses would be observed when
comparing burnt and unburnt areas.

2.1.2. Sentinel-1
The use of SAR data for burned area extraction in vegetated regions

have been considered in various investigations [32–41]. These ap-
proaches generally rely on the sensitivity of SAR backscatter to vege-
tation structure and biomass and attempts to identify areas where ve-
getation is removed after a fire. Although these investigations identified
burned areas with various levels of success, informal settlement fires
are generally not associated with the removal of significant amounts of
vegetation, limiting the applicability of these algorithms.

Nevertheless, the sensitivity of SAR backscatter to the physical
characteristics (orientation, shape and size distribution) [42] of the
surface observed may still yield a significant response when pre-burn
and post-burn scenes are compared for areas affected by informal set-
tlement fires. Specifically, a very strong backscatter response is gen-
erally associated with urban areas where vertical structures prove to be
strong reflectors of the SAR signals [43]. It is anticipated that the col-
lapse of houses associated with fires in informal settlements may result
in a decrease in SAR backscatter response depending on the wavelength
of the data and the characteristics of the debris-field immediately after
the fire event. After clearing of the debris, this contrast between pre-

Fig. 6. Imizamo Yethu fire on 11 March 2017. City of Cape Town aerial photography captured a. pre-fire (January 2017), b. post-fire (February 2018). Sentinel-2 B2
reflectance (scale 0 to 1) captured c. pre-fire (2 March 2017), d. immediately post-fire (12 March 2017) and e. Five months post-fire (4 August 2017).

Table 1
Zonal statistics of Sentinel-2 B2 reflectance for the area in Imizamo Yethu af-
fected by the fire on 11 March 2017.

Min Max Mean Median StDev

2 March 2017 0.084 0.522 0.155 0.162 0.035
12 March 2017 0.085 0.200 0.134 0.137 0.020
4 August 2017 0.104 0.780 0.198 0.175 0.077
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burn and post-burn SAR backscatter is expected to be maximised, as-
suming data is available for the period after clearing but before rebuild.

To investigate the effect of informal settlement fires on SAR back-
scatter, pre-burn and post-burn calibrated backscatter was derived from
Sentinel-1A data for the 11 March 2017 Imizamo Yethu and 21
December 2017 Kosovo fires. The Sentinel-1 sensor currently provides a
12-day revisit interval for the areas of interest, representing the highest
revisit interval for SAR data that are routinely acquired. Although
higher revisit frequencies can be provided by SAR constellations (like
TerraSAR-X and Cosmo-Skymed), these sensors do not routinely cap-
ture data for all areas around the globe, unless specifically tasked.
Therefore, data is generally unavailable for the mapping of historical
fire events.

The dates of image acquisition is summarised in Table 3. The SAR
backscatter data, processed to ∼14m pixel spacing in ground range, is

presented in Fig. 8 and Fig. 9 for the Imizamo Yethu and Kosovo fires
respectively. It is observed that, for backscatter in both the Vertical-
Vertical (VV) and Verical-Horizontal (VH) polarisations, the change in
backscatter observed for the burnt area, as derived from zonal statistics
(Table 4 and Table 5 for the Imizamo Yethu and Kosovo fires respec-
tively) is marginal with less than 2 dB change observed between pre-
burn and post-burn conditions. In the case of the Imizamo Yethu fire
where rapid rebuild was not observed, the high backscatter response
even after the fire may be attributed to the debris field, leading to high
surface roughness conditions and, consequently, a high backscatter
response. In the case of the Kosovo fire, the rapid rebuild resulted in
high backscatter values that are normally associated with structures in

Fig. 7. Kosovo fire on 21 December 2017. City of Cape Town aerial photography captured a. pre-fire (January 2017), b. post-fire (February 2018). Sentinel-2 B2
reflectance captured c. pre-fire (28 September 2017), and d. post-fire (11 January 2018).

Table 2
Zonal statistics of Sentinel-2 B2 reflectance for Kosovo fire of 21 December
2017.

Min Max Mean Median StDev

28 September 2017 0.150 0.187 0.165 0.153 0.014
11 January 2018 0.191 0.3741 0.273 0.253 0.067

Table 3
Sentinel-1A image acquisition dates for the Imizamo Yethu and
Kosovo fires.

Area and condition Image date

Pre-fire Imizamo Yethu 2017/02/24
Pre-fire Imizamo Yethu 2017/03/08
Post-fire Imizamo Yethu 2017/03/20
Pre-fire Kosovo 2017/12/02
Pre-fire Kosovo 2017/12/14
Post-fire Kosovo 2017/12/26
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urban environments. The results suggest that a change in SAR back-
scatter in response to a fire event in informal settlements cannot be used
as a diagnostic feature and these results will thus not be considered in
the spatial autocorrelation approaches shown in Section 2.2.

In cases of rapid rebuild and due to the lack of consistent SAR
backscatter changes in pre- and post-fire conditions, a SAR derivative
known as interferometric coherence may provide an alternative solu-
tion. In the context of informal settlement fires, interferometric co-
herence can be viewed as an indicator of the level of change experi-
enced in a resolution cell between two image acquisitions [44]. Where
stable land cover conditions is experienced between two image acqui-
sitions, as is associated with most urban areas, the coherence between
the two image acquisitions will be high. In contrast, changing land
cover conditions as observed in natural landscapes, rural areas or areas
experiencing significant changes will exhibit low coherence values
[44–47]. Low coherence is also prevalent in vegetated areas where
signals decorrelate rapidly, even over short time periods. In the case of
informal settlements, in pre-burn conditions the lack of vegetation as-
sociated with informal settlements as well as the stable building
structures is expected to be associated with high interferometric co-
herence. In contrast, in the case of an informal settlement fire, the
destruction of dwellings present a significant change between data ac-
quisitions that will result in low coherence when one pre-burn and post-
burn scene is used to generate the coherence product. Furthermore,
even if rebuild after the fire takes place rapidly between the two image
acquisitions, the change in the structure and orientation of the dwell-
ings between pre-burn and post-burn scenes is expected to still result in
a decrease in coherence depending on the size of the fire and the re-
solution of the sensor.

To test this hypothesis, the pre-burn and post-burn datasets were
used to derive interferometric coherence for the Imizamo Yethu and
Kosovo fires. For each case, two pre-fire scenes were used to create a
pre-fire interferometric coherence product. Additionally, one pre-burn
and one post-burn scene was used to derive an across-burn interfero-
metric product. After rebuild, if two post-rebuild scenes are used to
create the coherence product, coherence would once again be expected
to be high. Therefore, the contrast between pre-fire coherence and post-
rebuild coherence products would be minimal and is not considered to
be suitable for identifying areas affected by fire.

The results indicate that, for the Imizamo Yethu fire, presented in
Fig. 10, there is a significant decrease in interferometric coherence
when pre-fire coherence and across-fire coherence values are com-
pared. The zonal statistics (Table 6) for the burnt area suggests that a
∼64% decrease in coherence is observed in VV polarisation coherence
product and ∼56% decrease for the VH coherence results. This suggests
that the expected decrease in coherence may be more prominent in the
VV polarisation coherence products. It is also observed that low co-
herence values are associated with stands of vegetation (as can be ob-
served on the optical image in Fig. 10e) particularly in the VV polar-
ization products. This low coherence conditions prevails for both pre-
burn VV coherence (Fig. 10a) as well as the across burn coherence
(Fig. 10 b). Therefore the decrease in coherence values that marks the
fire extent would not be present for these areas, minimizing the po-
tential for errors of commission.

For the Kosovo fire, relatively low interferometric coherence values
are observed even for the pre-burn VV coherence product (Fig. 11 a)
with the post-burn product exhibiting similarly low coherence values
(Fig. 11 b). Therefore, the anticipated decrease in coherence is not
observed. On the other hand, a 66% decrease in coherence values be-
tween pre-fire to post-fire conditions are observed for the VH

Fig. 8. SAR backscatter for the 11 March Imizamo Yethu fire indicating a. pre-
fire backscatter in VV polarization, b. post-fire backscatter in VV polarization, c.
pre-fire backscatter in VH polarization and d. post-fire backscatter in VH po-
larization.

Fig. 9. SAR backscatter for the 21 December Kosovo fire indicating a. pre-fire
Backscatter in VV polarization, b. post-fire backscatter in VV polarization, c.
pre-fire backscatter in VH polarization and d. post-fire backscatter in VH po-
larization.

Table 4
Zonal statistics for the calibrated Sentinel-1A backscatter for the Imizamo Yethu
fire.

Image date Min Max Mean StDev

2017/03/08 VV −14.258 5.788 −5.278 3.023
2017/03/20 VV −10.845 5.214 −4.837 2.219
2017/03/08 VH −16.560 −2.885 −11.519 2.232
2017/03/20 VH −17.040 −1.882 −10.593 2.052

Table 5
Zonal statistics for the calibrated Sentinel-1A backscatter for the Kosovo fire.

Image date Min Max Mean StDev

2017/12/14 VV −10.815 −7.304 −8.749 1.361
2017/12/26 VV −9.114 −6.975 −8.187 0.729
2017/12/14 VH −14.301 −8.859 −11.586 1.811
2017/12/26 VH −12.189 −7.046 −9.710 1.865
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polarisation coherence products (Fig. 11 c and d, Table 7). This suggests
that, in the case of the Kosovo fire, the VH coherence products may be
more suitable for identifying changes between pre-fire and post-fire
conditions. However, low coherence values are also observed outside of
the burnt area for the VH across-burn coherence (Fig. 11 e), suggesting
that other sources of change may be affecting the results. This points to
the limitation of using coherence for mapping burnt extent since
changes induced by factors other than fire can be identified in the
process and will act as sources of errors of commission.

Fig. 10. SAR coherence for the 11 March Imizamo Yethu fire indicating a. pre-fire coherence in VV polarization, b. across-fire coherence in VV polarization, c. pre-
fire coherence in VH polarization and d. across-fire coherence in VH polarization and e. an optical image for context.

Table 6
Zonal statistics for the Sentinel-1A coherence for the Imizamo Yethu fire.

Coherence date Conditions Min Max Mean StDev

2017/02/24 - 2017/03/08 VV Pre-burn 0.086 0.938 0.695 0.166
2017/03/08 - 2017/03/20 VV Across-burn 0.041 0.739 0.251 0.117
2017/02/24 - 2017/03/08 VH Pre-burn 0.140 0.874 0.596 0.154
2017/03/08 - 2017/03/20 VH Across-burn 0.046 0.523 0.265 0.102

Fig. 11. SAR coherence for the 21 December Kosovo fire indicating a. pre-fire coherence in VV polarization, b. across-fire coherence in VV polarization, c. pre-fire
coherence in VH polarization and d. across-fire coherence in VH polarisation.
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2.2. Spatial autocorrelation

An alternative approach to the rather simplistic method of con-
sidering single band reflectance and interferometric coherence values,
is to consider the reflectance response of a pixel relative to its neigh-
bours. According to Tobler's first law of geography [48], “Everything is
related to everything else, but nearest things are more related than
distant things”. In the event of a fire, this law is disrupted in that a fire
results in a burn scar representing an abrupt discontinuity between the
burned area and unburned area although within the burned area spatial
autocorrelation will remain intact or may even increase. Spatial auto-
correlation thus helps detect the perimeter of fire as a pixel which was
previously strongly spatially correlated with its neighbours, will un-
dergo a rapid change in spatial autocorrelation indicators if a fire oc-
curs in this location but does not affect the neighbouring pixels. Indeed,
this principal has been applied to mapping wildfire severity [49] and
with this philosophy in mind, two approaches using ArcGIS software
are tested: a kernel approach and hot spot analysis.

2.2.1. Kernel approach
The first spatial autocorrelation approach is to consider a 3 x 3 pixel

moving window kernel as unit of analysis. A kernel or moving window
filter, through generalising neighbourhood values, filters out noise and
identifies true change and, when using VHR imagery, the contextual
information provided by using a kernel approach balances out the
spectral deficiency of these images [50]. However to exploit the prin-
cipal of a disruption in spatial autocorrelation being indicative of an
abrupt change event, rather than using the kernel to generalise neigh-
bourhoods, an approach to enhance change in homogeneity is used by
calculating the standard deviation of pixel values within a kernel. A
high kernel standard deviation value represents heterogeneity within
the kernel whereas lower standard deviation value represents a more
homogenous scenario. Using this method, kernels comprising pixels at
the edge of the fire extent should experience an increase in standard
deviation from pre-fire to post fire and rebuild since, in the case of
Sentinel-2 B2 reflectance, the boundary between new roofs and old
roofs should be reflected as an increase in heterogeneity. In the case of
Sentinel-1 interferometric coherence, the decrease in coherence for the
fire-affected area observed in the across-burn coherence products
compared to the unburnt areas would similarly lead to an increase in
the heterogeneity near the boundaries of the fire extent.

In the case of the Imizamo Yethu fire, when applying the standard

deviation kernel to the B2 reflectance values, the pixels within the fire
extent become more homogenous immediately post fire (Fig. 12 b). Five
months later, the heterogeneity (described by kernel standard devia-
tion) has increased by 130% from pre-fire levels with highest values
observed in those areas where rebuild has occurred (Fig. 12 c).

When considering the 3 x 3 pixel standard deviation applied to the
SAR coherence products (Fig. 13), an increase in homogeneity is ob-
served for the SAR across-fire coherence product when compared to the
pre-fire coherence with an average of 24% and 35% decrease in stan-
dard deviation observed for VV and VH polarisations respectively. For
the VV polarization across-fire coherence product (Fig. 13 b), an in-
crease in heterogeneity around the edges of the fire is also apparent.
These effects are less noticeable on the VH cross coherence product
(Fig. 13 d).

The standard deviation of the 3 x 3 pixel kernel of B2 reflectance for
Kosovo (Fig. 14) shows relative homogeneity prior to the fire with the
fire extent clearly flagged with higher heterogeneity (250% up from
pre-fire levels) post fire and rebuild.

In the case of the 3 x 3 pixel coherence products, the increase in the
homogeneity of coherence values, as observed for the Imizamo Yethu
fire, was less evident in the case of the VV coherence product (Fig. 15 b)
with a decrease in standard deviation of 16% observed. In contrast, the
VH coherence product exhibited a mean increase in standard deviation
of 8%. This is due to the across-fire VH coherence resulting in a more
heterogeneous ring around the burn extent, exceeding the size of the
fire with a more homogenous enclosed area representing the post-fire

Fig. 12. Sentinel-2 B2 3 x 3 pixel kernel standard deviation for Imizamo Yethu a. pre-fire (2 March 2017), b. immediately post-fire (12 March 2017) and c. five
months post-fire (4 August 2017).

Fig. 13. The 3 x 3 pixel kernel standard deviation for SAR coherence for the 11
March 2017 fire indicating a. pre-fire coherence in VV polarization, b. across-
fire coherence in VV polarization, c. pre-fire coherence in VH polarization and
d. across-fire coherence in VH polarization.

Table 7
Zonal statistics for the Sentinel-1A coherence for the Kosovo fire.

Image date Min Max Mean StDev

2017/12/02 - 2017/12/14 VV 0.188 0.575 0.378 0.129
2017/12/14 - 2017/12/26 VV 0.289 0.490 0.379 0.074
2017/12/02 - 2017/12/14 VH 0.482 0.744 0.615 0.086
2017/12/14 - 2017/12/26 VH 0.140 0.299 0.207 0.053
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rebuild. This is likely due to the small size of the fire in relation to the
course resolution of the data and with respect to the 3 x 3 kernel.

2.2.2. Hot spot analysis
The second approach based on spatial autocorrelation principles is

hot spot analysis. This approach uses the Getis-Ord Gi* statistic [51]
optimized to only consider a pixel's immediate neighbours (including
diagonals) by setting the distant band to 15m. The Getis statistic pro-
vides a measure of local clustering or concentration by evaluating va-
lues within a radius distance of the point of interest as a proportion of
the sum of all values under investigation [52]. Thus, the entire Imizamo
Yethu and Kosovo settlements were used in each case respectively.

Hot spots represent clustering of high values and cold spots re-
present clustering of low values. The distance band can be adjusted to
increase the size of the neighbourhood to be considered in the analysis
however if the value is set too high, the presence of smaller hot spots
may be missed. In ArcGIS, the z-score (standard deviation) and p-value
(the probability that the observed spatial pattern was created by some
random process), are used to create a confidence level bin (Gi_Bin) by
categorizing extreme z-values with low p values as being either hot
spots or cold spots, with a high degree of confidence [53]. So, whilst the
standard deviation approach only considers the immediate neighbours
of a pixel, the Getis-Ord-Gi* considers the local neighbours against
values from a larger area.

The results of Getis-Ord-Gi* (Fig. 16) of B2 reflectance indicate
many hot spots within Imizamo Yethu prior to the fire (Fig. 16 a), and

the vegetation is identified as statistically significant cold spots. Im-
mediately post-fire (Fig. 16 b), the burning/collapse/removal of
dwellings results in the removal of most hot spots within the fire extent
and five months post fire (Fig. 16 c), those areas which have been re-
built, are once again identified as hotspots.

The potential contribution of the interferometric coherence pro-
ducts for the identification of changes related to fire events in informal
settlements were confirmed through the evaluation of the Getis-Ord Gi*
statistics for pre- and across-fire coherence products. For the Imizamo
Yethu area, both hot spots and cold spots are observed in the pre-burn
coherence products (Fig. 17 a and c). However, in the across-burn co-
herence products, most hotspots have disappeared and the burnt area is
characterised by cold spots (Fig. 17 b and d).

The Getis-Ord-Gi* result for B2 reflectance for the Kosovo fire in-
dicate no significant hot spots before the fire (Fig. 18 a) but hot spots
with a high degree of confidence are identified post rebuild (Fig. 18 b).

With respect to the coherence products, no high-confidence hot
spots are present on the pre-burn coherence products (Fig. 19 a and c)
and an increase in higher confidence-level cold spots are observed for
the across-burn coherence products for both VV and VH coherence
products (Fig. 19 b and d respectively).

2.3. Discussion and considerations for future research

These case studies have demonstrated that two known informal
settlement fires at two different scales can be detected using Sentinel-1
and -2 data. However when moving towards detecting unknown fires, a
change detection approach is needed. When the spectral characteristics
of fire affected settlements are considered, although the spectral re-
sponse directly after a fire and following rebuild may differ on a case-
by-case basis, a fire essentially represents an abrupt change in the land
surface. This may not necessarily be measured as absolute reflectance
values in post-fire scenes, as was shown in this paper, but it may rather
be more useful to consider a percentage increase in reflectance from
one scene to the next, relative to general scene brightness. The founding
principle in remote sensing change detection is that (1) a change in land
cover must result in a change in electromagnetic radiation reflected by
the surface and (2) this change must be large when compared with
change in reflectance caused by other factors [54]. The case studies
have shown that the use of new roofs post-fire result in a large change
in Sentinel-2 B2 reflectance and thus even if an image immediately
post-fire is not available, the detection of increased reflectance post-fire
is achievable. Similarly, should an image post-fire and pre-rebuild be
available, a significant decrease in VV and VH coherence can indicate a
fire but if an image is only available post-rebuild, a significant decrease
in VH coherence may be observed. These results suggest the potential to
apply change detection methods to unknown informal settlement fires
detection using both Sentinel 1 and Sentinel 2 data.

Regardless of whether optical or microwave remote sensing tech-
nology is used, the time series change detection techniques should be
looked to for detection of abrupt change. A time series approach re-
cognises that change is not simply the contrast between conditions at

Fig. 14. Sentinel-2 B2 3 x 3 pixel kernel standard deviation for Kosovo a. pre-fire (28 September 2017), and b. post-fire and rebuild (11 January 2018).

Fig. 15. The 3 x 3 pixel kernel standard deviation for SAR coherence for the 21
December Kosovo fire indicating a. pre-fire coherence in VV polarization, b.
across-fire coherence in VV polarization, c. pre-fire coherence in VH polariza-
tion and d. across-fire coherence in VH polarization.
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two points in time but rather a continual process operating at different
temporal scales [55]. The opening of the Landsat archives in 2008 led
to a dramatic rise in the use of Landsat data and has allowed for in-
creased change detection and time series analyses on this higher re-
solution data to be conducted [56]. With the opening of the Landsat
archive, techniques previously applied only to coarse resolution data,
due to the temporal constraints and associated data costs of higher
resolution data, were able to be utilised at Landsat scale and across the
temporal Landsat archive [57] and these techniques may also be ap-
plied to Sentinel data which operates at an even higher temporal and
spatial resolution [55]. group multitemporal change detection ap-
proaches using Landsat data from the literature on the basis of whether
they aim to detect deviations (including disturbances such as fire) or

trends. Those focussing on deviation use a presumed stable condition
gleaned from multitemporal images to detect a change in spectral re-
sponse away from the stable condition and this allows better separation
of true change from background noise [55]. On the other hand those
that seek to detect trends use time-series fitting algorithms to separate
longer duration signals from noise caused by, for example phenology,
sun angle and geometric misregistration [55].

[58,59] developed models to predict the spectral response of a pixel
and deviations from the model predictions are flagged. Since it is the
detection of catastrophic change which is of interest, the statistical
boundary methods [59]; Goodwin and Collett, 2014), are attractive in
that they flag a predefined deviation from the mean or median value of
a predetermined number of previous images in a time series. For

Fig. 16. Getis-Ord-Gi* results for Imizamo Yethu on a) 2 March 2017, b) 12 March 2017 and c) 4 August 2017.

Fig. 17. The Getis-Ord-Gi* results derived from the SAR coherence for the 11 March Imizamo Yethu fire indicating a. pre-fire coherence in VV polarization, b. across-
fire coherence in VV polarization, c. pre-fire coherence in VH polarization and d. across-fire coherence in VH polarization.

L. Gibson, et al. Fire Safety Journal 108 (2019) 102828

12



example, statistical quality control charts to detect statistically sig-
nificant change, proposed by Ref. [59] use quality control chart con-
cepts, in particular Shewhart charts, to detect disturbed pixels which
signal a deviation from data-driven control limits. Assuming that a
pixel's value is normally distributed across the time series, pixel values
which fall outwith predetermined control limits, are flagged and can be
investigated further.

The pixel as unit of analysis is a convenient means of comparing
change between two images and is favoured by some [60], however it
has been criticised [61] for being susceptible to producing false and
noisy change pixels due to within class spectral variability [50,62], and
image registration errors [63], especially when using very high re-
solution imagery. It is therefore generally better suited to coarser

resolutions or more homogenous regions. Thus should the pixel be used
as the unit of analysis in historic informal settlement fire detection, the
heterogeneity of the environment is likely to lead to false positives but
the data will be analysed at the highest possible resolution for a par-
ticular dataset i.e. no generalisation occurs prior to analysis.

A likely challenge to any approach will be errors of omission and
commission. Therefore, it is not only pixel values which should be used
but spatial autocorrelation indicators [49], such as demonstrated in the
case studies, can be used either in the detection of a historic fire or to
help in the reduction of errors of commission (false positive) by having
two approaches confirming a result. Thus, the hypothesis to be tested in
future research is that an abrupt change in pixel values over time
combined with a disruption in spatial autocorrelation is indicative of
real abrupt change whereas abrupt temporal change at pixel level
without a corresponding spatial autocorrelation disruption is indicative
of noise.

Since informal settlements vary significantly between cities, it may
be that a method developed in Cape Town may not be successfully
applied to another city or region. Although the ultimate aim is to have a
method to detect informal settlement fires globally, in the development
of the method, a variety of methodologies may need to be explored. For
example, the differing reflectance of sheet metal used as roofing ma-
terial pre and post fire may be applicable to sub-Saharan Africa where
tin and iron sheeting is commonly used as roofing material [64],
however only when new material is used for roofing post-fire. In a re-
gion where timber or plastic roofing dominates, this approach will not
be suitable and since a change in shape, orientation and size of
dwellings are expected after a fire, interferometric coherence may be a
more suitable approach, particularly for tropical regions where cloud
cover may reduce the number of optical images available for analysis.
Finally, a change in roofing material detected with a multitemporal
change detection method is not necessarily a result of fire and may be

Fig. 18. Getis-Ord-Gi* results for Kosovo on a) 28 September 2017, and b) 11
January 2018.

Fig. 19. The Getis-Ord-Gi* results derived from the SAR coherence for the 21 December Kosovo fire indicating a. pre-fire coherence in VV polarization, b. across-fire
coherence in VV polarization, c. pre-fire coherence in VH polarization and d. across-fire coherence in VH polarization.
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caused by other events such as floods, storms and large-scale evictions.
Local knowledge and ground truthing will always be required to de-
termine the precise cause of the change in the particular informal set-
tlement.

3. Conclusions

The case studies have shown that both optical and SAR remote
sensing technology have potential to detect an informal settlement fire
when the date of the fire is known. In the case of optical imagery,
Sentinel-2 B2 demonstrated an increase in pixel reflectance of 65% post
rebuild in Kosovo with a lower increase in Imizamo Yethu where re-
build was not complete. Similarly the kernel standard deviation of B2
reflectance revealed an increase in post-fire heterogeneity which was
more pronounced in the case of Kosovo (250%) than in Imizamo Yethu
(130%). However the hypothesis that the 3 x 3 pixel standard deviation
kernel would highlight the boundary of the fire was not observed in
either case. For Imizamo Yethu this is likely due to the reblocking and
slow rebuild resulting in more gaps between dwellings than existed
prior to the fire and in the case of Kosovo, the size of the fire with
respect to a 3 x 3 kernel mean that delineation of a boundary using this
method was not achieved. The hotspot analysis on the Sentinel 2 B2
reflectance data identified new hotspots with 99% confidence in the
case of the Kosovo fire and for those areas where rebuild had occurred
in the Imizamo Yethu fire. As a general conclusion, the change in pixel
reflectance of Sentinel 2 B2 data follows the hypothesised roof albedo
response curve (Fig. 4 d) and this response is significant as confirmed
by the clustering of rebuild hotspots in both case studies.

Pertaining to SAR, the evaluation of backscatter characteristics
suggest that there is no consistent increase or decrease in SAR back-
scatter from pre-burn to post-burn conditions for the two case studies.
Although high backscatter is generally associated with urban areas and
vertical structures, low backscatter in urban areas can also be induced
by unfavourable viewing geometry, non-reflective building materials
and vegetation related signal attenuation [43]. Since backscatter is af-
fected by factors such as moisture conditions and surface roughness, the
derivation of a universally applicable algorithm may remain proble-
matic in these areas. Further, the success of an algorithm that exploits
SAR backscatter for the identification of burnt areas will be dependent
on the image acquisition interval compared to the rebuild timeframe. If,
for example, an area is destroyed by a fire, and rapid rebuild takes place
before the next image acquisition, a change in backscatter may not be
perceivable depending on the resolution of the sensor. Therefore, in
cases of rapid rebuild, coherence appears a more reliable approach
when using SAR data. The decrease in VV coherence was 63% in the
case of the Imizamo Yethu fire but was not observed in the Kosovo fire
whereas VH coherence decreased by 56% and 66% in the Imizamo
Yethu and Kosovo fires respectively suggesting the use of VH coherence
may be the more reliable method for detecting rebuild of dwellings and
VV coherence may be useful in detecting the removal of dwellings.
However, inferences from just two case studies should be treated with
caution and tests on other known fires would be required to confirm
this result.

The 3 x 3 pixel standard deviation applied to the VV coherence data
detected the edge of the burn extent in some locations for Imizamo
Yethu however when applied to VH coherence, the edge was not ob-
served. The hot spot analysis revealed cold spots present post fire when
applied to VV coherence data and to a lesser spatial extent, cold spots
were observed when applied to VH coherence. For Kosovo, the 3 x 3
pixel standard deviation revealed a decrease in VV coherence hetero-
geneity and the presence of a ring structure formed in the 3 x 3 pixel
standard deviation of VH coherence was not captured in the statistics as
its boundary exceeded that of the burn extent. Cold spots were observed
for both coherence products in Kosovo. It should be noted that signal
decorrelation between two scenes, leading to low coherence values, can
be caused by any change in the surface, and low coherence can also be

observed in areas unaffected by fire. Thus, as with the optical approach,
the detection of change through the interferometric coherence ap-
proach is not indicative of the cause of the change. The large scale
removal of houses may also be induced by causes other than fire, in-
cluding, for example, floods. Therefore, careful interpretation of the
results in conjunction with ancillary data, such as local knowledge,
weather data and others, would be needed to verify the results and
draw accurate conclusions.

Urbanisation is a global phenomenon with projections estimating a
further 2.5 billion people will be added to the global urban population
by 2050 with nearly 90% of this increase concentrated in Africa and
Asia [65]. Since informal settlements grow at a faster rate than any
other urban development [7], it is inevitable that this increase in global
urbanisation will result in increased numbers of people living in in-
formal settlements. Fires in informal settlements pose a challenge to
sustainable development goals and have devastating consequences for
those inhabitants who experience them. It is apparent that intervention
strategies should be put in place to help in fire prevention but for this to
be effective, reliable data on fire incidence and impact is needed but is
rarely available in low- and middle-income countries [13]. The synoptic
nature of satellite remote sensing make it an attractive proposition for
fire detection in informal settlements and the development of an ac-
curate fire identification method is needed for this particular urban
environment in order to build a database of the frequency, extent and
impact of historic and ongoing fire.

This paper has formulated the problem of informal settlement fires
and has demonstrated that Sentinel-1 and Sentinel-2 data can detect
known informal settlement fires in two different settlements in Cape
Town representing different settlement and fire scenarios. Both a pixel
based approach and approaches which consider a pixel's neighbour
were shown to record differences in the post-fire and post-rebuild
images when compared with pre-fire images. Future research should
focus on incorporating these techniques into the analysis of dense time
series data in order to detect unknown historic informal settlement fires
in Cape Town.
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