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Abstract 

 

The varying proportions of tree and herbaceous cover in the grassland and savanna biomes of 

Southern Africa determine their capacity to provide ecosystem services. The asynchronous 

phenologies e.g. annual NDVI profiles of grasses and trees in these semi-arid landscapes 

provide an opportunity to estimate percentage tree-cover by determining the period of 

maximum contrast between grasses and trees. First, a 16-day NDVI time series was generated 

from MODIS NDVI data, i.e. MOD13A2 16-day NDVI composite data. Secondly, 

percentage tree-cover data for 100 sample polygons (4 x 4) pixels for areas that have not 

undergone change in tree cover between 2001 and 2018 were derived using high resolution 

Google Earth imagery. Next, a time series consisting of the coefficients of determination (R
2
) 

for the NDVI/tree-cover linear regression were computed for the 100 polygons. Lastly, a 

threshold R
2
 > 0.5 was used to determine the optimal period of the year for mapping tree-

cover. It emerged that the narrow period from Julian day 161 to 177 (June 10 to 26) was the 

most consistent period with R
2 

> 0.5
 
in the region. 18 tree-cover maps (2001 to 2018) were 

generated using linear regression model coefficients derived from Julian day 161 for each 

year. Kendall correlation coefficient (tau) was used to determine areas of significant (p < 0.05 

and p < 0.01) increasing or decreasing trend in tree-cover. Areas (polygons) that showed 

increasing tree-cover appeared to be more widespread in the trend map as compared to areas 

of decreasing tree-cover. An accuracy assessment of the map of increasing tree-cover was 

conducted using Google Earth high resolution images. Out of 330 and 200 mapped polygons 

verified using p < 0.05 and 0.01 thresholds, respectively, 180 (54% accuracy) and 132 (65% 

accuracy) showed evidence of tree recruitment.  Farm abandonment appeared to have been 

the most important factor contributing to increasing tree-cover in the region.   

 

Keywords: Tree-cover change; MODIS; NDVI time series  

 

Research highlights 

 

- June 10-26 is the best time to assess tree-cover in South African savanna from NDVI 

- Tree-cover maps derived from Julian day 161 were used to assess woody 

encroachment 

- Farm abandonment is contributing to woody encroachment in South Africa 
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1. Introduction 

 

Grassland and savanna biomes in South Africa cover about 60% of the land Wessels et al. 

2011. The varying proportions of tree and herbaceous cover in these biomes determine their 

ability to provide ecosystem services including grazing and browsing resources, food, 

medicine and habitats to important wild fauna (Ramoelo et al. 2012; Scholes et al. 1997). The 

variability of grass and trees-cover is controlled by a number of environmental and 

anthropogenic factors. For example, increasing levels of anthropogenic CO2 are expected to 

favour tree growth (Kgope et al. 2010; Buitenwerf et al. 2012). The consequence of this could 

be the expansion of woodlands into grass dominated systems, a phenomenon known as bush 

or woody encroachment. Human activities including deforestation, overgrazing, fencing-off 

of land for wildlife conservation, clearing of land for agriculture or farm abandonment are 

equally changing the dynamics of trees and grasses or forest cover in the region (Mograbi et 

al. 2017). Skowno et al. (2017) have reported a net increase in the extent of woodlands in 

South Africa between 1990 and 2013 at the expense of grasslands, most of this occurring in 

the savanna biome. The increasing tree cover in the South African savanna threatens the 

grazing potential of this system by suppressing the productivity of herbaceous plant species 

and reducing land accessibility by livestock and wildlife (Buitenwerf et al. 2012). Lesoli et al. 

(2013) have argued that performance measures, monitoring and adaptive management are 

necessary to control bush encroachment.  

 

Remote sensing is now a popular means of establishing long-term spatio-temporal patterns 

of forest cover at the regional to continental scale (Defries et al. 2000; Shimada et al. 2014). 

However, there is no remote sensing system for periodic monitoring of bush encroachment in 

South Africa and in Southern Africa as a whole. To this point, the study by Skowno et al. 

(2017) is the most comprehensive mapping of bush encroachment in South Africa. The study 

was however limited in temporal resolution as it made use of land cover maps for only two 

years in a 23 years period; land-cover maps of 1990 and 2013. Moreover, the land-cover 

maps were obtained from another source; Geo Terra Image Pty Ltd. Skowno et al. (2017) 

considered woodlands as areas having a tree-cover percentage of greater than 20% because of 

poor classification of sparse woodlands in the land-cover maps. It should be noted the above 

threshold of woodlands is not consistent with the definition of forest by the Food and 

Agricultural Organisation’s FAO, which defines forest as an area of tree-cover greater than 

10% and of more than 0.5 ha.  

 

Several other studies have reported poor accuracies of woodland classification in Southern 

Africa (Sedano et al. 2005, Gong 2009, Fritz et al. 2010) in existing global tree-cover maps 

(Hansen et al. 2000, Loveland et al. 2000; Friedl et al. 2002, Tateishi 2011). For example, 

Sedano et al. (2005) established errors of greater than 50% in the Miombo woodlands in 

Mozambique for the Moderate Resolution Imaging spectrometer MODIS - MOD12Q1 land- 

cover product and concluded that global land-cover products lack the detail needed for 

resource management at the national and provincial level. In the first ever 30 m resolution 

global land-cover map produced from Landsat TM data by Gong et al. (2013), the lowest 

classification accuracy for woodlands was observed in the Southern half of Africa. Sexton et 

al. (2013) observed a systematic bias in tree-cover prediction, characterised by over 

prediction in sparsely cover areas and under-prediction in dense tree-cover area after 

validation of the Vegetation Continuous Fields Tree-Cover data in Southern Africa. In part, 

the low classification accuracy of open woodlands in Southern African in the global forest 

maps could be attributed to classification errors resulting from high within-class variability 

(Landgrebe, 1997; Cho et al. 2010) because of the wide definition of forest (10 to 100% tree 
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cover) according to the FAO’s definition. . The problem of high within-forest class variation  

can be mitigated by initially considering several classes of woodlands from sparse to dense 

which could be later merged into one class as in Skowno et al. (2017) and as recommended 

by Cho et al. (2010).  High classification errors for the open woodland class could also occur 

if the training data used for the classification is biased towards dense forest areas. Another 

drawback of determining forest or woody-cover change through the land-cover classification 

approach is that it is generally time consuming and therefore not practical for assessing 

contiguous trends e.g. yearly forest-cover change. 

 

An alternative method to the ‘land-cover classification’ approach for assessing forest-cover 

change is the continuous mapping approach. Continuous mapping of percentage tree-cover 

usually involves the use of parametric or non-parametric regression to relate tree-cover 

percentage with predictor variables derived from remote sensing data (Kobayashi et al. 2016). 

The tree-cover map can then be categorised into the desired number of forest classes.  

Kobayashi et al. (2016) used a regression tree algorithm with MODIS data to produce a 

global tree-cover percentage map and reported improved accuracies when compared to two 

existing global tree-cover datasets. The most commonly used remote sensing predictor is the 

Normalised Difference Vegetation Index (NDVI) (Scanlon et al. 2002; Yang et al. 2012).  

There are however a number of challenges involved with the use of NDVI for tree-cover 

assessment; (i) NDVI varies across the growing season from the start to the end of the season, 

rendering the use of images for different periods impractical in tree-cover assessment; (ii) 

cloud cover presents a huge challenge, (iii) grass and soil background reflectance affects the 

reflected signal from trees and (iv) NDVI saturates at high canopy cover. The most viable 

alternative to improving tree cover assessment at the broad landscape is the use of Radio 

Detector and Ranging (RADAR) sensors as they make use of microwaves which penetrate 

clouds (Naidoo et al. 2016) and are sensitive to the structure of the vegetation. However, the 

lack of long-term time series of freely available RADAR data has limited their application in 

establishing contiguous long-term trends in tree-cover. Light Detection and Ranging LiDAR 

data provides the best opportunity for accurate mapping of tree-cover (Naidoo et al. 2016). 

However, the paucity of spaceborne LiDAR data has stymied its application for regional 

forest or tree-cover assessment.   

 

Gong et al. (2013) suggested that improvement of land cover assessment from frequently 

available image would depend on the selection of data from suitable seasons and atmospheric 

condition, and on the development of new algorithms. In a study of land surface phenology 

(LSP) in the grassland and savanna biomes of South Africa, Cho et al. (2017) established 

differing patterns of LSP for grass and tree dominated areas. For example, tree-dominated 

areas showed a longer growing season and largely determine the period corresponding to the 

end of the growing season. The asynchronous phenologies of grasses and trees in the semi-

arid landscapes of Southern Africa provide an opportunity to determine the optimal date or 

period for tree-cover assessment. Gaughan et al. (2013) recognised the importance of 

phenology in mapping tree-cover in Southern African savanna and derived a methodology 

that made use of NDVI green-up phenological metrics to estimate tree-cover.  Cho et al. 

(2017) however found out that across a much broader savanna landscape, the end of growing 

season metrics showed a higher relationship with tree-cover than green-up metrics. 

Furthermore, Gaughan et al. (2013) argued that the tree-grass contrasts in Southern African 

savannas are highest in the dry season July-October when trees retain green biomass but 

grasses have senesced. The above assertion may not be true across the semi-arid savannas 

because many tree species in these systems are deciduous and are without leaves during the 

months of July-October. The current study is premised on the assumption that the optimal 
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period for tree-cover estimation in the semi-arid savannas in Southern Africa could occur 

after the grasses have senesced and before the onset of leaf shedding by the trees. The exact 

period has not been determined. Therefore, the aim of this study was to determine the optimal 

period of the year for estimating tree-cover from MODIS NDVI time series and hence to 

establish a rapid procedure for assessing long-term changes in tree-cover in the grassland and 

savanna biomes of South Africa.  

 

2. Material and methods 

 

2.1. Study area 

 

The study area consists of MODIS tile h20v11, clipped to South African boundaries (Fig.1). 

The region falls between latitude 22
o
 - 29

o
S and longitude 22

o
 - 32

o
E. Two main biomes 

dominate this MODIS tile, namely the savanna and grassland (Mucina, et al. 2006). The 

MOD13A2 16-day composite NDVI at 250 m resolution data from 1 Jan 2001 to 10 June 

2018 were downloaded from the USGS explorer website.  

 

 

Figure 1 here 

 

 

2.2.Tree-cover percentage training data 

 

The method to estimate tree-cover percentage was described in Cho et al. (2017). 150 random 

polygons 4 by 4 pixels or 1000 m by 1000 m were created on the MODIS image scene, 

converted to keyhole markup language (kml) file format and overlaid on Google Earth high 

resolution image in the Google Earth software (Google Inc). Only polygons that have not 

undergone changes in tree-cover from 2001 to recent times (generally 2016 – 2018) were 

retained for the study. This was achieved by examining historical images of each polygon. 

Plantation forest, crop fields and settlements were not included. Furthermore, only images 

acquired during the summer months (November to April) were used because tree canopy 

cover in the savanna is known to vary with season. The first 100 polygons that were assessed 

for tree-cover were used in the study. Three-band (red-green-blue) raster image scenes JPEG 

format of the selected polygons were saved in Google Earth and later imported into ENVI 

software (ITT Visual information solutions), where they were classified into two classes (tree 

and non-tree) using minimum distance supervised classification. The tree-cover percentage 

per polygon was computed as a ratio of the area of the tree-class to the total area of the 

polygon. 

 

2.3. NDVI vs tree-cover relationship and determining the best dates for tree-cover 

assessment 

 

The MOD13A2 NDVI time series data was smoothened using a Savitzky-Golay (Savitzky et 

al. 1964) smoothing filter (using a 3 window filter and a 5
th

 order polynomial function). 

Subsequently, a time series of the coefficients of determination R
2
 between NDVI and tree-

cover percentage was established for each 16-day composite MODIS NDVI data. To 

determine the best period for tree-cover assessment, we first ranked the R
2
 from the highest to 

the lowest value. Secondly, only dates corresponding to R
2
 > 0.5 were considered for further 

analysis. The average, Median and mode dates with R
2
 > 0.5 were then determined. The 

statistical analysis revealed Julian days 161 June 10 and 177 June 26 as the most frequent (the 
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mode) date and median dates with high R
2
 between the NDVI and tree-cover. A tree-cover 

prediction model for each year was established using a linear regression analysis between 

NDVI of Julian day 161 and tree-cover percentage. Bootstrapped regression analyses with 30 

replicates were conducted to determine the linear regression model coefficients, calibration 

model R
2
, and standard errors (SE) of calibration and prediction. That is, the bootstrapping 

process involved random sampling with replacement of 2/3 and 1/3 of the data for the 

calibration and validation models, respectively. 

 

2.4.Trend analysis of tree-cover percentage 2001 – 2018 

 

The non-parametric Kendall rank statistical test was used to assess the significance of any 

increasing or decreasing trend in tree cover-over percentage in the 18 year period for each 

pixel. The Kendall rank correlation coefficient or tau ranges from -1 and 1, with values 

greater and less than zero indicating increasing and decreasing trend, respectively.  An IDL 

Interactive Data Language script was written to compute the tau and associated p-values for 

each pixel in the stack of 18 tree-cover maps. In order to delineate pixels that showed 

increasing or decreasing tree-cover, we explored two scenarios of p-values i.e. significance 

levels; ‘p < 0.05’ and ‘p < 0.01’. The delineated pixels generally occurred in clusters. They 

were then vectorised as polygons in ENVI, saved as shapefiles and later converted into the 

kml file format.  

 

3.5. Accuracy assessment of tree-cover trends 

 

The accuracy of predicted trends in tree-cover was assessed using Google Earth high 

resolution images. A significant trend in increasing tree-cover may result from two kinds of 

processes, namely tree recruitment and expanding canopies of existing trees (i.e. increasing 

leaf area index). While a significant trend of decreasing tree-cover could occur from gradual 

thinning of the woodland from activities such as wood harvesting, tree felling by elephant or 

bush fires.  We only thoroughly assessed the accuracy of polygons mapped as showing 

significant increasing trend in tree-cover because this was a more widespread process as 

compared to the decreasing tree-cover trend. A 100km resolution grid was manually created 

on the Google Earth scene of the study area to guide the accuracy assessment process (Fig. 

2).  Carefully, moving from one grid cell to the other, we looked for evidence of increasing 

tree-cover amongst the polygons using the historical sliding bar of Google Earth. The 

accuracy assessment was limited to the identification of visible signs of tree recruitment in 

the mapped polygons. It was difficult to assess increasing tree-cover which may result from 

increasing tree LAI or densification of the tree canopy. Furthermore, we avoided very small 

polygons and where high resolution historical images were not available. The numbers one 

(1) and Zero (0) were respectively assigned to polygons that showed evidence of tree 

recruitment and no evidence of tree recruitment. The prediction accuracy was assessed as a 

ratio of the total number of ones to the total number of polygons assessed.  

 

Figure 2 here  

 

3. Results  

 

3.1. Determining the optimal period of the year for tree-cover assessment 

 

The NDVI time series and the resulting of NDVI/tree-cover regression R
2
s showed 

asynchronous profiles or patterns (Fig. 3). The two profiles peak at different times of the 
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year. The NDVI profile generally lags behind the R
2
 profile by about three months. For 

example, the NDVI growing season curve (July to June) generally peaks in the month of 

February, while the R
2
 curve peaks in early June. Statistical analysis of dates with the R

2
 > 

0.5 for each year revealed Julian day 161 or June 10 as the most frequent period i.e. the mode 

date with R
2
 > 0.5 between NDVI and tree-cover percentage.  Julian day 177 or June 26 was 

identified as the median date. We therefore concluded that the narrow period window from 

June 10 to 26 of only 16 days is the optimal period for assessing tree-cover percentage in the 

semi-arid grassland and savanna biomes of South Africa. 

 

Figure 3 here 

 

Table 1 here 

Figure 4 here 

3.2.Mapping tree-cover percentage for each year 

 

Before we proceeded to map tree-cover for each year, we first explored whether a 

multivariate regression approach such as Random Forest (RF) involving all seven bands of 

MODIS visible to SWIR bands for Julian day 161 would improve on the NDVI/tree-cover 

linear regression results. The MOD15A images (500 m resolution) were used in this case. 

The accuracies of the RF regression models were rather lower than those of the linear 

regression involving NDVI. For example, the 2010 data yielded a calibration model standard 

error SE of 17.96±0.92 (±95% CI) as compared to SE = 17.02±0.37 (±95% CI) for the 

NDVI/tree-cover linear regression model, and a validation SE = 20.86±1.25 (±95% CI) 

compared to SE = 17.45±0.59 (±95% CI) for the NDVI model. The lower accuracy of the 

MODIS 500m image might be due to the coarser resolution of the image. Only the full results 

of the NDVI/tree-cover linear regression models are represented in Table 1. We therefore 

used the bootstrapped linear regression model coefficients involving NDVI shown in Table 1 

to produce tree-cover maps for all 18 years. The mean R
2
 for the calibration models was 

0.54±0.02. As could be observed from the 18 scatter plots between the observed and 

predicted tree-cover data Fig.4, there were systematic biases in the estimation of tree-cover, 

whereby low values were predicted high and high values predicted low. In general, tree-cover 

values below 10% were generally predicted with a positive bias by about 10 order of 

magnitude i.e. SE of +10%. This would imply that predicted tree-cover values of below 20% 

would generally be considered as areas of sparse woody cover i.e. below 10% of actual tree-

cover or non-forest according to the FAO definition of forest.    

 

Figure 5 here 

 

3.2. Assessing tree-cover change 2001-2018 

 

Using a ‘p < 0.05’ significance level for the Kendall correlation (Fig. 5), we found evidence 

of tree recruitment in 180 polygons out of a total of 330 polygons assessed, corresponding to 

an accuracy of 54%. While for the ‘p < 0.01’ scenario, we found evidence of tree recruitment 

in 132 out of 200 polygons assessed accuracy = 65%. This improved accuracy using the ‘p < 

0.01’ threshold was not achieved without some consequences, as 48 polygons that showed 

evidence of tree recruitment under the ‘p <0.05’ scenario were omitted. Most of the tree 

recruitment is occurring in the province of Limpopo and could be largely attributed to farm 

abandonment as observed from the Google Earth high resolution scenes e.g. Fig.6 
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Figure 6 here 

 

Significant decreasing tree-cover trends were observed in some large polygons in the Kruger 

National Park. The time series of the predicted tree-cover for this area Fig. 7 showed some 

strong irregular patterns though with an overall significant negative trend in tree cover. We 

further investigated the area using Landsat 5 TM images and observed that the sharp decrease 

in tree-cover observed in 2009 for example might have been caused by bush fire in the 

preceding year 2008 as a burnt scar can be observed in the 2008 image Fig.8. A similar 

phenomenon was observed between 2004 and 2005.  

 

 

Figure 7 here 

 

Figure 8 here 

It would be noted that it was worthwhile to convert the NDVI maps of Julian day 161 to tree-

cover maps in order to assess increasing or decreasing trends in tree-cover for the 18 years 

period because similar analysis with NDVI yielded poor results. The NDVI trend analysis 

tends to show general trends in vegetation cover as significant trends could be observed in the 

grassland biome that are not related to increasing or decreasing tree-cover Fig. 9. 

 

Figure 9 here 

 

4. Discussion 

Understanding the spatio-temporal dynamics of tree-cover in the savannas of Africa is 

critical for managing these ecosystems to sustain the provision of several key ecosystem 

services. The semi-arid savannas in Southern Africa are highly heterogeneous in space and 

time and challenging to map (Gaughan et al. 2013). In this study, we have explored the 

seasonal variability of vegetation green density using NDVI time series data with the aim of 

identifying the optimal period of the year for tree-cover estimation in the semi-arid savannas 

of Southern Africa. The assumption of the existence of an optimal period for tree cover 

assessment was rooted in the fact that several studies have shown that trees and grasses in 

Southern African savannas show asynchronous phenological profiles from the start to the end 

of the growing season (Archibald and Scholes, 2007, Chidumayo, 2001, Cho et al. 2017). For 

example, Cho et al. (2017) showed that the day corresponding to the end of the growing 

season in these systems explained 40% of the variance in tree-cover. It was therefore logical 

to assume that a period exists when the green contrast between the grasses and trees is highest 

and that such a period would be optimal for tree-cover assessment using NDVI, which is a 

measure of green density.  

 

An optimal period exists for estimating tree-cover percentage in the semi-arid grassland and 

savanna biomes of South Africa from NDVI and the period is actually a narrow window from 

June 10 to 26 of just 16 days. This period is a month later than the period identified as the end 

of the growing season (May 9) for tree dominated areas in the same study area (Cho et al. 

2017). June marks the beginning of leaf shedding by most deciduous and semi-deciduous 

trees and by July most deciduous trees are without leaves (Janecke and Smit, 2011). The 
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proportion of deciduous trees in a pixel might have an influence on the model accuracy.  

Studies of tree-cover assessment in South Africa have hardly taken note of the narrow 

window of dates within which this important vegetation parameter can be accurately assessed 

using commonly available multispectral images. The good news is that the rarity of cloud 

cover in the month of June in the summer rainfall biomes of Southern African makes it 

largely possible to acquire cloud-free images during this narrow window of opportunity to 

assess tree-cover. However, irrigated fields and wetland areas could be wrongly predicted as 

having high tree-cover in June.   

 

Using an optimal period to estimate tree-cover from NDVI did not mitigate some of the 

inherent shortcoming of the index in the Southern African savannas generally characterised 

by low tree cover. Only about have of the variance in tree-cover was explained by NDVI for 

all the years mean R
2
 = 0.54. The linear regression models still performed poorly in 

estimating low tree-cover and saturated at high canopy cover. Even the use of a non-

parametric multi-band regression algorithm, Random Forest in our case did not improve on 

the NDVI results. Naidoo et al. (2016) observed similar accuracies for estimating tree-cover 

in autumn in the South African Savanna using Landsat TM imagery e.g. R
2
s of 0.34, 0.46, 

0.50 and 0.65 for 23/05-2007, 07/04/2008, 12/05/2009 and 29/04/2009, respectively. Yang et 

al. (2012) obtained an R
2
 = 0.6 for estimating tree cover in the semi-arid woodlands of 

Navada, USA using Landsat TM data. The availability of Sentinel-2,  a new high resolution 

and freely available multispectral sensor with bands in the visible to short-wave infrared and 

more importantly in red-edge region offer promise for resolving the saturation problem of 

NDVI (Mutanga and Skidmore 2004; Cho et al. 2009) and should be investigated. 

Furthermore, the availability of Sentinel-1 data will address the lack of time series of freely 

available RADAR data. 

 

Google Earth high resolution images were very instrumental in this study, both for obtaining 

training data and in the validation of tree recruitment. There is however no complete wall-to-

wall coverage of high resolution images for each year, which hindered the accuracy 

assessment of the tree-cover change maps.  Appropriate high resolution images for every year 

could also be instrumental in assessing increase in tree-cover resulting from expansion of 

canopy cover or decreasing tree cover resulting from gradual thinning of the forest. We 

observed that tree recruitment is common in the province of Limpopo because of farm 

abandonment. Blair et al. (2018) have reported widespread cropland abandonment in the 

region between 1950 and 2010. They reported that farmers in the region attributed farm 

abandonment to rainfall variability and droughts. Increasing bush density in the savanna 

reduces land accessibility by wildlife and livestock and might also negatively affect the 

rangeland carrying capacity because of increased competition between trees and herbaceous 

vegetation for light, water and nutrients. On the other hand, increasing tree cover could 

increase the landscape’s resilience to the impacts of droughts.  

 

 

5. Conclusions 

 

The most important conclusions from the study are: 

 

- The narrow window between June 10 and 26 is the optimal period for assessing tree-

cover percentage in the semi-arid grassland and savanna biomes of South Africa from 

optical remote sensing data. 
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- Farm abandonment appears to have been the most important factor contributing to 

increasing tree-cover change in the savanna landscape in South Africa. 

 

This study shows that timing of image acquisition in the semi-arid biome of South Africa is 

critical for accurate assessment of tree-cover as only a narrow window of opportunity exist to 

achieve accurate assessment. Furthermore, the method proposed in this study can be 

appropriate for long-term assessment of tree-cover trends as opposed to short-term 

assessment given the modest accuracy recorded with the use of NDVI. The study needs to be 

extended to cover all of the Southern Africa in order to ascertain the optimal dates for tree-

cover assessment in entire semi-arid biomes of Southern Africa.  
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Table 1. Bootstrapped 30 bootstrap samples linear regression model coefficients and accuracies for the 

regression between NDVI and tree cover percentage for 100 plots.  
Year linear model: 

y=a+bx coefficients 

Calibration model 

standard error  

Calibration model 

R
2
 

Model validation 30 

bootstrap samples 

a b Mean SE ±95% CI Mean R
2
 ±95% CI Mean SE ±95% CI 

2001 -39.7583 0.0176 16.44 0.15 0.58 0.01 17.23 0.44 

2002 -34.3645 0.0192 16.43 0.21 0.58 0.01 16.08 0.63 

2003 -30.1024 0.0179 18.09 0.24 0.49 0.01 18.55 0.65 

2004 -28.6479 0.0148 17.20 0.20 0.53 0.01 17.52 0.54 

2005 -30.2968 0.0177 18.60 0.27 0.45 0.02 19.07 0.76 

2006 -37.0047 0.0173 16.89 0.21 0.55 0.01 16.62 0.61 

2007 -31.2410 0.0183 16.85 0.14 0.55 0.01 17.51 0.40 

2008 -29.9520 0.0166 18.80 0.20 0.45 0.01 18.90 0.57 

2009 -36.5464 0.0177 16.63 0.15 0.56 0.01 17.42 0.45 

2010 -42.2027 0.0172 15.70 0.20 0.61 0.01 15.51 0.57 

2011 -35.4115 0.0170 17.28 0.25 0.51 0.01 18.68 0.66 

2012 -39.0064 0.0209 16.92 0.17 0.55 0.01 16.82 0.49 

2013 -29.2562 0.0159 16.33 0.16 0.58 0.01 16.66 0.44 

2014 -37.3127 0.0178 16.39 0.21 0.56 0.01 16.28 0.60 

2015 -33.2049 0.0182 17.17 0.20 0.54 0.01 17.53 0.61 

2016 -35.7633 0.0174 17.25 0.25 0.53 0.01 17.35 0.71 

2017 -31.7576 0.0158 17.54 0.25 0.50 0.01 18.05 0.71 

2018 -31.3059 0.0144 17.08 0.25 0.53 0.02 18.44 0.72 

Average -34.0631 0.0173 17.09 0.21 0.54 0.012 17.45 0.59 

±95% CI 1.8551 0.0007 0.37 0.02 0.02 0.00 0.47 0.05 
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Fig. 1. Fig.1. Biomes of South Africa A Mucina and Rutherford, 2006 and 100 random plots 

selected to analyse the relationship between NDVI and percentage tree cover B. 
 

 
Fig. 2. Validation of increasing tree cover map using Google Earth imagery. 1green = 

evidence of increasing tree-cover and 0 yellow = no evidence of change in tree cover. White 

polygons denote areas with a significant p < 0.05 increasing trend in tree-cover. 
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Fig.3. Coefficient of determination R-sq between NDVI and tree cover overlaid on 16-day 

composite NDVI time series. 

 
Fig. 4. Scatter plot between observed and predicted tree-cover for the various years, 2001-

2018. 
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Fig.5. Trend analysis of tree-cover change 2001 – 2018 using Kendall correlation analysis. A 

= Kendall Tau coefficient, B = p-values and C = threshold of p < 0.05 highlighting the areas 

of significant increasing or decreasing tree-cover percentage.  

 

 
Fig. 6. Google Earth image scene showing increased in tree-cover in agricultural landscapes. 
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Figure 7. Tree-cover profiles of an area in the Kruger National Park that showed significant 

decreasing trend in tree-cover between 2001 and 2018. The area was burnt in the winter of 

2008.  
 

 
Figure 8. Landsat TM5images 2007, 2008, 2009 and 2010 of an area in the Kruger National 

Park that showed significant decreasing trend in tree-cover between 2001 and 2018. A fire 

scar can be observed in 2008.  
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Figure 9. Areas of significant p < 0.05 increasing or decreasing trend in NDVI derived from 

Kendall correlation analysis.  

 


