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Abstract: It is an undeniable fact that energy systems all over the world are at the point of a paradigm shift as a need for 

decarbonisation is eminent and unavoidable. The pressure to decarbonise mounts year after year. Since two thirds of all 

anthropogenic greenhouse-gas emissions come from the energy sector, decarbonisation is more about reducing emissions in the 

energy system than any other system in the world. The increased need for decarbonisation has resulted in the increased installation 

of photovoltaic (PV) and wind systems in countries such as China, India, Germany, Ireland, Denmark, Japan and USA. The 

increased use of intermittent renewable energy resources introduces a need for advanced methods of planning because traditional 

planning methods give sub-optimal generation capacity mix when the electric grid is faced with high shares of variable renewable 

energy resources such as PV and wind. In light of this, this review highlights the major changes in planning methodologies when 

solving for optimal penetration of generation capacity in systems with high shares of PV and wind. The major highlights are 

placed on why the methodologies need to evolve as penetration levels of PV and wind increase and further highlight missing 

issues from the current advanced methods. 
 
 

1. Introduction 

Energy systems in many countries around the world 

are moving towards decarbonised energy systems. This is a 

direct result of many developed countries having made bold 

emissions reduction targets to decarbonise their energy 

systems. European countries aim to reduce their GHGs to 

levels between 80% and 95% below 1990 GHG emission 

levels in the year 2050. In Paris, South Africa made some 

commitment to reduce emissions according to the peak 

plateau and decline emissions trajectory detailed in [1] if 

given financial support from developed countries. Peak, 

plateau and decline emissions trajectory means that South 

Africa is expected to peak its emissions between 2020 and 

2030 at 398 – 614 MtCO2eq and stay constant for about 10 

years and start to decline by 2040 until it reaches in the range 

of 212 – 428 MtCO2eq by 2050. Three quarters (75%) of 

GHGs emissions in South Africa comes from the energy 

sector.  Within the South African energy sector, 55% of 

GHGs comes from electricity production [2]. Therefore it is 

evident that significant emission reductions will come from 

the electricity sector in South Africa.  

This high level of GHG emissions from electricity 

production is based on the fact that 88% of South Africa’s 

electricity is generated from coal-fired power stations [3]. 

Therefore for South Africa, decarbonisation is more about 

reduction of GHG emissions in the electricity sector.  

Decarbonised electricity systems will be characterized by 

increased penetration of renewable energy resources and 

findings in [4] articulate that this transformation (increased 

penetration of distributed renewable energy resources) is 

inevitable.  

Research in [5] has shown that countries such as 

China, India, Germany, Ireland, Japan, Denmark and USA 

have high penetrations of wind turbines and PV systems 

within their electricity systems. For example, Germany has as 

high as 40% combined penetration shares of both PV and 

wind [6]. This increased penetration of PV and wind in these 

countries has resulted in reduced technology costs due to 

learning rates (economies of scale) [7]. The economy of scale 

is global in nature; therefore technological cost reduction 

experienced in European or Asian countries can be 

experienced in South Africa as well although at different 

scales. In 2011 when the first procurement of power from 

independent power producers (IPPs) started (called the Bid 

Window 1 – round 1 of procurement) in South Africa, the 

average cost of PV and wind was R3.66/kWh and R1.52/kWh 

respectively. In Bid Window 4, the average cost of PV and 

wind was at R0.86/kWh and R0.68/kWh respectively and has 

further gone done to R0.62/kWh for both of these 

technologies according to the latest procurement (the co 

called bid window 4.5) [8], [9].   

Although the costs of PV cells and wind turbines are 

decreasing, the electricity they produce is heterogeneous in 

nature. Heterogeneity comes in three dimensions – electricity 

from all generators is not the same at any given time and 

location, electricity produced during peak times  costs 

differently to base load electricity and electricity costs 

differently based on the bus to which it is connected.   

Due to these three aspects that characterise electricity, 

no single technology can be said to be efficient over all the 

three heterogeneity aspects [10], [11]. That is why there have 

been three types of power plants that meet the electrical 

demand. The first class of these plants are called baseload 

power plants which produce baseload electricity and are 

mainly coal, nuclear and sometimes hydroelectric power 

plants in electrical systems in the world. The second class of 

power plants are classified as  mid merit power plants and the 

examples are combined cycle gas turbines (CCGT), coal 

powered plants and the other class are power plants that 

provide peaking power and examples are open cycle gas 

turbines (OCGT) and pumped storage power plants.   

With the advent of increasing installed capacity of 

intermittent renewable energy resources such as PV and 
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wind, the need for baseload generation is reduced while the 

need for flexible power plants increases. Power plant is said 

to be flexible if it can easily ramp up and down as events and 

emergency situations arise in the electric grid system. The 

increased use of intermittent renewable energy resources 

brings with it operational challenges which the legacy 

systems (electric grids of the 20th century) have to adapt to. 

Emerging research has highlighted the need for planning 

methods due to these changes. The main contribution of this 

paper is to review how planning or modelling methodologies 

have changed over time with the transformation of the power 

systems.   

The remaining sections of this paper will look into 

recent transformation of the electricity sector globally and the 

need for improved planning methods. Section 2 presents the 

methodological review process followed in conducting this 

paper review. Section 3 gives a detailed transformation of the 

global power sector, giving examples of both developed and 

developing countries. Section 4 presents a review of how 

modelling methodologies have evolved over the last 5 

decades when the electrical systems were also transforming. 

This is a review of historical models and what has improved 

since development of first family of models. This section is 

followed by section 5 which analyses why there is a need for 

the improvement on these old modelling tools and 

methodologies. The section gives a detailed overview of what 

has motivated the need for the improvement and how the new 

improved method is used in solving for optimal capacity 

determination. Section 6 describes the modelling approach 

taken in most recent models that determined optimal 

generation capacity.  Section 7 discusses the challenges and 

limitations encountered by long term planning models. 

Section 8 discusses implications of issues presented in 

Sections 3, 4, 5 and 6 gives some suggestions of how the 

current methodologies can be advanced further when seeking 

optimal penetration of PV and wind. 

2. Methodology used to conduct the review   

This review follows a systematic process as proposed 

by [12]. The methodology adopted in this review follows the 

process as shown in Fig. 1. The process starts with the 

definition of objective of the review. The main objective of 

this review is to highlight existing planning methodologies 

and highlighting evolution of these methodologies which 

comes as a result of transitions occurring in the energy 

system. To conduct the review, extensive literature review 

was needed and during the literature review process, it then 

became obvious that a number of changes are occurring in the 

electricity planning and the current status is such that the 

work is done separately between the three spheres 

(generation, transmission and distribution) of the electricity 

system. The review gives a highlight of missing links 

between planning that occurs at transmission and distribution 

with the generation plan (integrated resource plan). In the 

process of highlighting the evolutions, the review finally 

highlights improvements that still need to be done to these 

models and finally give suggestions of how current 

models/tools can be used to account for some issues that have 

risen to be of critical nature.  

 

 

3. Power sector transformation: a brief overview   

The power sector is transforming at an alarming rate 

due to increased rate of installing intermittent renewable 

energy resources such as wind and PV. Increasing 

installations of PV and wind renewable energy resources are 

a direct result of global learning that has filtered into several  

developing and developed countries alike [13] - [16].  The 

bold GHGs emissions targets made by the European Union in 

2009, China, USA, India, South Africa and other developing 

countries, accompanied by the signing of the United Nations 

Framework Climate  Convention’s  (UNFCC)  Paris climate 

agreement by most countries, favourable feed-in-tariffs [17] 

resulted in massive investments made in PV and wind [11], 

[16], [18] - [29]. Besides reducing costs, PV has also 

developed to levels where the efficiency of PV modules is 

reported to be as high as 23% and 26% [30].  

As seen in Fig. 2, globally China is leading in terms of 

the size of installed capacity of wind and PV, followed by the 

USA and Germany. China has installed capacity of 168 GW 

and 77 GW of wind and PV respectively as of 2016 [24], [27]. 

The USA has installed capacity of 82 GW and 40 GW of wind 

and PV respectively [21], [24]. The leading European country 

(Germany) has installed capacity of 41 GW and 50 GW for 

PV and wind respectively (see Fig. 2) as of December 2016 

[12]. After emission targets were made, Germany made some 

specific policy (Germany’s Renewable Energy Act) which 

favoured inclusion of renewables into their electric grid [7], 

[12].   

Despite Denmark having the smallest installed 

capacity as shown in Fig. 2, a high proportion of energy in 

Denmark can be met by wind and PV. According to [28], 39% 

of energy came from wind in Denmark in 2014. This results 

in Denmark having the highest share of energy provided by 

Defining the objectives and aims of the review
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wind and PV in the world. This is because Denmark has 

installed capacities of 5 GW and 1 GW for wind and PV 

respectively, its peak demand is 6 GW and Germany’s peak 

demand is 80 GW. In comparison to Germany, only 18% and 

8% of energy was met by wind and PV respectively [18]. Fig. 

3 presents, installed capacities of wind and PV relative to 

their electric system size (peak demand) and it clearly shows 

that Denmark is out performing all other countries. Despite 

China and USA having installed more capacity of wind and 

PV, in relative (relative to the size of their system) terms, their 

capacity is very small as depicted in Fig. 3.  

One other important aspect that is introduced in 

markets with high shares of variable renewable energy 

resources is the economic value of the electricity produced by 

these resources. Economic value is impacted by 

heterogeneity of electricity discussed above. Several studies 

have already shown that optimal penetration of wind and PV 

should take its economic value in consideration [31], [32]. 

The value of electricity in economic terms means that 

electricity produced by PV during the day does not add the 

same economic value when compared to the electricity 

produced by wind and other technologies during the evening 

peaks when electricity produced during these periods is costly. 

Unless the load shape changes to match power production 

from these variable resources, increasing PV and wind 

beyond a particular penetration level lowers the value of 

renewables. At low penetration levels, the value of electricity 

produced by wind and PV is higher than the average 

electricity price. But, as penetration levels increase, the value 

starts to decrease due to increase in integration costs and 

increased generation curtailments from these resources. 

Research in [30] - [33] has pointed out that, once variable 

renewable energy resources exceed 30% to 40% within a 

system, the electricity generated from these resources costs 

higher. Although the economic value decreases the average 

cost of electricity but decrease in cost is not at the same scale. 

Therefore, optimal penetration of intermittent renewable 

resources must be assessed using the value of electricity 

together with the cost (average system electricity cost from 

all technologies) for a fair assessment of optimal penetration. 

The variability of the PV and wind does not only 

necessitate additional flexibility resources as mentioned 

before, but also have some undesired feedback at high 

penetration levels due to increased integration costs. Unless 

the economic value of these intermittent resources is 

increased or kept constant, caution is required in adopting 

increased penetration of wind and PV. The value of wind and 

PV can be kept constant if electricity storage is added to the 

mix but currently large scale storage is still not economic 

hence several countries find it easier to deal with decreasing 

value of electricity from wind and PV. Curtailments are 

required because electricity generated by PV and wind is 

dispatched based on the weather conditions (when the sun is 

shining and when the wind is blowing) and the production 

might occur at the time when electricity demand is very low.  

Fig. 3 Installed wind and PV capacity relative to the size of the system [9], [16] – [19], [24] – [29] 

Fig. 2 Installed wind and PV capacity in some selected countries [16] - [23] 
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Improved resource modelling has shown that the 

technical resource potential of wind and PV is sufficient in 

many countries (e.g. Germany, South Africa, Zambia, etc.) 

[33] - [42]. Although technical potential and costs reduction 

are beneficial for these technologies to find prominence in the 

system. Research has shown that there is an optimal 

deployment level for both wind and PV given their variability 

and uncertainty [10], [11], [33], [35]. In systems with low 

levels of penetration of these intermittent resources, their grid 

effects are negligible. At high penetration levels, plethora of 

research has demonstrated that these two technologies pose 

challenges to the operation of the power grid due to their 

intermittency and variability [28], [30], [43 - [52].  

For non-interconnected systems (such as African 

systems with weak transmission links between countries), the 

operational challenges are three fold when capacities of these 

two resources are high in the mix of generating technologies:  

1. Wind and PV variability (varying every hour and minute 

due to weather events) introduces steep ramps which 

require flexible generation that can ramp up and down 

quickly. According to research variability introduces 

what is called profile costs which are significant portion 

of integration costs [10], [11], [30] - [32].  

2. The intermittency makes the output from wind and to a 

less extends PV uncertain [46]. Recent developments 

have demonstrated that short term forecasting of wind 

and PV helps system operators to know day ahead how 

wind and PV will behave hence appropriate resources 

(reserve) can be made available for dispatch ahead of 

time [33] - [39].  

3. Given the operational characteristics of variable energy 

resources, there are power quality and voltage stability 

issues as identified in [48] - [51] that needs to be 

assessed, controlled, observed and mitigated 

appropriately [49]. Therefore planning for a system with 

high shares of intermittent renewable energy resources 

has to take into consideration the needs introduced by 

these resources in the power system. As a result, 

transitioning to system with high shares on 

decentralized distributed renewable generation requires 

observability [49] and controllability from the operators’ 

point of view. This function can be achieved by use of 

information and communication technology (ICT).  

The impacts brought by these three aspects (variability, 

intermittency and grid stability issues) necessitate a paradigm 

shift in long term planning methods that assess the impact of 

increased penetration of PV and wind, more especially on the 

grid operation. The most critical aspects that require 

consideration in the new planning methods are assessment of 

operational flexibility resources [38], [53] - [58], which are a 

necessity for proper operation of the grid with high shares of 

variable renewable energy resources such as wind and PV. 

Another important aspect is finding a way of costing 

operational flexibility as a resource in long term planning 

studies. The third aspect is the inclusion of additional costs 

such as smart grid components (ICT infrastructure) that will 

be introduced more especially at distribution level due to 

increased penetration of variable energy resources.  

Besides planning for variability or intermittency, 

flexibility needs, research in [59] shows that new protection 

methods are needed to deal with bi-directional flow of power 

from distributed PV systems.  In systems that are not 

electrified, the most prominent type of planning is for mini-

grid systems [60], which look at economic parameter, 

resource planning, reliability issues and resource planning 

under uncertain environments [61], all at the same time. Mini-

grid planning presents an interesting way of planning which 

should be incorporated in grid connected systems.  When 

planning for mini-grid, generation and distribution planning 

are lumped together hence a composite system is produced an 

in a way that there are no hidden costs.  

4. Review of energy planning methodologies and 
need for their evolution  

Energy modelling is the art that was introduced in the 

sixties and its importance intensified in the seventies due to 

the oil crisis that hit the world in 1973 [62]. In the early 

1960’s the concentration of models was on the demand and 

supply of a single energy source such as oil or coal [63].  As 

criticism of these models increased, a new family of models 

were developed in the 1970’s. The 70’s saw an increase in 

number of optimisation models that still maintain the 

fundamental property of balancing demand supply at system 

level [62], [63].  

These first families of optimisation tools/models 

looked into the entire energy system using the reference 

energy system which analyses the flow of energy from 

primary resources to final end use [64]. The first models are 

energy flow optimisation model (EFOM) and market 

allocation (MARKAL), now called ‘The integrated 

MARKAL_EFOM System’ (TIMES) and Model 

for Energy Supply Strategy Alternatives and their General 

Environmental Impact (MESSAGE), Wien Automatic 

System Planning Package (WASP), National Energy 

Modelling System  (NEMS) [65]. These models primarily 

focus on modelling the deployment of large centralised, 

dispatchable thermal generating units which are fuelled by 

coal, natural gas, and uranium [44]. Recent reviews of energy 

models in [64] - [68] show that a plethora of these energy 

models exist (both open source and commercial).  

With the transformation of the electric sector, there 

has been an increase in the development of models that 

analyse several aspects of electric energy system (capacity 

determination, market operation and policy implications). 

These models are the European Electricity Market Model 

(EMMA) [13], [30], [33], python for power system analysis 

(PyPSA) [66], Switch [69], PLEXOS [70], [71], Power 

Agent-based Computational Economics (POWERACE), 

Price-Induced Market Equilibrium System (PRIME) [63] and 

many others found in [67], [72], [73]. The resurgence in only 

electricity models is brought up by the fact that the electricity 

sector is experiencing massive transformation as highlighted 

in Section 3 and a need for improved methods has increased. 

Despite the difference in model architecture, the aim of 

electricity expansion models is always to find optimal mix of 

capacity from different technologies. Although models solve 

for differing objectives, priorities and level of detail [44],  the 

fundamental framework in all of them is that energy demand 

must always be equal to energy supply (energy must balance).  

 

4.1. Increased need for temporal resolution  
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Historically and traditionally, system planning models 

assess the optimal deployment of generation technologies by 

looking at the cost of generating technologies by using a so-

called screening curve methodology and adding some 

constraints such as greenhouse gas (GHG) emissions as is 

done in [74] - [80]. The screening curve methodology takes a 

load duration curve (ordered annual load) and fills the area 

under the curve with technologies that will result in least cost 

electricity system [65], [73]. Screening curve is the first order 

capacity approximation technique and the time resolution is 

usually annually and to increase the resolution, time slices are 

used to split the annual duration load into time blocks.  

For a typical system as show in Fig. 4 (taken from 

[81]), pumped hydro storage and open cycle gas turbine 

(OCGT) can be used to meet the peak demand while the 

combined cycle gas turbine (CCGT), hydro and pumped 

storage meet the mid-merit load while the base load is met 

with hydro only. 

By looking at technologies that are able to meet a 

given load while minimizing the overall system cost 

(overnight cost, fixed and variable costs for a given period of 

one year), these models give optimal capacity options. The 

temporal details in these models are usually very low [76]. 

The annual load in Fig. 4 is usually split into time slices and 

the model solves for capacity in those differing time slices. 

The higher number of time slices, increases the computation 

requirements. In [68], [77], 260 time slices were used and 

using the same modelling tool, Despres et al. in [63] used 17 

time slices, and in [29], 32 time slices were used. In [74], the 

time slices might be lower because the modelling was done at 

a regional level and not for a country. For a particular case of 

South African, the Energy Research Centre at the University 

of Cape Town case uses 20 time slices for splitting the annual 

demand [78, 79]. Recent work has shown that low temporal 

resolution gives sub-optimal capacity determination when 

dealing with variable and intermittent renewable energy 

resources [33, 66, 81 - 91].  

The example shown in Fig. 4 does not consider the 

chronology of the load when solving for the least cost system. 

In legacy systems (where conventional power plants operate), 

this chronology did not matter as the source of variability was 

only the load. As variable renewable energy resources are 

added to the system, research has demonstrated that there is a 

need to capture this chronology [58, 87, 90, 92 - 95] due to 

the changes in the way the electric system operates. The fact 

that electricity generation from wind and PV is dispatched by 

weather and not necessarily by the control centre, the load 

duration curve, shown in Fig. 5 is altered with increased 

penetration of intermittent resources. Load duration curves in 

Fig. 4 will result in residual load duration curves shown in 

Fig. 5 at different PV penetration levels. The conventional 

power plants will be meeting a reduced peak load, which 

translates to differing dispatch regime in comparison to the 

dispatch for load in Fig. 5.  In this instance, pumped storage 

and OCGT (peaking plants) will be used to meet a reduced 

energy demand (area under the curves) compared to the load 

in Fig. 4.  

Fig. 4 Load duration curve and screening curves 
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Power system planners, no longer plan for the system 

load, but they must plan for net load (system load minus 

generation from wind and PV). Given the time when the 

variable generation happens, net load characteristic can 

determine whether the use of the peaking power plants or 

mid–merit power plants will be reduced. The PV reduces the 

peak load in Fig. 5. Therefore low temporal resolution is 

critical when running the long term planning studies because 

it takes into account the economic/market value of electricity 

produced by variable renewable energy resources. Exclusion 

of low temporal resolution does not take the market value of 

electricity from PV and wind resources and this is 

demonstrated in [96]. Using low temporal resolution has a 

potential to both over-value and undervalue a variable 

renewable energy resource depending on the parameters used 

[96].   

 

4.2. Increased need for flexibility assessment  
 

Increasing the use of intermittent and variable 

renewable energy resources does not only increase the need 

for temporal resolution in models (including chronology of 

the demand), it also increases the need for flexible electricity 

grid [97]. The new planning methods must incorporate the 

assessment of flexibility requirements for electric systems 

with increased variable generation [98]. Increasing the 

penetration of variable renewable energy resources 

necessitates more flexibility into conventional electric 

systems. Flexibility is required because wind and PV increase 

the magnitude of variability in the net load (residual load) as 

demonstrated in Figures 4 and 5. A Flexible generation or 

responsive demand is needed to deal with this variability 

more especially when wind and PV are massive in the grid 

[38, 93]. Műller in [56] argues that inclusion of flexibility in 

long term planning studies is limited. Ignoring the inclusion 

of flexibility in expansion modelling results in expensive 

capacity plans as demonstrated in [43, 57, 58, 82, 99-103].  

Different researchers have looked at the flexibility 

using different flexibility metrics [31, 58,103]. In [57], 

system flexibility can also be measured using percentage of 

installed generation type to its peak demand. Using system 

capacity and peak ignores other dimensions of the flexibility 

which are not capacity related. Therefore a more 

comprehensive measure must be developed. In [43, 54], net 

load ramp rate is used to measure the flexibility requirements 

and in [95], it is argued that ramp duration is also an important 

metric for system flexibility.  In [54], it is argued that 

flexibility can be assessed in 3 ways – ramp rate (MW/min), 

capacity provision (MW) and in energy provision (MWh) and 

ramp duration can be ignored since it is a function of ramp 

rate. 

Ramp rate is calculated by subtracting the previous 

hour’s net load from the current hour as shown in Eqn. (1), 

where t is time in hours.  

 

𝑅𝑎𝑚𝑝 𝑅𝑎𝑡𝑒 = 𝑁𝑒𝑡 𝐿𝑜𝑎𝑑 (𝑡) − 𝑁𝑒𝑡 𝐿𝑜𝑎𝑑 (𝑡 − 1)       (1)  

 

The ramp factor is determined using Eqn. (2). Ramp 

factor of 20% means that the generation fleet must increase 

its output by 20% in the next hour [95]. 

 

𝑅𝑎𝑚𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑅𝑎𝑚𝑝 𝑅𝑎𝑡𝑒 (𝑡)

𝑁𝑒𝑡 𝐿𝑜𝑎𝑑 (𝑡−1)
   (2) 

 

Ramp requirements tell the system operator the 

megawatt per hour that is needed from the generation fleet.  

Plethora of modelling studies such as the one done in [11, 43, 

Fig. 5 Net load after introduction of PV in a typical commercial, Adapted from [82] 
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57, 58], 83, 99 - 103], deal with flexibility by assessing the 

metrics in Eqns. (1) and (2) and most of the analysis in these 

studies is done after optimizing for capacity expansion. The 

main aim of these models is to check system adequacy 

(flexibility requirements for short to medium term) following 

capacity determination. Trying to determine capacity for 

longer periods (20-30 years in the future) on an hour to hour 

operational schedule of the power system is computationally 

expensive and in [11], a two stage iterative process is adopted. 

A two stage iterative approach means that in the first iteration, 

optimal capacity is determined using a certain temporal 

resolution (may be 100 time slices). At the second stage, a 

short term modelling tests for system adequacy and flexibility. 

If the flexibility requirements are not met, the temporal 

resolution of the long term model is increased. Then the 

second stage iteration follows to test system for adequacy and 

flexibility again until the requirements are met.  

Determining optimal capacity with low temporal 

resolutions does not incorporate flexibility assessment [93]. 

According to [87], planning for flexibility must deal with 

aspects of frequency control: economic re-dispatch of units 

every 5 minutes (load following) and automatic generation 

control (regulation). Bebic [93] asserts proper flexibility 

assessment is done at time scale of load following. If one does 

not analyse the operational flexibility at this level, operational 

aspects of the power system are ignored. The challenge with 

this approach is that 5 minutes load and generation data will 

be required and majority of utilities do not measure data at 

that time scale [16].  

To avoid the heavy burden on computation, Palmintier 

[99] used clustering methods to lower computational needs 

required for running a capacity planning model for 8760 h in 

a year for the entire planning horizon. Power plants were 

clustered according to their common functionality in the grid. 

In this way the residual ramp magnitudes and rates are dealt 

with during capacity determination and it is the better way of 

dealing with flexibility. 

 

4.3. Increased need for voltage stability and 
frequency control studies 

 

With increased penetration of intermittent renewable 

energy resources, there has been an increase in studies that 

look at voltage stability and frequency issues. These studies 

are highlighted in [39, 96 - 102]. Voltage stability and 

frequency control studies assesses the voltage behaviour and 

the frequency control requirements [102].  Frequency and 

voltage control studies fall in a different domain of planning 

to that of expansion planning which seeks to do power 

balancing in an economical manner.  

Capacity expansion planning studies mostly ignore the 

voltage and frequency technical operations of the power 

system and try to balance demand and supply at all times [76, 

77, 80, 103 - 108]. The stability studies presented in [109 - 

113], deal with the frequency and voltage control operations 

of the grid which look at power balance property, as well as 

safety of the equipment in the interconnected power grid. 

Increasing non-synchronous generators into the electric 

system alters the system altogether. The inertia of the system 

– which is maintained by rotating masses of the conventional 

thermal turbines in the grid, cannot be provided by PV. 

Although some research has suggested the use of virtual 

inertia [114] through the use of flywheels, wind turbine 

control and batteries, increasing the penetration of PV means 

that inertia provision becomes a critical resource that must be 

provided for. Few studies have tried including power stability 

issues in long term planning studies. This type of analysis was 

done in [115].  By including the reliability (inertia issue) in 

the long term planning, it was shown in [115] that reliability 

decreases with high penetration of intermittent renewable 

energy resources, which then jeopardises the system stability. 

The strong message from this single study is that inertia and 

other issues related to system stability play an importance role 

in long term capacity plans which consider variable 

renewable energy resources. 

The increased need for inertia in the grid explains why 

there is an increase of voltage stability and frequency control 

studies. Although it is currently not clear how these operating 

conditions can be added in the long-term planning studies, 

their exclusion may compromise the operation of the system 

that was designed to have inertia. Electric system with high 

shares of PV will have to procure inertia resource at an 

additional cost [116]. Therefore, it is crucial to cost inertia 

services in long term planning, more especially if the systems 

will have increased installation of PV.  Even though no single 

model has been developed that can assess power stability 

issues in conjunction with power capacity expansion studies, 

atleast costing of this resource must be accounted for in power 

expansion models.   

The other critical issue that needs to be considered in 

systems with high shares of wind is planning for reactive 

power as demonstrated in [117]. This involves sizing capacity 

and putting such a capacity at optimal location to maintain 

smooth operation of the grid [118].  

 

5. Accounting for costs throughout the entire 
electricity chain  

5.1. Increased need for voltage stability and 
frequency control studies 

Traditionally, planning for the electricity system is 

done separately for electricity generation expansion planning, 

transmission and distribution network expansion planning 

[119, 120]. Transmission and distribution planning studies 

always follow the electricity capacity expansion planning 

studies. There are at least two main reasons why this 

separation of the planning processes is practiced. Firstly, it is 

done this way so that the transporting assets (transmission and 

distribution networks) can follow generating assets wherever 

they may be installed. According to research in [120], the 

reason for this practice in the 70’s was because investments 

into generation expansion were far more expensive than 

building transmission and distribution lines. Although there 

is a rapid transformation in the energy sector, this separation 

has been the case even recently is some systems in the world 

as well as in South Africa.  The second reason emanates from 

the fact that the planning tools used in these three spheres are 

complex (see distribution modelling inputs in [119]) and the 

details cannot all be incorporated in one modelling tool. This 

will not be good because the aim of models is to abstract 

reality by capturing important parameters of the system 

without complicating the model; else the model is rendered 

useless.   

Future systems will be highly decentralised [4] and 

this means that the cost of the energy system will also 
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increase at transmission and distribution levels. In current 

systems, the cost of generation is still high and the cost of 

transmission is assumed to range between 4 - 5% to the cost 

of generation for wind generators [119]. Work in [120], [121] 

proposes inclusion of transmission and generation co-

optimisation. This co-optimisation of generation with 

transmission planning was carried out in [122].  

By having distributed generation dispersed over a 

large area will increase the network cost at distribution level. 

Other researchers point out that cost of distribution will be 

very high due to increased need for visibility and 

controllability [123], but thus far no research work has tried 

to incorporate distribution system planning in long term 

planning. Given these cost drivers and cost savings as 

demonstrated in [47, 124 – 126] long term modelling studies 

must find a way of incorporating distribution issues in their 

plans.  

The third reason for exclusion of distribution and 

transmission grids in long term planning is that all 

technologies will increase integration costs. For the 

centralised system, these are mainly grid related costs [40] 

and contingency reserve costs [127]. While this is true that 

every technology induces some integration costs, the 

variability of PV and wind introduces additional costs called 

profile costs and intermittency introduces another type of cost 

called the balancing costs on top of grid costs. Therefore with 

PV and wind, there are grid related costs plus profile and 

balancing costs which are all called integration costs.  

 

5.2. Integration costs induced by variability of PV 
and wind  

Due to increasing integration and investment costs and 

given the fact that electricity is a heterogeneous good and its 

economic value is dependent on when it is produced. Some 

researchers in [33, 128] discovered that PV and wind can 

increase up to an optimal penetration point. Exceeding this 

optimal point, the value of electricity supplied by these 

resources decrease further and the cost of electricity will 

continue to rise due to increase in investment and operating 

costs. Therefore when planning for a system with high shares 

of intermittent renewable energy resources, it is crucial to 

include the value of PV or wind in the analysis.    

Once these intermittent (variable and uncertain) 

renewable energy resources exceed a particular level, the 

existing technology mix of generating units must adapt to the 

new operational situation. Some other mid-merit and base 

load plants may have to operate at sub-optimal production 

levels. They operate at sub-optimal levels because their 

generation has to be curtailed so that the generation from 

renewable energy can be accommodated or generation from 

PV and wind can be curtailed.  

 

6. Review of studies using improved planning 
methods 

Recent electricity modelling efforts have assessed the 

possible capacity optimal penetration of variable renewable 

energy resources in various countries and regions [11, 26, 32, 

43, 49, 87, 89, 128 - 132]. An overview of current studies 

presented in Table 1 shows that the resolution of recent 

models at 1 hour resolution which has changed from time 

slice concepts used in earlier planning tools. Although some 

studies in [43, 54, 57, 58] have proposed inclusion of 

flexibility assessment when optimising for long term plans, 

very few studies have actually implemented flexibility 

assessment in their planning as shown in Table 1.  Amongst 

the reviewed studies, only two studies have included both 

generation and transmission co-optimisation and none have 

included issues at the distribution level [119], [148]. Among 

the reviewed studies only one planning study considered 

power stability issues [116]. Given the required need to 

incorporate flexibility, grid stability, low temporal resolution 

and inclusion of the entire electric grid value chain, in 

planning for long term plans, it is clear that very few planning 

studies have considered these important aspects. Therefore, 

there is a need for further development of models or 

researchers must find a way of costing all these important 

aspects of the grid. 

Studies that have used long term models such as 

TIMES with low resolution and linking it with other optimal 

dispatch electricity models do not necessarily optimise the 

system with high temporal resolution. What these studies are 

doing is testing the adequacy of the existing plan that is 

already determined by high resolution models. These types of 

studies are found in [58, 149 - 158]. Following generation 

expansion plan and unit commitment analyses, then power 

system stability issues are analysed  and studies as done in 

[48, 50, 110, 159-168],  must be performed.  
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Table 1 Comparison of aspects considered in long term planning methodologies considering increased variable renewable 

energy resources 

 

Tool used  Country/Region Temporal resolution Flexibility 

requirements 

Transmission 

consideration

s 

Power stability 

considerations  

Distribution  

consideration

s 

Study  

 

 

 

 

 

EnergyPLAN 

 

Indonesia and 

Thailand 

1 h No  No No No [108] 

Hungary 1 h No No No No [132] 

Macedonia  1 h No No No No [133]  

Denmark  1 h No No No No [134] 

China 1 h No No No No [135] 

Croatia  1 h No No No No [136] 

Island of Mljet, 

Croatia 

1 h No No No No [137,138] 

Frederikshavn, 

Denmark 

1 h No No No No [139] 

Aalborg  1 h No No No No [140] 

Jordanian 1 h No No No No [141] 

TIMES France  1 h Yes No No No [87] 

TIMES Re-union Island  1 h No No Yes No [116] 

TIMES and 

EnergyPLAN 

Norway five periods per week 

[TIMES], and 1 h for 

[EnergyPLAN] 

No No No No [74] 

TIMES, OSeMOSYS 

and PLEXOS 

Irish Annual and hourly  Yes No No No [58] 

Unit commitment 

Energy Dispatch 

(UCED)  

Non- specific  15 min - 1 h Yes  Yes No No [119] 
 

 

 

 

 

Heat, Hydrogen and 

Renewable Energy 

System (H2RES) 

Porto Santo 

Island 

1 h No No No No [141] 

Island of Sao 

Vicente, Cape 

Verde 

1 h No No No No [142] 

Portugal 1 h No No No No [143] 

Long-range Energy 

Alternatives  

Planning System 

(LEAP) 

Ghana Annual No No No No [144, 145] 

Mesap_PlaNet  

REMix  

Canary Islands 1 h No Yes No No [141] 

Authors’ own 

algorithm used 

Belgium 1 h Yes No No No [58] 

Authors tool 

developed with 

Python 

Australia  1 h No No No No [146] 

Authors own 

modelling tool 

Japan 10 min No No No No [147] 

General Algebraic 

Modelling System 

(GAMS) 

Texas, USA 1 h Yes No No No [99] 
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6.1. Inclusion of distribution system costs in long 
term planning  

 
The time for treating distribution systems as passive 

transportation systems is over. Distribution systems are 

increasingly becoming connection point for PV systems [7, 

167], therefore any planning that ignores distribution issues 

does not take reality into account. Ignoring issues at 

distribution makes generation planners to either over-

estimate the load and/or also under-estimate the system wide 

cost impacts. Despite the changing energy paradigm, there is 

limited or no inclusion of events occurring at distribution 

level when conducting long-term electricity expansion 

studies as shown in Table 1.  

Inclusion of distribution systems in long term planning 

studies can help in having an optimal system [55]. Planning 

for these distributed units will help municipalities especially 

in South Africa to understand the impacts of distributed 

generators on the entire electricity value chain and can help 

them to understand the impacts on their revenue. Having this 

understanding is crucial so that municipalities can find ways 

of restructuring their tariffs and also finding new other 

services that they can offer to their customers.  Within the 

South African municipalities, lack of this needed perspective 

makes many municipalities to block connection of distributed 

generators on their network. The aftermath of this is illegal 

connections, where people just connect because PV is 

becoming economic at very fast rate [9].  

In [10], [11], Hirth et al. suggest inclusion of 

integration costs when accounting for optimal penetration of 

PV and wind. After including these integration costs, the new 

system cost is called the system levelised cost of electricity 

(LCOE). The integration costs are grid related costs, 

balancing costs and profile costs. In most instances grid costs 

are the transmission expansion costs. As Jairaj et al. [4] 

articulates that the future electric grid will be highly 

decentralised, significant changes are required at distribution 

level to integrate variable renewable energy resources. There 

will be some costs associated with these changes and in [132], 

it is observed that the increased costs will be due to 

information and communication infrastructure (ICT) that will 

be needed for observability and controllability.  

Although strengthening the distribution grid is critical, 

it is also important to look at other parallel costs that will be 

added to the system due to the increase of distributed and 

intermittent renewable energy resources in the electric system. 

The other parallel costs that need to be considered at 

distribution level are the ICT investment costs and 

operational costs. In [132], ICT can be used for power 

generation management and control-related integration of 

power management. This is a great concern because it is 

discovered in [132] that ICT infrastructure costs can increase 

the distribution network costs by 40%.   

7. Challenges and limitations of planning 
methodologies used for optimal determination 
of optimal generation  

As with planning for any system, there are challenges 

and limitations encountered when planning for capacity 

determination. Input parameters such as demand, cost 

assumptions together with assumed discount rates, may 

deviate far away from what the plan has assumed. Therefore, 

the critical and most challenging issue around these 

methodologies is dealing with uncertainties around inputs. 

With respect to demand, the critical issue, is the demand 

forecast which is at the heart of the generation plan.  

In expansion capacity models, the objective is to plan 

for the magnitude of the load not when the load is occurring 

[169]. Given the importance of when electricity is generated, 

new methods must find ways of planning for load taking into 

consideration when it is occurring, as the load and the time it 

occurs determines the economic value of meeting the load. 

With new ways of planning the aim is to concentrate on the 

net load. The optimisation optimises for the residual load as 

discussed in Section 4.1. The challenge with this is 

conducting a demand forecast of the net/residual load as both 

PV and wind resources cannot be predicted with some 

accuracy, given the uncertainty of climate related forecasts.  

For systems with high/increasing share of variable 

resources such as PV and wind, the intermittency of these 

resources must be incorporated into the plan. One way of 

dealing with that is making the demand to respond to changes 

in the supply by adjusting what the demand can handle 

(adapting to supply side variability) while the other way is to 

reduce peak load.  Research in [169, 170] suggest the use of 

demand response (DR) to co-optimise both supply and 

demand side.  

Although this appears to be an innovative way of 

integrating supply side issues and demand side issues, the 

limitations that these have are serious and compromises the 

answer the co-optimisation gives.  

1. This co-optimization assumes supply curves of demand 

side management (DSM). This presents a serious 

problem because DR programs are used by utilities for 

planning, operational and reliability purposes different 

from supply-side resources. DR programs are usually 

subject to rules which can limit the number of hours and 

capacity they can contribute in a year [171]. Modelling 

does not usually take these issues into consideration, 

hence it can result in over estimating the role DR can play 

in balancing supply and demand.  

2. The characterization and dispatch of the demand 

response is not clear in most integrated resource plans 

that claim to include DR.   

3. The results for different demand response portfolios are 

present values over the entire period of the analysis 

instead of an annual basis 

8.  Discussion  

For future modelling of the power sector, it is 

important to consider issues (power stability, power quality, 

protection issues etc) encountered at transmission, 

distribution and generation. Inclusion of these issues is 

necessitated by the changing operation of the electric grid 

system. Even if the physical characteristics cannot be 

included, atleast there must be a way of incorporating the cost 

of taking care of these issues in long term plans.   By adding 

integration costs together with investment cost, studies in [9] 

termed this new cost metric the system levelised cost of 

intermittent and  variable energy resources (system LCOE). 

Besides the system LCOE due to integration costs (profile 

costs, balancing costs and grid related), it is critical for future 

planning studies to assess the costs of parallel infrastructure 

such as ICT infrastructure and inertia services.  
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This is needed because ICT brings the benefit of 

observability and controllability (smartness) into the grid 

which is a critical operating condition when having many 

distributed generators that are variable and intermittent in 

nature and are spread over a wide range of locations [159]. 

Carpinelli et, al. in [159], stress that PV systems need 

coordinated voltage control to alleviate the over-voltage 

introduced by PV but to implement a coordinated voltage 

control needs reliable communication infrastructure which is 

a very costly solution. These cost drivers must be included in 

the analysis just like emissions costs and water costs for coal 

based systems.  

The inclusion of all these aspects that affect the cost 

of the electricity system as suggested here is not new to the 

electricity generation planning. With recent developments for 

decarbonisation, electricity planning models now as in [9, 84, 

99] include the cost of carbon in models because fossil fuels 

pay the penalty for emitting carbon.  

To plan for future electrical system, new improved 

methods must be adopted. All of the existing models do not 

have the capability to consider all the impacts that variable 

renewable energy resources (such as PV and wind) bring to 

the electricity system. In the absence of a current supermodel 

that can consider all the issues that are raised holistically, it is 

suggested that both bottom - up and top - down approaches 

are used to model future electricity systems.    

 

9. Conclusion  

 

The linkage between bottom-up and top-down 

planning will offer insights along all the electricity value 

chain. These insights are needed because the electricity 

system is moving away from centralised to decentralised 

nature. In Germany, Ireland and recently in South Africa, PV 

systems are taken up by customers. This causes big changes 

in the electricity system and may disrupt existing business 

models within distribution systems and municipalities.  

Changing the business model also means that the process of 

generation determination will be affected and must adapt to 

these changes. In order to understand these changes, both top-

down and bottom-up modelling must be explored as a 

variants of modelling methodologies. These modelling 

approaches must take into consideration, the integrated 

planning approaches done at business or company level and 

be interfaced with national modelling so that there is a deeper 

understanding of the impacts that the bottom-up uptake of PV 

or wind can have on generation planning at national or state 

levels.  

At end use level, distributors add the transmission and 

distribution costs and package all this in a tariff for their 

customers. The customers pays for the cost of the service 

provided for by the entire electricity chain.  In the new 

changing transition, it means that tariffs will end up changing 

because as customers increase their installations of their 

decentralised systems, the cost of electricity will keep 

changing and at the end of the day will affect how generation 

is planned. Given the importance of demand response in 

future generation plans, coupled with reducing demand due 

to self-consumption from customers, it is of paramount 

importance to include price feedback into load forecasting. 

As prices of electricity change, the demand from customers 

will change and current forecasts do not cater for such 

changes.  
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