

^{work} Optimal control surface ^{www} mixing of an unconventional UAV

Elizna Miles CSIR/University of Pretoria

University of Pretoria

Dr BA Broughton Incomar Aerospace and Defence Systems

Agenda

- Motivation
- Approach
 - Flight Modelling
 - Mixing function
 - Optimisation process
- Results
- Conclusion

Advantages of unconventional aircraft and unconventional control setup:

- Less weight
- Structural strength
- Reduction in wingspan
- Aerodynamic efficiency
- Less induced and parasitic drag

Aileron Rudder Elevator

Conventional control setup

Roll - Aileron Pitch - Elevator Yaw - Rudder

Unconventional control setup

Roll Pitch Yaw

8 multi-functional control surfaces

Autopilot is responsible for control assignment

Mixing function responsible for control assignment

- Effect conventional roll, pitch and yaw control, utilising 8 control surfaces optimally.
- Considerations:
 - Trim
 - Good response/authority in all three axis
 - Decoupled initial response where possible (e.g. minimise adverse yaw, etc.)
 - Prevent saturation of control surfaces
 - Good flying qualities through entire operational flight envelope

- Additional considerations:
 - Open loop control allocation for flight testing and emergency backup

- Minimal scheduling, and only if required

(Scheduling as a function or airspeed)

3 Inputs: Pitch, Roll, Yaw > 8 Control surface deflections

3 Inputs: Pitch, Roll, Yaw > 8 Control surface deflections

Flight Dynamics Modelling

Flight Dynamics Modelling

- Main features:
 - Aerodynamics
 - Static coefficients from wind tunnel data (MDOE)
 - Fully nonlinear, includes coupling and induced effects
 - Dynamic derivatives from vortex lattice and empirical methods
 - Propulsion
 - Custom electric motor
 - Propeller model from measured data
 - Model includes gyroscopic and torque effects

Mixing function

Select second order function:

$$\{\boldsymbol{\delta}\} = [A] \begin{pmatrix} \boldsymbol{r_p}^2 \\ \boldsymbol{r_r}^2 \\ \boldsymbol{r_y}^2 \end{pmatrix} + [B] \begin{pmatrix} \boldsymbol{r_p} \\ \boldsymbol{r_r} \\ \boldsymbol{r_y} \end{pmatrix} + \{Trim\}$$

- Actual control surface deflection in [degrees]: $\delta = \{\delta_1, \delta_2, \delta_3, \delta_4, \delta_5, \delta_6, \delta_7, \delta_8\}^T$
- Commands:

 $r_p = pitch \ command \ -1 \rightarrow 1 \ (down \dots up)$ $r_r = roll \ command \ -1 \rightarrow 1 \ (left \dots right)$

 $r_y = yaw \ command \ -1 \rightarrow 1 \ (nose \ left \ ... \ nose \ right)$

• Trim deflections in [degrees]: $Trim = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8\}^T$

Mixing function

- Characteristics:
 - Constant trim bias vector: can be solved independently from control allocation problem
 - Linear and quadratic terms allow for differential control (e.g. more up on left than down on right and vice-versa) – helps eliminate adverse yaw, etc.

Solution strategy

• Design problem:

Phase 1

Solve trim bias vector at nominal flight condition

Phase 2

 Determine [A] and [B] coefficient matrices while satisfying original control and handling qualities requirements

Phase 1

$$\{\delta\} = [A] \begin{cases} r_p^2 \\ r_r^2 \\ r_y^2 \end{cases} + [B] \begin{cases} r_p \\ r_r \\ r_y \end{pmatrix} + \{Trim\}$$
Phase 2

our future through science

17

Optimisation phase 1: Trim

• Objective function: Minimise individual control deflections

$$f = \sum_{i=1}^{8} [\delta_i^2]$$

• Utilise equality constraints to enforce trim conditions:

$$h_1 = \dot{p} = 0$$

$$h_2 = \dot{q} = 0$$

$$h_3 = \dot{r} = 0$$

$$h_4 = \dot{\alpha} = 0$$

$$h_5 = \dot{\beta} = 0$$

$$h_6 = \dot{V}_t = 0$$

 Can be implemented using any suitable optimiser (e.g. Sequential Quadratic Programming)

- Objective function: Maximise three rotational responses to individual pitch, roll and yaw inputs
- Equality constraints: Minimise coupling between pitch, roll and yaw responses
- Inequality constraints: Prevent control surface saturation for all likely combined inputs (e.g. combined roll and pitch inputs)

- Objective function maximise:
 - Roll acceleration to a maximum roll input
 - Steady-state sideslip achieved for a maximum yaw input (more consistent results as compared to maximising yaw acceleration)
 - Pitch acceleration to a pitch input
- $*r_p = pitch command$ $*r_r = roll command$ $*r_{v} = yaw \ command$

$$f = - (w_1 \dot{p}_{r_p=0;r_r=1;r_y=0} + w_2 \beta_{r_p=0;r_r=0;r_y=1} + w_3 \dot{q}_{r_p=1;r_r=0;r_y=0} - w_4 \dot{q}_{r_p=-1;r_r=0;r_y=0})$$

• Equality constraints - decouple initial response to individual control inputs:

Full roll command $(r_r = 1)$: $h_1 = \dot{q_0}_{r_p=0;r_r=1;r_y=0}$ $h_2 = \beta_0_{r_p=0;r_r=1;r_y=0}$ Full yaw command $(r_y = 1)$: $h_3 = \dot{q_0}_{r_p=0;r_r=0;r_y=1}$

$$h_4 = \dot{p}_{0_{r_p}=0;r_r=0;r_y=1}$$

- Inequality constraints prevent control saturation for all realistic combined inputs
- Investigated all possible combined inputs, and identified combined inputs applicable to typical UAV flight
- Prevent unnecessary over-constraining:
 - Only applied constraint functions to realistic input combinations

Possible control input combinations relevant to UAV flight

Pitch	Roll	Yaw	Reqd?	Comment	Pitch	Roll	Yaw	Reqd?	Comment
-1	0	-1	x	Not a realistic input	0	1	0	\checkmark	Right roll command
-1	0	0	\checkmark	Full down elevator	0	1	1	\checkmark	Roll + yaw
-1	0	1	x	Not a realistic input	0	-1	-1	\checkmark	Roll + yaw
_1	1	_1	×	Not a realistic input	0	-1	0	\checkmark	Left roll command
	-	-		Not a redistic input	0	-1	1	\checkmark	Steady-heading sideslip
-1	1	0	×	Not a realistic input	1	0	-1	\checkmark	Pos. pitch + yaw
-1	1	1	x	Not a realistic input	1	0	0	\checkmark	Full positive pitch
-1	-1	-1	x	Not a realistic input	1	0	1	\checkmark	Pos. pitch + yaw
-1	-1	0	x	Not a realistic input	1	1	-1	×	Not a realistic input
	4	4	1.		1	1	0	\checkmark	Pitch + roll
-1	-1	I A	×	Not a realistic input	1	1	1	×	Not a realistic input
0	0	-1	V	Left yaw command	1	-1	-1	x	Not a realistic input
0	0	0	\checkmark	Neutral control	1	1	-	.(
0	0	1	\checkmark	Right yaw command		-1	U	v	PILCII + TOII
0	1	-1	\checkmark	Roll + yaw	1	-1	1	x	Not a realistic input

- Total of 14 realistic command combinations
- Inequality constraints can be expressed in terms of:
 - Coefficient matrix entries (design variables)

$$\{\boldsymbol{\delta}\} = [\boldsymbol{A}] \begin{pmatrix} \boldsymbol{r_p}^2 \\ \boldsymbol{r_r}^2 \\ \boldsymbol{r_y}^2 \end{pmatrix} + [\boldsymbol{B}] \begin{pmatrix} \boldsymbol{r_p} \\ \boldsymbol{r_r} \\ \boldsymbol{r_y} \end{pmatrix} + \{\boldsymbol{Trim}\}$$

- Trim vector entries (from phase 1)

$$\{\boldsymbol{\delta}\} = [A] \begin{pmatrix} r_p^2 \\ r_r^2 \\ r_y^2 \end{pmatrix} + [B] \begin{pmatrix} r_p \\ r_r \\ r_y \end{pmatrix} + \{Trim\}$$

Select maximum allowable control surface deflection in degrees (k)

• Complete set of inequality constraints:

$$g(1) = (x(3) - x(15) + T_{12})^2 - k^2$$

$$g(2) = (x(3) + x(15) + T_{12})^2 - k^2$$

$$g(3) = (x(2) + x(3) + x(14) - x(15) + T_{12})^2 - k^2$$

$$g(4) = (x(2) + x(3) + x(14) + x(15) + T_{12})^2 - k^2$$

$$g(5) = (x(2) + x(14) + T_{12})^2 - k^2$$

$$g(6) = (x(2) - x(14) + T_{12})^2 - k^2$$

$$g(7) = (x(2) + x(3) - x(14) - x(15) + T_{12})^2 - k^2$$

$$g(8) = (x(2) + x(3) - x(14) + x(15) + T_{12})^2 - k^2$$

$$g(9) = (x(1) + x(3) + x(13) - x(15) + T_{12})^2 - k^2$$

$$g(10) = (x(1) + x(3) + x(13) + x(15) + T_{12})^2 - k^2$$

$$g(11) = (x(1) + x(13) + T_{12})^2 - k^2$$

$$g(12) = (x(1) - x(13) + T_{12})^2 - k^2$$

$$g(13) = (x(1) + x(2) + x(13) + x(14) + T_{12})^2 - k^2$$

$$g(14) = (x(1) + x(2) + x(13) - x(14) + T_{12})^2 - k^2$$

Results

Mixing function results:

$\left(\delta_{1} \right)$		┌−13.0566	2.3778	-3.2467		<mark>۲ 17.8122</mark>	2.3778	-27.6222		ر 0.7408)
δ_2		-13.0566	2.3778	-3.2467		17.8122	-2.3778	27.6222		0.9968
δ_3		9.8355	0.4442	2.6698	(r_n^2)	-23.2785	13.8872	16.1128	(T_{m})	-3.4925
δ_4	_	9.8355	0.4442	2.6698	$\int_{m^2}^{p} \left(\perp \right)$	-23.2785	-13.8872	-16.1128	$\int_{r_{u}}^{r_{p}} \left(\downarrow \right)$	-2.7357
δ_5	-	6.7903	-5.0488	-0.0268	$\binom{r}{r_2}$	-27.4756	0.0000	-5.0220	$\left \left r \right \right _{r}$	-4.4211
δ_6		6.7903	-5.0488	-0.0268	(r_y^2)	-27.4756	0.0000	5.0220	(y)	-4.1108
δ_7		-10.2273	-6.4153	2.7788		23.4091	19.5971	-10.4029		3.5589
$\left(\delta_{8}\right)$		L—10.2273	-6.4153	2.7788		L 23.4091	19.5971	10.4029		3.7138

Objective function weights:

W ₁	w ₂	W ₃	w_4
1.0	1.0	1.1	0.9

Scheduling

Mixing function was designed at three different airspeeds:

- Airspeed of 20 m/s
- Airspeed of 30 m/s
- Airspeed of 40 m/s

The scheduling was tested through:

- Evaluating the amount of control authority required to trim the aircraft at off-design conditions
- Evaluating the dynamic response of the aircraft at off-design conditions

Mixing function designed at 20 m/s

Maximum of 33% pitch command required to trim the aircraft.

Mixing function designed at 30 m/s

Mixing function designed at 40 m/s

Maximum of 63% pitch command required to trim the aircraft.

32

Mixing function designed at 20 m/s

TAS [m/s]	q [°/s]	r _p [norm]	nˈ z [g]
18	4.4	0.503	-1.1171
20	11.66	0.6305	-1.3854
25	27.4	0.5860	-2.1731
30	41.3	0.6101	-3.1386
35	54.08	0.6223	-4.2779
40	66.13	0.6121	-5.5893
45	77.8	0.6407	-7.0803

- Maximum obtainable pitch rate
- Load factor on the aircraft

Mixing function designed at 30 m/s

TAS [m/s]	q [°/s]	r _p [norm]	nˈ z [g]
18	-	-	-
20	1.671	0.8566	-1.0491
25	13.74	0.8541	-1.5966
30	24.11	0.8685	-2.2673
35	33.48	0.8624	-3.0591
40	42.24	0.8640	-3.9733
45	50.56	0.8511	-5.0071

- Maximum obtainable pitch rate
- Load factor on the aircraft

Mixing function designed at 40 m/s

TAS [m/s]	q [°/s]	r _p [norm]	n z [g]
18	5.6	1	-1.1555
20	12.5	1	-1.4145
25	28.33	1	-2.2110
30	42.25	1	-3.1834
35	55.1	1	-4.3327
40	67.29	1	-5.6595
45	79	1	-7.1608

- Maximum obtainable pitch rate
- Load factor on the aircraft

The following assumptions were made regarding the actuator failures:

- Single actuator failure at a time
- Actuator fail at zero degree deflection ($\delta = 0^{\circ}$)
- Results for mixing function designed at 30 m/s

Conclusion

- A methodology to efficiently allocate controls was developed and demonstrated.
- The resulting aircraft response was demonstrated to be satisfactory, all design requirements were met.
- Pitch control authority through the entire flight envelope was found to be sufficient.
- Scheduling as a function of airspeed was investigated, use of single mixing function is satisfactory.
- The aircraft could still be trimmed in all cases except when actuator failure occur on the inner control surfaces on the rear wing.

Questions

our future through science

Elizna Miles (emiles@csir.co.za)

Roll control allocation

Yaw control allocation

Pitch control allocation

Response to step roll input

• Demonstrating a good roll response of 50 deg/s

Response to step yaw input

• Demonstrating sufficient yaw authority

Mixing function

$$\{\boldsymbol{\delta}\} = [A] \begin{pmatrix} \boldsymbol{r_p}^2 \\ \boldsymbol{r_r}^2 \\ \boldsymbol{r_y}^2 \end{pmatrix} + [B] \begin{pmatrix} \boldsymbol{r_p} \\ \boldsymbol{r_r} \\ \boldsymbol{r_y} \end{pmatrix} + \{Trim\}$$

- Coefficient matrices:
 - Repeat some entries with appropriate signs to enforce symmetry (reduce number of unknown variables)

$$[A] = \begin{bmatrix} x(1) & x(2) & x(3) \\ x(1) & x(2) & x(3) \\ x(4) & x(5) & x(6) \\ x(4) & x(5) & x(6) \\ x(7) & x(8) & x(9) \\ x(7) & x(8) & x(9) \\ x(10) & x(11) & x(12) \\ x(10) & x(11) & x(12) \end{bmatrix} \qquad [B] = \begin{bmatrix} x(13) & x(14) & x(15) \\ x(13) & -x(14) & -x(15) \\ x(16) & x(17) & x(18) \\ x(16) & -x(17) & -x(18) \\ x(19) & x(20) & x(21) \\ x(19) & -x(20) & -x(21) \\ x(22) & x(23) & x(24) \\ x(22) & -x(23) & -x(24) \end{bmatrix}$$

Normalised objective function

$$f(x) = - \begin{pmatrix} 2w_1 \frac{\dot{p}}{abs(\dot{p}^{max})} - 2w_2 \frac{\beta}{abs(\beta^{max})} + \\ \frac{\dot{q}_{pos}}{w_3 \frac{\dot{q}_{pos}}{abs((\dot{q}_{pos})^{max})} - w_4 \frac{\dot{q}_{neg}}{abs((\dot{q}_{neg})^{max})} \end{pmatrix}$$

- Advantages of normalisation
 - Avoid numerical instability
 - Objectives are of the same order magnitude
 - Weight selection is more intuitive

