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Abstract—The lack of suitable robust appearance models
hinders the performance of most image descriptors. Descriptors
often rely on pieces of information in images called image
features to discriminate the contents of images. Most successful
descriptors use gradient images for determining the overall
shapes of objects. Consequently, the inferred features are often
susceptible to the noise caused by shadows, reflections and inner
textures within the object. Significant efforts have been made
towards improving the performance of image classifiers, yet
generic object detection remains an open problem. In this paper,
a method aimed at improving existing appearance models is
proposed. The focus is on enhancing the acquired information
at fundamental stages to improve the robustness of common
statistical learning classifiers, as seen with the work of Holger
Winnemoller et al. with human subjects.

The selective Gaussian blur filter was applied to several human
classification datasets to reduce the amount of ambiguous low-
frequency noise. Experiments were then conducted to determine
whether the unification of similar colours in local image regions
could improve the acquired image features. The classification
results that were obtained with the processed images were
competitive to the results obtained with the original images,
however inconclusive for demonstrating the benefits of image
smoothing.

Index Terms—classification, image smoothing, colour unifica-
tion, edge-preserving filters, feature descriptor enhancement

I. INTRODUCTION

Object recognition is one of the fundamental goals of au-
tonomous digital-image understanding. Over the years, various
appearance models [2], [7], [17] have been developed to better
discriminate the visual cues of objects in images. Appearance
models often quantise large amounts of pixel data into compact
vector forms that are learnable through statistical learning
methods.

Image descriptors often match spatial patterns of features
in images, but classifiers have to be trained with large image
datasets that contain multiple examples of objects and their
labels. Given large datasets, classifiers learn to predict the
class labels of objects from either raw pixel information
or appearance models. On most image datasets, objects of
interest are often placed near the centre of the image and
form at least 80% of the image. The extracted images often
contain substantial background clutter that degrades the shape
information of the foreground object.

Most appearance models rely on gradient images for deter-
mining the shapes of objects [2], [5], [6], [12]. The extraction
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of edges plays a vital role in formulating the appearance of
objects for models that solely rely on the edge information.
However, the extracted edges are not only formed by the
contours of objects but also the changes in shading, colour,
diffuse and illumination on both foreground and background
regions of images. There is hardly any effort in filtering out
the ambiguous edge-noise before the extraction of features,
despite Holger Winnemdller et al. [25] having demonstrated
with human subjects that recognition rates and memory can
be improved by smoothing images.

This work studies ways of exploiting image smoothing in
order to enhance the quality of edge-based features for image
classification. The authors test the effects of suppressing noise
in images over the human classification problem. This is a
relatively difficult problem to solve as people are difficult to
recognise autonomously compared to generic rigid objects.

A. Related Work

Given the focus of this work, the reviewed literature is in
classification tasks, human detection and image enhancement.
The human detection problem has attracted a wide range of
research due to the present demand of autonomous surveil-
lance systems, self-driving cars, crowd behaviour modelling,
interactive industrial and home assisting robots and so on. The
best human detection computer vision solutions thus far are
based on convolutional neural networks (CNNs). The CNNs
have been dominating image classification benchmarks since
Krizhevsky et al. [12] considerably reduced the classifica-
tion error of the ImageNet LSVRC-2010 benchmark. Unlike
generic man-made features, the CNNs can automatically learn
the required edge filters that can produce the ideal descriptive
feature-maps for generic image classification problems. Man-
made image features are often limited to representing a few
classes of objects. For instance, Haar-Wavelet features only
perform well on rigid objects such as faces. Scale-invariant
feature transform (SIFT) features are good in cases where high
contrast points can be extracted from the edges of objects.

Earlier human detection work prior to 2005 was based on
template matching [21], where edge templates from reference
images were used to detect people in unknown images. Such
methods failed due to the non-rigid nature of people. The
problem of detecting people on static images is often confused
with finding moving people on video footages that are captured



Fig. 1. Sample results of a cartoonized image.

from stationary platforms. The latter problem is solvable
through background subtraction and shape interpretation from
motion masks. This method imposes many restrictions and
is not useful when the targeted objects are stationary in
the videos. Furthermore, the standard background subtraction
algorithm is not effective on image sequences that are captured
from moving sensors [3].

Facial detection is solvable through texture-based features
but cannot be used for classifying people in images. Simply
because such methods mostly work on higher resolution im-
ages where people are assumed to be facing the camera at all
times. In practice, people have no consistent texture patterns
from their clothing and can be photographed in different poses.
The appearance of people is heavily affected by the perspective
from which they are photographed. Over the years, the most
promising attempts modelled the silhouette shape of people.
Silhouettes describe the appearance of people better and have
been shown to be ideal for handling partial occlusions [7].

Wei Gao et al. [7], have presented a method that could
capture the contours of people more effectively than histogram
of oriented gradients (HOG) features. This method, described
as the adaptive contour feature (ACF) was aimed at improving
the existing discriminative feature models before 2009. The
ACF is described as a chain of square patches that model
the curve of an object’s contours. The ACF does this by
using granules in an oriented granular space (OGS). Since
this algorithm also relies on edge information, it may also
benefit from the extraction of high-frequency edges. Other
related models that could also benefit are described in [3],
[5], [7]. The software implementation of the ACF algorithm
was unavailable, studying the effects of ACF features may be
part of the future work.

With the visual perception of humans, edges are vital
for the neural interpretation of a scene [26]. Therefore, the
objective of smoothing images in this work is to reduce noise
so that the visibility of contour edges could be improved.
Traditional smoothing filters like the Gaussian blur, degrade
important features and dislocate edges [24]. Non-linear dif-
fusion filters were developed to overcome this shortcoming,
the Perona-Malik model [19] being the first. These kinds of
filters seek to preserve and enhance semantically important
information such as edges [24]. More edge preserving filters
have been developed since then, they can be broadly classified

into three categories namely: average-based, patch-based and
optimisation-based. Average-based filters include the Perona-
Malik method, the bilateral filter (BLF), bilateral textured
filter and propagated image filter (PIF), guided filter (GF),
rolling guidance filter (RGF). These filters are based on the
weighted average of a neighbourhood to determine the output
of each local pixel [16]. Patch-based filters include the region
covariance (ReCov) and aim to overcome the limitation of
average-based filters in distinguishing the image structure
from the object textures by using a covariance matrices of
an image patch [10]. Optimisation-based filters include total
variation (TV), relative total variation (RTV), weighted least
squares (WLS), LO gradient minimization (LO) and mixed-
domain edge-aware image manipulation (MD). Optimisation-
based filters use global optimisation on energy functions,
which consists of a data term and a smoothness term [16]. The
data term is designed to maintain similarity between the input
and output images, while the smoothness term is designed to
remove details or textures.

Lin et al. [16] compared the performance of RTV [27],
ReCov [11], RGF [28] and bilateral textured filter [1] with
their own method. They found that the ReCov had a blurring
effect and the longest execution time, while the RGF and
BLF blurred small object details; only RTV and Lin et al’s
method were able to retain small object details. Tang et al.
[22] compared their method to WLS [4], BLF [23], GF [8],
RGF [28], LO [26], MD [15], ReCov [10] and PIF [20]. The
GF left much of the texture. The WLS, BLF and ReCov
blurred the object edges while the MD retained sharp edges but
significantly reduced image contrast. The LO filter segmented
the image well but generated colour quantisation artefacts and
did not smooth out all the textures. PIF and the Lin et al.
method performed well in image smoothing and execution
time but required a guidance image for each smoothed image,
making them impractical for a large database or real-time
applications. The RTV and the Tang et al. method are both
based on the TV filter and performed well in image smoothing,
but did not compare well in terms of complexity and execution
time.

The selective Gaussian blur (SGB) combines domain filter-
ing with range filtering. That is, pixels are not only regarded
to be similar to one another by their Euclidean distance apart
but also perceptually through their colour values. Methods that



quantise colours have similar effects to colour smoothing but
have certain restrictions. For example, such methods require
prior knowledge of images to successfully segment colours. To
quantise colour, the estimated number of dominating colours
in the image, size of objects in the image, lighting and the
extent of noise clutter has to be known prior. Therefore, a
filtering method that could combine/smooth colours without
significantly affecting edges, and require no prior knowledge
would be ideal for real-time applications. The next section
discusses the research methods used to test whether the
reduction of noise has a positive effect on the acquisition of
HOG features and learned feature maps.

B. Method

Several image pre-processing techniques that could put
more emphasis on the high-frequency components while re-
ducing low-frequency image components were considered.
The first approach was in testing the use of infrared images on
human detection tasks because the heat radiated from humans
is less dependent on the colour patterns on their clothes.
Instead, the heat radiated from objects of uniform material
becomes uniform. This results in reduced shading noise within
the contours of objects. As discussed in [14], the reduction of
low-frequency noise clutter has the potential to improve the
quality of shape descriptive features. Higher classification rates
were obtained from the less cluttered infrared image datasets
than colour image datasets of the same size. In continuation of
this research, this work attempts to redress the same problem
on colour images, by lessening the shading clutter that forms
ambiguous edge-noise on gradient images. The supposition
of this works is only tested with the SGB filter on several
classifiers through trial and error, future work may also involve
some of the filters that were discussed in related work sub
section I-A.

C. Selective Gaussian Blur

The SGB filter takes a step further than the original BLF
[23] by introducing an additional edge-protection mechanism
that limits or completely suppresses the low-pass Gaussian
filter whenever edges are found. For this reason, the SGB
filter was favoured in this work. The aim is to unify simi-
lar colours in local regions of objects. However, combining
similar colours in natural scene images becomes challenging
because the colours within foreground regions often blend with
the background colours. To do so, the images were converted
to their cartoon-like appearance with the use of the SGB filter
in the cross-platform image editor GIMP. The SGB outputs
better results than the BLF. Figure 2 shows the extent to which
noise can be reduced through cartooning images. The gradient
image of the cartooned image had remarkably less noise than
that of the original image. Other examples of cartooned images
can be seen in Figure 1. The two figures show how the
SGB filter produces a cartoon-like appearance of images. It
is clear why the SGB filter was selected, as this work aims at
evaluating image features when the noise caused by ambiguous
edges is reduced.

Algorithm 1 Selective Gaussian Blur

1: procedure CALCULATEGAUSSIAN(/, radius) > Given
image I

2: rad = radius

3:  Convolve a filter Iy of size [rad X rad]
4:  for filterLocation pos in source do

5: gaussly < Gaussian within I

6: weights = gausslyx Iy

7: Consider center pixel centrPx of Iy

8: Let local Pz € Iy Nlocal Px # centrPx

9: for each localPx € Iy do

10: dif f = centr Px - local Px

11: if diff > maxDelta then

12: ignore this pixel

13: else if dif f < —maxDelta then

14: ignore this pixel

15: else

16: accumulatedW eights += weights x local Px
17: weightCount += weights

18: end if

19: end for
20: if weightCount == 0.0 then
21: destinationImage,os = acc“ﬂ%‘;fﬁggfghts
22: else if dif f < maxDelta then
23: destinationImagepos = Ipos
24: end if

25:  end for
26:  return destinationImage
27: end procedure

> Blurred image

A simplified algorithm of the SGB function is shown in
Algorithm 1. From the algorithm, it is clear to see that
the average distributed weights of pixels is formed from
neighbouring pixels. This results in cases where the SGB filter
is applied to some pixels, applied to a limited extent with
others and not applied to the rest.

The results appear to be better when the images are
first passed through the original Gaussian blur filter (im-
plemented in GIMP using pdb.plug_in_gauss_iir (),
and thereafter passed to a colour normalisation procedure
before applying the SGB filter. The assumption made, is
that no prior knowledge of images is available. Therefore,
the same parameters of the SGB filter have to be used
for all images in the datasets. The final parameters were
as follows, the initial Gaussian blur pass has a small 2x2
filter size to try and not affect sharp edges in images. This
filter is applied to ease the process of smoothing colours
on the latter stage. The standard colour normalisation algo-
rithm was applied using the pdb.plug_in_normalize ()
function. The following parameters were selected for
SGB filter, the SelGauss_radius = 5, max_delta
= 15. The filter was applied using the GIMP function
pdb.plug_in_sel_gauss (). This multi-step smoothing
process (Referred to as type-B cartooning from here onwards)
will be compared to the simpler smoothing step of just apply-



Fig. 2. Comparisons of cartooned images, the images are shown in consecutive pairs of the original image(Left) and the cartooned image(Right).

ing the SGB filter alone (Referred to as type-A cartooning).

D. Classification Datasets

For the experiments, the HOG features were extracted in
preparation of training the support vector machines (SVMs)
and extreme learning machines (ELMs) for binary classifi-
cation, CNNs are trained with the raw images. The effects
of smoothing colours are tested on both colour and infra-
red images of the same size. The INRIA and NICTA datasets
were selected for colour images. These datasets are commonly
used for human detection research [2], [5], [18]. The infrared
images were selected from the SIGNI dataset [13].

The work by [12] showed that having large datasets with
millions of images per class does improve the generalisation
of classifiers. In our case, the datasets only contain a few
thousands of images. Consequently, a limited level of data aug-
mentation was performed on the datasets, where a horizontal
mirror of each image was computed. For the positive samples,
3401 images of upright people from the INRIA, NICTA and
SIGNI dataset were used. Over 5400 distinct negative visual
samples were extracted from the background images of the
INRIA dataset. The results of the original images from each
dataset are compared to the results of their pre-processed
counterparts.

II. EXPERIMENTAL WORK

In this section, experiments are carried out to determine
whether cartooning images improve the acquired HOG fea-
tures for the classification of humans in still images. To do
so, three different classifiers (SVMs, ELMs and CNNs) were
trained with 80% of the images in each dataset. The remaining
20% is reserved for testing the generalising performance of the
classifiers. The two shallow learning classifiers (SVMs and
ELMs) were tested against the deep learning convolutional
neural networks. The randomisation function that randomly
selects the training and testing partitions of the datasets was
reset whenever the classifiers were tested. This ensures that
the same images are tested to effectively compare the results
between the different classifiers. The randomisation function
ensures that consecutive images are never selected in the
dataset. This becomes useful, as most datasets often contain
images that were captured at similar environments organised
together through file naming conventions.

A. Support Vector Machine experiments

The first classifier to be trained was the SVMs. The SVMs
have been highly successful in solving binary classification
tasks. Given a distinct sample, the SVMs map data into a
higher dimensional space to make it linearly separable. The
data is separated by a decision function that uses a hyperplane
to optimise the margin between opposite data samples.

The primary task when training a classifier is to use an
existing collection of known observations to find the optimal
parameters that can be used to learn a function f(z) : X — Y,
such that f(x) is a good approximation of any unobserved
sample . Where known observations are pairs of input sam-
ples and their labels. The parameters are highly dependent on
the size of the datasets used, the type of image features used,
the feature vector size and so on. Such parameters are often
found through trial and error during preliminary experiments.

The data is often projected into higher-dimensional spaces
through kernel functions. The linear, polynomial, radial ba-
sis and sigmoid functions are traditionally used as kernel
functions for the SVMs. During preliminary experiments of
this work, the RBF kernel performed better than the linear,
polynomial and sigmoid kernel functions. As a result, the
RBF Kernel was selected as the kernel of choice for the SVM
classifier. A cross-validation procedure was done over random
permutations of each dataset to find the optimal sigma to use
for the RBF kernel. The SVMs performed better when values
of sigma were between 25 and 45.

The results shown in figures 3, 4 and 5 appear in pairs,
where the blue bars represent the classification rate obtained
from the unprocessed images, the green bars are values ob-
tained with type-A cartooning and the red bars are the values
obtained with type-B cartooning. It is worth noting the scale
of the graphs ranges between 90% to 100% to outline the
differences in the classification rates.

Inconsistent results were observed from the SVM classifier
on the INRIA and SIGNI datasets. For instance, the car-
tooning methods were beneficial to the INRIA but lead to
poorer results on the NICTA. The type-A cartooning method
performed better on the INRIA than the type-B method. The
poorer results on the NICTA could be attributed to the dataset’s
lower resolution images. The original NICTA images had
dimensions of 32 x 80. The images had to be up-scaled to



100

98-

Classification Rate

. [ Normal
[ Cartooned
[ 6iur Normalised and Carlooned

90
INRIA NICTA SIGNI

Fig. 3. Classification results of the SVM classifier.

the standard 64 x 128 resolution that was used for the HOG
feature descriptor. This implies that the proportions of the
people were distorted. Up-scaling images can cause aliasing
artefacts, especially when the new resolution is not a multiple
of the original. It is possible that the cartooning method
worsened the conditions of the images on the NICTA instead
of improving them. These may be the reasons for the poorer
performance on the NICTA. With the infrared dataset, the
performance on the three datasets was not much separable.
Only slight improvements were observed with the type-A
cartooning method. Whilst the type-B cartooning method had
the weakest score.

B. Extreme Learning Machine experiments

It is important that the outcomes of cartooning images prior
to extracting HOG features are tested on different classifiers.
Therefore, similar experiments that were performed with the
SVMs were also carried out with ELMs. The ELMs are a
variant of feed-forward neural networks. The ELMs were in-
troduced by Huang et al. [9] in 2006, as a new learning model
that could be trained faster than the pre-existing traditional
neural networks. Instead of tuning all the weights on the entire
network iteratively, only the output layer of the ELMs needs
to be trained. More information about ELMs is available in
[9], [14].

The standard ELMs are often optimised by iteratively
searching for the right number of hidden neurons that works
best for a specific dataset and by comparing several activations
functions for the neurons. For this work, the ELMs were
initially trained with 500 neurons on each dataset. Thereafter,
the ELMs were iteratively trained with increasing number of
hidden layer neurons. This was done to determine the optimal
network-size that obtains the best classification accuracy. The
iterative steps increased the number of hidden neurons with
an additional 200 neurons until a maximum of 10 000.

The overall results were not harmonious with the ELMs.
The type-B cartooning method performed well on the IN-
RIA and SIGNI datasets. Poor results were expected on the
low-resolution NICTA dataset as with the SVMs. The edge
preserving filter appears to perform poorly on low-resolution
images. Moreover, the ELMs were very sensitive to the varying
depth sizes of the hidden layer and also the datasets used. For
instance, adding neurons would improve the performance of
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Fig. 5. Classification results of the CNNs classifier.

the original images at times, other times type-A or type-B
images. Thus leading to inconclusive outcomes. Favourably
to the supposition, ELMS performed well on both cartooned
images compared to the original images from the SIGNI
dataset.

C. Comvolutional Neural Networks experiments

Lastly, the supposition was tested on the third classifier,
the CNNs. The CNNs are known to classify images better
than classifiers that rely on man-made features. A thorough
description of this classifier can be from [6], [12]. In our case,
the AlexNet and the LeNet 5 architectures were tested. After
several attempts of training the AlexNet model, high classifi-
cation results could not be obtained. Perhaps the number of
parameters that needed to be trained were relatively large for
the small datasets used, even when employing a model that
was pre-trained on the ImageNet dataset [12]. Consequently,
the LeNet-5 architecture was selected. The architecture was
similar to the one used in [13]. The only difference was the
solver used, as the adaptive gradient (AdaGrad) solver was
selected instead of the stochastic gradient descent.

Unlike the previous classifiers, the CNNs can learn their
own feature maps from raw images. The choice of man-
made features for this classification problem may have lead
to a negative bias for the shallow learning classifiers. Because
the outcomes of the CNNs were more consistent on several
attempts, see Figure 5. On each attempt, the type-B SGB filter
was more favourable on the colour datasets than the infrared
dataset. The type-B filtering appears to degrade the quality of
the grayscale infrared. Perhaps the single-channel images, are
easily susceptible to the edge dislocation from the Gaussian
blur step.



D. Results Analysis

For the SVMs, across all datasets, the average results for
processed images (type-A and type-B) were 97.72%, com-
pared to the 97.51% for normal images, in favour of the
supposition by 0.21%. On the ELMs, the average results
for processed images were 94.15%, a disadvantage of 0.35%
to supposition. Then for the CNNs, the processed images
obtained 99.36%, marginally in disagreement with the suppo-
sition by 0.06%. Across all classifiers, the processed images
obtained 97.07% versus the 97.14% for normal images. The
performance of processed images was competitive with normal
images. When only considering the SVMs and CNNs, the
performance becomes in favour of the supposition by 0.07%.

III. CONCLUSION

This work proposed a method for enhancing the quality
of extracted edge features. Experiments were conducted with
several classifiers to test whether the proposed method can im-
prove the quality of edge-based features. The results show that
larger datasets with better image quality and better smoothing
filters are required to sufficiently test the supposition. The fact
that results on the smoothed images were competitive to those
obtained from the original images is encouraging for further
investigation on this supposition.

Therefore, future work entails the implementation and study
of more filters like the propagated image filter (PIF) and the
relative total variation (RTV). These filters seem to perform
well in preserving small object features and could overcome
the challenge in smoothing low-resolution images. The results
from the ELMs were unreliable and inconclusive. There-
fore, future work will focus on comparing CNN and SVM
based classifiers. Larger datasets like the ImageNet should
be acquired for training denser CNNs and for improving the
generalisation of classifiers. Transfer learning on some of the
recent CNN architectures such as the Inception-ResNet and
Inception V3 should also be considered.
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