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Abstract 
 

This study involves forecasting electricity demand for long-term planning purposes. Long-term 
forecasts for hourly electricity demands from 2006 to 2023 are done with in-sample forecasts from 
2006 to 2012 and out of sample forecasts from 2013 to 2023. Quantile regression (QR) is used to 
forecast hourly electricity demand at various percentiles. Three contributions of this study are: (1) 
that QR is used to generate long-term forecasts of the full distribution per hour of electricity 
demand in South Africa; (2) variabilities in the forecasts are evaluated and uncertainties around 
the forecasts can be assessed as the full demand distribution is forecasted and (3) probabilities of 
exceedance can be calculated, such as the probability of future peak demand exceeding certain 
levels of demand. A case study, in which forecasted electricity demands over the long-term 
horizon were developed using South African electricity demand data, is discussed. The aim of the 
study were: (1) to apply a quantile regression (QR) model to forecast hourly distribution of 
electricity demand in South Africa; (2) to investigate variabilities in the forecasts and evaluate 
uncertainties around point forecasts and (3) to determine whether the future peak electricity 
demands are likely to increase or decrease. The study explored the probabilistic forecasting of 
electricity demand in South Africa. The future hourly electricity demands were forecasted at 0.01, 
0.02, 0.03, …, 0.99 quantiles of the distribution using QR, hence each hour of the day would have 
99 forecasted future hourly demands, instead of forecasting just a single overall hourly demand as 
in the case of OLS. The findings are that the future distributions of hourly demands and peak 
daily demands would be more likely to shift towards lower demands over the years until 2023 
and that QR gives accurate long-term point forecasts with the peak demands well forecasted. QR 
gives forecasts at all percentiles of the distribution, allowing the potential variabilities in the 
forecasts to be evaluated by comparing the 50th percentile forecasts with the forecasts at other 
percentiles. Additional planning information, such as expected pattern shifts and probable peak 
values, could also be obtained from the forecasts produced by the QR model, while such 
information would not easily be obtained from other forecasting approaches. The forecasted 
electricity demand distribution closely matched the actual demand distribution between 2012 and 
2015. Therefore, the forecasted demand distribution is expected to continue representing the 
actual demand distribution until 2023. Using a QR approach to obtain long-term forecasts of 
hourly load profile patterns is, therefore, recommended. 
 
 
  



Introduction 
Electricity load is the amount of electricity that balances the amount generated with that drawn from the 

grid. In the absence of black-outs, load-shedding and availability of electricity from the generation from 

renewable electricity sources, the electricity load is equivalent to the electricity demand. Therefore, in this 

study, the hourly electricity demand is defined as the amount of electricity (load) in kW sent out every hour 

by Eskom to meet consumers’ demand. 

 

The 1996 census showed that only 57.6% of the South African households had access to electricity for 

lighting (Statistics South Africa 1998). The 2001 census showed that this percentage went up to 70.2% 

(Lehohla 2005). The 2007 Community Survey indicated that 80.1% of the South African households had 

access to electricity for lighting (Statistics South Africa 2008). The 2011 census showed that this percentage 

went up to 84.7% (Statistics South Africa 2011). These censuses and surveys indicate that the high 

percentages of new households that were connected to the electricity grid between 1996 and 2007 would 

imply that residential electricity demand would be expected to have increased during the same period. The 

percentage of new households connected to the grid stabilised between 2007 and 2011 and, therefore, 

residential electricity demand would be expected to have stabilised during this period. The shrinking South 

African economic growth between 2007 and 2015 could have contributed to a decline in electricity demand: 

South Africa experienced an average growth rate of approximately 5% in real terms between 2004 

and 2007. However, the period 2008 to 2012 only recorded average growth of just above 2%. 

(Statistics South Africa n.d.) 

 

The penetration of other sources of electricity such as renewables such as solar and wind, could also have 

contributed to a decline in electricity demand from Eskom. In addition, because of the lack of capacity in the 

generation of electricity experienced by Eskom in 2007 (Inglesi & Pouris 2010), some companies and 

households had to find other sources of electricity, which would have resulted in a decline in electricity 

demand from Eskom. Unfortunately, the actual size of the electricity demand market is still unknown 

because of the unavailability of certain types of data, such as renewable energy and other forms of electricity 

generation. The combined effect of all these changes in the demography, economy and usage patterns can be 

investigated using historical patterns, but contribute to uncertainties when trying to forecast future electricity 

demand. 

 

Uncertainties occur in estimation, prediction or in forecasting. When statisticians develop predictions 

(forecasts) for an uncertain future, they need to quantify the uncertainties around these for those that have to 

make decisions in the face of those uncertainties. Sigauke (2014) indicates that uncertainties in future 

electricity demand could emanate from increased technologies making use of electricity, population growth, 

general randomness in individual usage of electricity, seasonal effects, prevailing economic patterns, change 

in weather conditions, escalating costs, use of power saving electrical appliances and the growing sources of 

renewable energies. The inherent uncertainties in predictions imply that forecasts should ideally be 

probabilistic; in other words, they should take the form of probability distributions over future quantities or 

events (Gneiting & Katzfuss 2014). Probabilistic forecasts could take the form of quantiles, prediction 

intervals or density forecasts to quantify uncertainties in predictions. They are an essential ingredient of 

optimal decision-making (Gneiting & Katzfuss 2014). It is important to quantify the uncertainties around the 

demand forecasts for planning purposes, to avoid building unnecessary infrastructure and to ensure that 

future electricity demand is met. Tay and Wallis (2000) define density forecasts of the realisation of a 

random variable at some future time as estimates of the probability distribution of the possible future values 

of that variable. 

 

Hong, Wilson and Xie (2014) argue that forecasting is by nature a stochastic problem, but that most of the 

utilities are still developing and using point forecasts. They state that it would be better to use probabilistic 

forecasts that provide estimates of the full distribution of the possible future values as a way of quantifying 

the uncertainties in the forecasts. 

 

In the late 1880s, when lighting was the sole end use of electricity, the forecasting of electricity demand was 

straightforward (Hong & Shahidehpour 2015). Power generating companies would count the number of light 

bulbs they installed and planned to install and they would then roughly estimate the level of demand in the 



evening. As electric appliances such as electric irons, radios, television sets, geysers, stoves and washing 

machines were invented and commonly used in many households, the complexity of forecasting electricity 

demand grew. The penetration of air conditioners into homes and offices to regulate temperature within 

comfort zones, and industrial uses of electricity became important drivers of electricity demand. These 

drivers of electricity demand add complexity in electricity demand forecasting and create uncertainties 

around the forecasts. Electricity forecasting methods have evolved from counting light bulbs and 

engineering approaches which were based on the use of charts and tables, to manually forecasting future 

demand, to sophisticated forecasting techniques. The availability of powerful computers and statistical 

software today enables forecasters to produce more accurate forecasts through sophisticated forecasting 

methods. 

 

Electricity demand forecasts can be developed for short, medium- or long-term horizons, and they could be 

provided as point forecasts, which give one value at each time interval, or as probabilistic forecasts which 

give a full distribution of future values and therefore allow the assessment of uncertainties around the 

forecasts. Quantification of uncertainties around forecasts is even more important for long-term forecasts, 

because, as Sigauke and Chikobvu (2011) indicated, long-term decision-making in the electricity sector 

involves planning under substantial uncertainty. 

 

In the literature to date, short-term electricity demand forecasting has attracted substantial attention because 

of its importance for power system control, unit commitment and electricity markets. Medium- and long-

term forecasting have not received much attention, despite their value for system planning and budget 

allocation (Hyndman & Fan 2010). International literature on probabilistic load forecasting is very limited, 

and for load forecasting it is still dominated by short-term point forecasting. 

 

There are some literature available on long-term forecasting of annual electricity demand as well as peak 

electricity demand in South Africa (Inglesi-Lotz 2011; Koen, Magadla & Mokilane 2014; Rasuba, Khuluse 

& Elphinstone 2010; Sigauke 2014; Sigauke & Chikobvu 2011; Ziramba 2008). The models used to forecast 

electricity demand in South Africa do not forecast the full distribution of demand and most of them are for 

short-term electricity demand (Sigauke 2014 among others). The objectives of the study were (1) to apply a 

quantile regression (QR) model to forecast hourly distribution of electricity demand in South Africa; (2) to 

investigate variabilities in the forecasts and evaluate uncertainties around point forecasts and (3) to 

determine whether the future peak electricity demands are likely to increase or decrease. 

 

Methodology framework 
Weron and Misiorek (2004) indicate that forecasting models could be classified into two broad streams: 

those that use statistical methods [e.g., multiple regression, autoregressive (AR), autoregressive integrated 

moving average (ARIMA), autoregressive generalised autoregressive conditional heteroscedasticity (AR-

GARCH), jump diffusion, factor models, regime switching models, multilevel models, mixed models and 

semi-parametric models] and those that use computational intelligence techniques [such as fuzzy techniques, 

support vector machines and, in particular, artificial neural networks (ANNs)]. 

 

Statistical methods differ from ANN in that the former forecast the current value of a variable by using 

mathematical combination of the previous values of that variable and sometimes the previous values of 

exogenous factors (Weron & Misiorek 2004). Weron and Misiorek (2004) pointed out that the reviewers of 

ANN-based forecasting systems have concluded that much work still needs to be conducted before they are 

accepted as established forecasting techniques. ANN is considered a black-box modelling approach. In 

electricity demand forecasting, statistical models are attractive because physical interpretation may be 

attached to their components, and hence allow forecasters to understand behaviour (Weron & Misiorek 

2004). 

 

Suganthi and Samuel (2012) give a comprehensive review of demand forecasting models which are 

commonly used in the energy sector. Electricity demand data consist of a sequence of observations collected 

over equally spaced time periods (hourly) with no missing data. The observations are serially correlated. 

Statistical modelling approaches for forecasting electricity demand can be divided into three main groups. 

Firstly, there are approaches which consider demand as a univariate time series, that is, a load forecasting 



process which results in one forecasted value at each step, or point forecasts. Secondly, there are approaches 

which take each intraday period as a separate parametric regression and estimate each model’s parameters 

separately, ignoring the intraday correlation in the process. Thirdly, there are approaches which consider 

each intraday period as a separate parametric regression model and estimate model parameters together in a 

way that takes the intraday correlations into consideration. 

 

Within the univariate time series framework, the stochastic nature of electricity demand as a function of time 

has frequently been modelled with seasonal autoregressive integrated moving average (SARIMA) and state 

space models (Taylor, De Menezes & McSharry 2006). Mostly, electricity data exhibit not only non-

constant mean and variance, but also multiple seasonalities corresponding to daily, weekly, monthly and 

yearly periodicity. The assumption of homoscedasticity in SARIMA models is also inappropriate for the 

forecasting of electricity demand. Furthermore, SARIMA models are used for point forecasting and cannot 

forecast the full demand distribution. 

 

SARIMA models could be extended to a SARIMA-GARCH model to account for the possibility of 

heteroscedasticity. A GARCH modelling approach could be used to capture potential conditional 

heteroscedasticity in electricity data (Byström 2005; Taylor 2006). However, this modelling approach does 

not accommodate exogenous drivers of electricity demand, and is used for point forecasting. 

 

Seasonal autoregressive integrated moving average with exogenous variables (SARIMAX) models, also 

known as regression-SARIMA, have been used in load forecasting in order to incorporate important drivers 

of demand such as calendar variables and temperature (Bunn 1982; Suganthi & Samuel 2012; Weron 2007). 

This method uses an ordinary least squares regression (OLS) model which may be affected by outliers and 

could underestimate the peaks as it models the mean of the distribution. 

 

Structural time series (STS) models have also been successfully used in demand forecasting. STS modelling 

was developed by Harvey (1990) and it involves the decomposition of a time series into trend, seasonality, 

cycle and irregular (noise) components. This modelling approach can accommodate drivers of electricity 

demand like temperature, but is also used for point forecasting. 

 

Hyndman and Fan (2010) propose a semi-parametric additive model in the regression framework, but which 

includes nonlinear relationships and serially correlated errors. The proposed models allow for nonlinear and 

non-parametric terms using the framework of additive models. The authors applied this method to develop 

long-term probabilistic load forecasts. 

 

OLS regression models model the relationship between covariates X and the conditional mean of a response 

variable Y given X = x. Koenker and Bassett (1978) argue that what the regression curve does is to give a 

summary for the averages of the distributions corresponding to the set of Xs. One could go further and 

compute several different regression curves corresponding to the various percentage points of the 

distribution and thus get a more complete picture of the set (Koenker & Bassett 1978). Ordinarily this is not 

done, and so regression often gives a rather incomplete picture. In forecasting electricity demand, least 

squares regression models the mean of the electricity demand as the dependent variable. OLS regression 

determines coefficients 𝛼0 and 𝛼𝑖 which minimise: 

 

∑ [𝑦𝑖 − (𝛼0 + 𝛼𝑖𝑥𝑖)]2 .𝑛
𝑖          [Eqn 1] 

 

To apply an OLS regression model, the data must meet stringent assumptions such as that the residuals 

should be normally distributed, the observations should be independent and the variance of the residuals 

should be homoscedastic. As we are dealing with time series data the observations are not independent, and 

for electricity demand data, the variance is heteroscedastic. Therefore, some assumptions of OLS are 

violated in the time series data used in this study. 

 

In this article, QR is proposed for developing long-term probabilistic forecasts. QR was developed as an 

extension of OLS regression for estimating rates of change in all parts of the distribution of the response 

variable (Cade & Noon 2003). QR offers a comprehensive strategy for completing the regression picture and 
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it has been applied in ecology (Cade & Noon 2003). QR has been widely used in financial economics where 

the data are volatile and extremes are important to study. Gibbons and Faruqui (2014) applied QR 

methodology for forecasting the annual peak electricity demand. 

 

Cornec (2014) proposes QR as a way of estimating the distribution of forecasts, and uses the dispersion of 

the estimated quantiles for calculating an uncertainty index. QR imposes no normality assumption, allowing, 

for example, for fat-tailed distributions, which is useful for forecasting extreme events. In electricity demand 

forecasting, QR can be used to model the median, the 1st, 5th, 10th, 90th, 95th and 99th percentiles or all 

quantiles to describe the full distribution of forecasted electricity demand at each hourly value. QR attempts 

to find the coefficients 𝛼0 and 𝛼𝑖 which minimises: 

 

∑ 𝑓(𝑦𝑖
𝑛
𝑖 − (𝛼0 + 𝛼𝑖𝑥𝑖)) .         [Eqn 2] 

 

QR does not require any distribution assumptions regarding the population and can estimate the parameters 

non-parametrically (Koenker & Bassett 1982). A linear model for the 𝜏th quantile is given by: 

 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜖𝑖,  𝑖 = 1, … , 𝑛 ,        [Eqn 31] 

 

where 𝑥𝑖
𝑇 is the transposed (indicated by 𝑇) design matrix (matrix of covariates), 𝛽 is the regression 

coefficients and the 𝜏th quantile of 𝜖𝑖 is assumed to be zero. The standard QR model is given by: 

 

𝑄𝜏(𝑌|𝑋) =  𝑥𝑖
𝑇𝛽 ,          [Eqn 42] 

 

where 

 

𝑄𝜏(𝑌|𝑋) = inf{𝑦: 𝐹𝜏 (𝑦|𝑥𝑖) ≥ 𝜏} ,       [Eqn 53] 

 

is the conditional 𝜏th quantile of the response (𝑦𝑖) given the covariate (𝑥𝑖) and 𝑄𝜏(𝑌|𝑋) is non-decreasing 

function of 𝜏 for any given 𝑥. 𝛽 is the vector of parameters and is the marginal change in the quantile 

because of the marginal change in 𝑥𝑖. 

 

In estimating the QR model for a given quantile, we follow the ideas of Koenker (2005) and Yue and Rue 

(2011) who used the standard approach of Koenker and Bassett (1978) to estimate their QR model. QR 

minimises the tilted absolute function 𝜌𝜏(.), which they called the check-function (Maistre, Lavergne & 

Patilea 2017), which asymmetrically weights residuals from the model to a degree that depends upon 𝜏. 
 

𝜌𝜏(𝜖) = {
(1 − 𝜏)𝜖, 𝜖 < 0

𝜏𝜖, 𝜖 ≥ 0,
 0 < 𝜏 < 1 ;      [Eqn 64] 

 

𝜌𝜏(𝜖) is a continuous piecewise linear function and non-differentiable at 𝜖 = 0 but differentiable everywhere 

else (has directional derivative in all directions) (Yue & Rue 2011). This check-function ensures that all 𝜌𝜏 

are positive and the scale is based on the probability 𝜏. A linear model is estimated by solving: 

 

 𝛽̂(𝜏) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝜖ℛ𝑝  ∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
𝑇𝛽).𝑛

𝑖        [Eqn 75] 

 

This concept is extendable to any quantile, such as the 75th, 90th and 99th percentile. The QR estimator for 

𝛽 at quantile 𝜏 minimises the objective function: 

 

𝑄𝜏(𝛽) = 𝑚𝑖𝑛𝛽𝜖ℛ𝑝 {∑ 𝜏|𝑦𝑖 − 𝑥𝑖
𝑇𝛽| + ∑ (1 − 𝜏)|𝑦𝑖 − 𝑥𝑖

𝑇𝛽|𝑛
𝑖:𝑦𝑖<𝑥𝑖

𝑇𝛽 
𝑛
𝑖:𝑦𝑖≥𝑥𝑖

𝑇𝛽
}.   [Eqn 86] 

 

This is a non-differentiable function and there is no closed-form solution for 𝛽̂; instead these parameters can 

be found using a linear programming algorithm (Gibbons & Faruqui 2014). The minimisation is done for 

each subsection defined by 𝜌𝜏, where the estimate of the 𝜏th quantile function is achieved with the 

parametric function 𝑥𝑖
𝑇𝛽. 
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Features that characterise QR and differentiate it from other regression methods are: 

 QR computes several different regression curves corresponding to the various percentile points of the 

distribution and thus provides a more complete picture of the relationship between the response 

variable and the covariates. 

 Heteroscedasticity can be detected and, if the data are heteroscedastic, median regression estimators 

can be used instead of mean regression estimators. 

 Median regression is more robust to outliers than other regression methods that use mean estimators, 

and it is semi-parametric, therefore, avoiding assumptions about the parametric distribution of the 

error process. 

 

QR is, therefore, considered to be more suitable than other methods, given the type of data used, as well as 

its ability to provide the full distribution of forecasted electricity demand. 

 

Data and analysis 
The hourly electricity demand data for South Africa for the period 1997–2015 was provided by Eskom. For 

developing the long-term forecasting model, a transformed series was developed using a logarithmic 

transformation. The logarithmic transformation is convenient for turning a highly skewed variable into one 

that is more approximately normal (Benoit 2011). 

 

Hourly demands were forecasted from 2006 to 2023. The data from 2013 to 2015 were withheld in order to 

validate the model. The forecasts from 2006 to 2012 were then used as in-sample forecasts, whereas the 

forecasts from 2013 to 2023 were out of sample forecasts. 

 

Various time-related variables were used as covariates, namely day, public holidays, months, weekends, 

December break and seasons (see Table 1 for details). Lagged demand variables were included in the model 

to test whether suspected lagged demand effects from the high degree of diurnal activity in electricity usage 

were significant, that is, whether the South African consumers of electricity typically exhibit consistent daily 

patterns of usage (as in Farland 2013). For example, in the afternoon when people return from work, around 

19:00 h, they start cooking, watch TV and take bath and at this time the household electricity demand could 

go up. Fourier series or harmonic terms were used, where applicable, to capture the cycles inherent in the 

demand data. 

 

The future hourly electricity demands were forecasted at 0.01, 0.02, 0.03, … , 0.99 quantiles of the 

distribution using QR, hence each hour of the day would have 99 forecasted future hourly demands, instead 

of forecasting just a single overall hourly demand as in the case of OLS. To avoid graphs that are too busy 

and difficult to read, only the 1st, 50th and the 99th percentile graphs are shown and discussed. 

 

The uncertainties in the forecasts are captured by the interval between the 1st and 99th percentiles of the 

demand distribution, as this is the interval into which 98% of the possible future hourly demands are 

expected to fall. The wider the interval, the more uncertain we are about the forecasted hourly demand as the 

variability between the forecasts would be very high. The forecasts at the 50th percentile (median) are 

important because they could be used as point forecasts, namely, our best guess of demand at that certain 

hour. 

 

The density functions give the full distribution of the hourly electricity demand. The probability of the 

hourly demand between the two demand points say ‘a’ and ‘b’ is the area under the demand density function 

between the two points. The area could be calculated by integrating the density function between the two 

points. The probability of exceedance relates to the probability of electricity demand exceeding the specified 

hourly demand and this could also be calculated by integrating the density function from the specified 

demand and upwards. The forecasted density demand functions between 2013 and 2023 are compared. If the 

density curves shift towards the higher demands over time then an increase in future hourly demand is 

expected. If the shift is towards smaller demands over time then the decrease in future hourly demand is 

expected. 



 

The South African electricity demand has two daily peaks, especially noticeable in winter, namely a 

morning demand peak at around 08:00 h and an afternoon demand peak at around 19:00 h. As the winter 

peak represents the highest annual demand, this is important for planning electricity generation. Therefore, it 

is important to examine the demand densities of both morning and afternoon peak forecasts over the years. 

The morning peak density demand is generated from all possible demand forecasts at 07:00, 08:00 and 

09:00 h, whereas the afternoon peak density demand is generated from all possible demand forecasts at 

18:00, 19:00 and 20:00 h. The probability of the future peak electricity demand exceeding a certain value 

was then calculated by integrating the density functions. 

 

The performance of the QR model is evaluated by comparing the predicted demand density functions with 

the actual demand density functions. The predicted demand density is generated from all demand forecasts 

from 1st to 99th percentile of the demand distribution. If the forecasted demand density function closely 

tracks the actual demand density then it shows that the model is forecasting well and it is, therefore, reliable. 

The model is also evaluated by observing the closeness of the actual demand distribution to the predicted 

lower and upper 99% interval. If the interval is narrow, then the predictions exhibit sharpness. The mean 

absolute percentage error (MAPE) is used to compare the forecasts at the 50th percentile with the actual 

demands; this is mainly to determine how far the point forecasts are from the actual demands. 

 

Figures 1 and 2 depict the time series of the actual and logarithmic hourly demands, respectively, for the 

hourly electricity demand over the 1997–2015 period. During this period the highest demand reached was 

36 826 kW in 2011, whereas the minimum was 13 533 kW in 1998. 

 

The historical demand data from 1997 to 2015 indicate that the demand for electricity increased steadily 

between 1997 and 2007 (Figure 1). During this period, South Africa experienced accelerated economic 

growth and a large number of new households were connected to the grid as government wanted to make 

electricity accessible to all South Africans. The electricity demand from Eskom stabilised between 2007 and 

2012 and started declining in the latest 4 years until 2015 (see Figure 1). The decline in electricity demand 

from Eskom could partly be attributed to the shrinking economic growth between 2007 and 2015 and the 

growth of renewable sources of electricity. 

  



 

 
FIGURE 1: Electricity demand between 1997 and 2015 in South Africa. 

 

 

  



 

 
FIGURE 2: Adjusted electricity demand between 1997 and 2015 in South Africa. 

 

 

  



Table 1 provides a summary of all the variables considered in the modelling of hourly demand. The demand 

data have Periods 6, 12, 18 and 24 as shown in Figure 1-A2. The Fourier series terms were formed using 

these periods. 

 

  



TABLE 1: Variables used in the quantile regression. 

 
Variable Type of variable Scale Created dummy variables 

Demand Dependent Continuous - 

Newyear Independent Dichotomous 1 if day is 01 January; 0 otherwise 

Humanrights Independent Dichotomous 1 if day is 21 March; 0 otherwise 

FreedomDay Independent Dichotomous 1 if day is 27 April; 0 otherwise 

WorkersDay Independent Dichotomous 1 if day is 01 May; 0 otherwise 

YouthDay Independent Dichotomous 1 if day is 16 June; 0 otherwise 

HeritageDay Independent Dichotomous 1 if day is 24 September; 0 otherwise 

ReconciliationDay Independent Dichotomous 1 if day is 16 December; 0 otherwise 

ChristmasDay Independent Dichotomous 1 if day is 25 December; 0 otherwise 

GoodwillDay Independent Dichotomous 1 if day is 26 December; 0 otherwise 

Month1 Independent Dichotomous 1 if Month is January; 0 otherwise 

Month2 Independent Dichotomous 1 if Month is February; 0 otherwise 

Month3 Independent Dichotomous 1 if Month is March; 0 otherwise 

Month4 Independent Dichotomous 1 if Month is April; 0 otherwise 

Month5 Independent Dichotomous 1 if Month is May; 0 otherwise 

Month6 Independent Dichotomous 1 if Month is June; 0 otherwise 

Month7 Independent Dichotomous 1 if Month is July; 0 otherwise 

Month8 Independent Dichotomous 1 if Month is August; 0 otherwise 

Month9 Independent Dichotomous 1 if Month is September; 0 otherwise 

Month10 Independent Dichotomous 1 if Month is October; 0 otherwise 

Month11 Independent Dichotomous 1 if Month is November; 0 otherwise 

Sin6 Independent Continuous Sine term of Fourier series with Period 6 

Cos6 Independent Continuous Cosine term of Fourier series with Period 6 

Sin12 Independent Continuous Sine term of Fourier series with Period 12 

Cos12 Independent Continuous Cosine term of Fourier series with Period 12 

Sin18 Independent Continuous Sine term of Fourier series with Period 18 

Cos18 Independent Continuous Cosine term of Fourier series with Period 18 

Sin24 Independent Continuous Sine term of Fourier series with Period 24 

Cos24 Independent Continuous Cosine term of Fourier series with Period 24 

Lag70128 Independent Continuous The 1st time lag 

Lag70152 Independent Continuous The 2nd time lag 

Lag70176 Independent Continuous The 3rd time lag 

Lag70200 Independent Continuous The 4th time lag 

Lag70224 Independent Continuous The 5th time lag 

Lag70248 Independent Continuous The 6th time lag 

Sun Independent Dichotomous 1 if day is Sunday; 0 otherwise 

Mon Independent Dichotomous 1 if day is Monday; 0 otherwise 

Tues Independent Dichotomous 1 if day is Tuesday; 0 otherwise 

Wed Independent Dichotomous 1 if day is Wednesday; 0 otherwise 

Thurs Independent Dichotomous 1 if day is Thursday; 0 otherwise 

Fri Independent Dichotomous 1 if day is Friday; 0 otherwise 

Fribtwn Independent Dichotomous 1 if Friday preceded by a holiday; 0 otherwise 

Monbtwn Independent Dichotomous 1 if Monday preceded a holiday; 0 otherwise 

Lngwknd Independent Dichotomous Long weekend 

Dec_closure Independent Dichotomous 1 if period between 16 December and 01 January; 0 

otherwise 

Winter_schoolholiDay Independent Dichotomous 1 if period is during school closure in June/July; 0 otherwise 

Easter Independent Dichotomous 1 if day is Easter; 0 otherwise 

Winter Independent Dichotomous 1 if period is between June and August 

 



Sin, Sine term of Fourier series; 

Cos, Cosine term of Fourier series; 

Lag, time lag; 

Fribtwn, Friday preceded by holiday; 

Monbtwn, Monday preceded a holiday;  

Newyear, New year; Humanrights, Human rights day; FreedomDay, Freedom day; WorkersDay, Workers 

day; YouthDay, Youth day; HeritageDay, Heritage day; ReconciliationDay, Reconciliation day; 

ChristmasDay, Christmas day; GoodwillDay, Day of Goodwill; Sun, Sunday; Mon, Monday; Tues, 

Tuesday; Wed, Wednesday; Thurs, Thursday; Fri, Friday; Lngwknd, Long weekend; Dec_closure, 

December closure; Winter_SchoolholiDay, Winter school holiday. 
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Results 

Model assessment 
For each hour, the demand at the 1st to 99th percentiles was forecasted from 2006 to 2023, which translated 

into the full demand distribution being forecasted. 

 

The actual and predicted demand densities between 2012 and 2015 illustrated in Figure 3 were used to 

assess the model fit. If the predicted demand distribution is close to the actual demand distribution, then the 

forecasts are considered to be reliable. The closer the 1st and the 99th percentile points are to the actual 

demand, the better it is and this indicates the sharpness of the forecasts (Figures 4–6). The sharpness of the 

forecasts refers to how tightly the predicted distribution covers the actual distribution. 

 

The MAPE between the hourly demand forecasts at the 50th percentile and the actual hourly demand over 

the period of 4 years were below 5% and the overall MAPE was 2.77%, as shown in Table 2-A1. Lewis 

(1982) indicates that a MAPE of less than 10% can be classified as a highly accurate forecast. The QR 

model therefore provides very good demand forecasts at the 50th percentile. 

 

 

 
 

a) 

 



 
b)  



 
 

c) 

 

 



 
 

d) 

 

 

  

 

FIGURE 3: Comparison of actual and forecasted demand distributions: (a) 2012; (b) 2013; (c) 2014 and (d) 

2015. 

 

 

Further confirmation of the goodness of fit of the QR model is obtained by comparing the actual values to 

the full range of quantile predictions. 

 

Model estimates 
For illustration purposes, estimates for only three of the QR models (at 0.01, 0.5 and 0.99 quantile levels) 

are given in Table 1-A1. At the 5% level of significance, some variables in Table 1-A1 are significant at the 

certain percentile of the demand distribution, but insignificant at others. For example, at the 5% level of 

significance, the variable ‘Month1’ is significant at the 1st percentile, but not significant at the 99th 

percentile of the distribution. 

 

Probabilistic forecasts of the daily profiles over the years 
For illustration purposes, 4 days in June (22–25 June) were selected and their results from 2013 to 2015 

were discussed. (Note that June falls in the high-demand winter period of the year.) The different panels in 

Figure 4 give the hourly electricity demand of each of the 4 days in 2013. For each day, the green line 

represents hourly demands at the 1st percentile level of the distribution; these are the points below which 1% 

of all possible future hourly demands are expected to fall. The grey line represents future hourly demands at 

the 99th percentile of the demand distribution; these are the points above which 1% of the future hourly 

demands would fall and below which 99% of all possible future hourly demands are expected to fall. The 



blue circles represent the forecasted hourly demands at the 50th percentile and the red circles represent the 

actual hourly demands. Figures 5 and 6 give the hourly demand forecasts for the same 3 days in 2014 and 

2015, respectively. 

 

Figures 4–6 confirm that the demand forecasts at the 50th percentile are close to the actual hourly electricity 

demand in winter. 

 

 
a) 
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FIGURE 4: Distribution of forecasted daily electricity demand: (a) 22 June 2013, (b) 23 June 2013, (c) 24 

June 2013, (d) 25 June 2013. 
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FIGURE 5: Distribution of forecasted daily electricity demand: (a) 22 June 2014, (b) 23 June 2014, (c) 24 

June 2014, (d) 25 June 2014. 

 

 

 

 

 

Commented [JV6]: Please split the figure into four separate 
graphs: (a) (b), (c) and (d) – each one with its own x and y-axis 
headings and values, thank you. 
 
See Figure 3 mock-up as example 
 
Done 



 
a) 

 

 



 

b) 

 

 
c) 

 

Formatted: Centered



 
 

d) 

 

FIGURE 6: Distribution of forecasted daily electricity demand: (a) 22 June 2015, (b) 23 June 2015, (c) 24 

June 2015, (d) 25 June 2015. 

 

In addition to just using the 50th percentile as a ‘best guess’ or point forecast, information contained in the 

other quantile forecasts produce probabilistic information which may also be useful in the planning process. 

It can be seen from Figures 4–6 that the interval between the 1st and the 99th quantiles was in fact fairly 

narrow, and therefore the uncertainties around the point forecasts were not too large. 

 

Using probabilistic forecasts of hourly demand distributions for comparing demand over 

the years 
The hourly electricity demand distribution in South Africa is bimodal as shown in Figure 7. By comparing 

the demand density functions over the years, insight into expected shifts in patterns can be obtained. The 

forecasted demand distributions obtained from the QR models for the period investigated suggest that the 

hourly electricity demand from Eskom is more likely to shift towards lower demands over the years until 

2023 (Figure 7). The apparent year to year decline in electricity demand from Eskom between 2012 and 

2015 among others could be attributed to the increase in the number of households and companies 

generating their own electricity through renewable energies, the shrinking economic growth and the increase 

in electricity prices. The renewable electricity market in South Africa is growing. 

 

In addition, the forecasted hourly density demands (in Figures 7–9) could be used to calculate the 

probabilities of exceedance, for example, the probability of hourly demand exceeding 32 860 kW 

[exp(10.4)]. This probability of exceedance can be calculated from the area under the density curve 

comprising all demands ranging from 32 860 kW and above, and the area can be computed by integrating 

the density functions in Figure 7. The probability of demand exceeding 32 860 kW is less likely in 2023 than 
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it is in any previous year while 2015 had the highest probability of demand exceeding 32 860 kW in the 

period between 2013 and 2023 as shown in Figure 7. 

 

 
FIGURE 7: Distribution of forecasted hourly demand between 2013 and 2023. 

 

 

Finally, the forecasts obtained from QR can be used to investigate the expected future peak demands and 

their probability of exceedance over the years. The annual peak demands are very important for planning 

purposes, as these represent the maximum that would need to be supplied in an hour and if the power 

generating company could meet the daily peak hourly demand, it could meet any hourly demand. Figures 8 

and 9 suggest that the morning and afternoon peak demand distributions are more likely to shift towards 

lower demands over the years until 2023. 

 

 

 

 
 

 

FIGURE 8: The morning peak demand distributions. 



 
 
FIGURE 9: The afternoon peak demand distributions. 

  



 

Conclusions and discussion 
The daily electricity demand in South Africa generally has two peaks, more noticeable during winter than 

summer seasons. The morning demand peak occurs at around 08:00 h and the afternoon demand peak at 

around 19:00 h. OLS would most likely underestimate the peaks as it models the mean of the demand 

distribution while QR models demand at all percentiles of the demand distribution and therefore can provide 

better peak forecasts. In addition, as QR gives the full hourly demand distribution, the uncertainties around 

the forecasts are quantifiable. While the best guess of the future hourly electricity demand can be obtained 

from forecasted demands at the 50th percentile, QR gives forecasts at all percentiles of the distribution, 

allowing the potential variabilities in the forecasts to be evaluated by comparing the 50th percentile forecasts 

with the forecasts at other percentiles. Additional planning information, such as expected pattern shifts and 

probable peak values, could also be obtained from the forecasts produced by the QR model, while such 

information would not easily be obtained from other forecasting approaches. 

 

The first important finding presented in this article is that the demand forecasts at the 50th percentile from 

the QR model closely estimate the actual hourly demands (see the red and blue circles in Figure 4 and the 

MAPE values in Table 2-A1 in Appendix 1). The second important finding is that the distributions of hourly 

demand and the peak daily demand in South Africa are shifting towards lower demands over the years until 

2023 as shown in Figures 7–9. The third finding is that QR allows the assessment of uncertainties around 

point forecasts. This was illustrated by calculating the probability of forecasted hourly density demands (in 

Figures 7–9) exceeding 32 860 kW. The probability of demand exceeding 32 860 kW was found to be less 

likely in 2023 than in any previous year. 

 

The forecasted electricity demand distribution closely matched the actual demand distribution between 2012 

and 2015 as shown in Figure 3. Therefore, the forecasted demand distribution is expected to continue 

representing the actual demand distribution until 2023. Using a QR approach to obtain long-term forecasts 

of hourly load profile patterns is, therefore, recommended. 
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Appendix 1 
 

TABLE 1-A1: Selected quantile regression models. 
 Variables 1st percentile level 50th percentile level 99th percentile level 

Estimates 95% confidence limits Pr > |t| Estimates 95% confidence limits Pr > |t| Estimates 95% confidence limits Pr > |t| 

Intercept 8.1435 8.0515 8.2355 <0.0001 9.3791 9.351 9.4071 <0.0001 9.7052 9.6011 9.8093 <0.0001 

Newyear -0.1577 -0.1909 -0.1246 <0.0001 -0.1189 -0.1328 -0.105 <0.0001 -0.0308 -0.0661 0.0045 0.0872 

Humanrights -0.0626 -0.0999 -0.0252 0.001 -0.051 -0.0614 -0.0407 <0.0001 -0.0236 -0.0376 -0.0095 0.001 

FreedomDay -0.0612 -0.1149 -0.0076 0.0251 -0.0315 -0.0412 -0.0219 <0.0001 -0.0443 -0.0602 -0.0285 <0.0001 

WorkersDay -0.0386 -0.055 -0.0221 <0.0001 -0.0699 -0.0773 -0.0625 <0.0001 -0.064 -0.0817 -0.0463 <0.0001 

YouthDay -0.0903 -0.1129 -0.0676 <0.0001 -0.0566 -0.0695 -0.0436 <0.0001 -0.0485 -0.0641 -0.033 <0.0001 

HeritageDay -0.0711 -0.0924 -0.0498 <0.0001 -0.0532 -0.0618 -0.0447 <0.0001 -0.0355 -0.0604 -0.0107 0.0051 

Reconciliation Day 0.0251 0.0002 0.05 0.0478 -0.0008 -0.0093 0.0077 0.8546 0.0287 0.0059 0.0515 0.0137 

ChristmasDay -0.1253 -0.1635 -0.0872 <0.0001 -0.0844 -0.0981 -0.0706 <0.0001 -0.0586 -0.0782 -0.0389 <0.0001 

GoodwillDay -0.1014 -0.1377 -0.0652 <0.0001 -0.0941 -0.105 -0.0831 <0.0001 -0.0882 -0.1077 -0.0686 <0.0001 

Month1 -0.0703 -0.0784 -0.0622 <0.0001 -0.0095 -0.0117 -0.0073 <0.0001 0.0026 -0.0006 0.0058 0.1065 

Month2 0.003 -0.0022 0.0082 0.2596 0.0078 0.0059 0.0096 <0.0001 0.0037 0.0008 0.0066 0.0116 

Month3 -0.0015 -0.0074 0.0043 0.6131 -0.0006 -0.0026 0.0014 0.5641 0.0083 0.0048 0.0117 <0.0001 

Month4 -0.0063 -0.0132 0.0006 0.0741 -0.0102 -0.0121 -0.0084 <0.0001 0.0103 0.0063 0.0143 <0.0001 

Month5 -0.0087 -0.016 -0.0014 0.0203 0.0019 -0.0009 0.0047 0.1837 0.0376 0.032 0.0431 <0.0001 

Month6 -0.0196 -0.0314 -0.0079 0.001 0.0212 0.0172 0.0251 <0.0001 0.0453 0.0378 0.0528 <0.0001 

Month7 -0.0158 -0.0283 -0.0033 0.0133 0.0115 0.0072 0.0158 <0.0001 0.0336 0.0244 0.0428 <0.0001 

Month8 -0.0499 -0.06 -0.0398 <0.0001 -0.0016 -0.0053 0.0021 0.3961 0.0199 0.0102 0.0295 <0.0001 

Month9 0.0097 0.0054 0.014 <0.0001 0.0127 0.0111 0.0144 <0.0001 0.0155 0.0118 0.0192 <0.0001 

Month10 0.0168 0.0125 0.021 <0.0001 0.0105 0.0088 0.0121 <0.0001 0.0057 0.0027 0.0088 0.0002 

Month11 0.0106 0.0057 0.0156 <0.0001 0.0106 0.0088 0.0125 <0.0001 0.0113 0.0083 0.0144 <0.0001 

Sin6 0.0048 0.0035 0.0061 <0.0001 0.0113 0.0109 0.0118 <0.0001 0.0178 0.0169 0.0188 <0.0001 

Cos6 -0.0079 -0.0092 -0.0065 <0.0001 -0.0059 -0.0063 -0.0054 <0.0001 -0.0026 -0.0036 -0.0017 <0.0001 

Sin12 -0.0594 -0.0611 -0.0577 <0.0001 -0.0689 -0.0694 -0.0684 <0.0001 -0.0681 -0.0694 -0.0669 <0.0001 

Cos12 0.0004 -0.0011 0.0019 0.5896 -0.0124 -0.0128 -0.0119 <0.0001 -0.0218 -0.0228 -0.0208 <0.0001 

Sin18 -0.0013 -0.0025 -0.0001 0.033 0.0003 -0.0002 0.0007 0.2228 -0.0004 -0.0012 0.0004 0.305 

Cos18 0.0008 -0.0005 0.002 0.2318 0.0002 -0.0003 0.0006 0.5197 0.0008 0.0001 0.0016 0.0358 

Sin24 -0.0648 -0.0663 -0.0632 <0.0001 -0.0746 -0.0751 -0.074 <0.0001 -0.0719 -0.0731 -0.0708 <0.0001 

Cos24 -0.0779 -0.0792 -0.0766 <0.0001 -0.0822 -0.0827 -0.0817 <0.0001 -0.0846 -0.0862 -0.083 <0.0001 

Lag70128 0.0086 -0.0196 0.0367 0.5496 -0.0835 -0.0945 -0.0724 <0.0001 -0.1164 -0.1331 -0.0997 <0.0001 



Lag70152 -0.0002 -0.0282 0.0279 0.9912 -0.0421 -0.0537 -0.0306 <0.0001 0.0071 -0.0147 0.0289 0.524 

Lag70176 -0.091 -0.1134 -0.0686 <0.0001 -0.1039 -0.1165 -0.0913 <0.0001 -0.1735 -0.194 -0.1529 <0.0001 

Lag70200 -0.0629 -0.0871 -0.0386 <0.0001 -0.0194 -0.0309 -0.0078 0.001 0.076 0.0543 0.0977 <0.0001 

Lag70224 0.4198 0.3919 0.4476 <0.0001 0.4573 0.444 0.4705 <0.0001 0.2638 0.2464 0.2811 <0.0001 

Lag70248 -0.08 -0.1024 -0.0575 <0.0001 -0.127 -0.1378 -0.1161 <0.0001 -0.0007 -0.0166 0.0152 0.9309 

Sun -0.012 -0.0166 -0.0073 <0.0001 -0.0164 -0.0181 -0.0146 <0.0001 -0.0201 -0.0227 -0.0174 <0.0001 

Mon 0.0215 0.0172 0.0258 <0.0001 0.0096 0.0074 0.0118 <0.0001 0.0211 0.0173 0.0249 <0.0001 

Tues 0.0314 0.0264 0.0363 <0.0001 0.0198 0.018 0.0217 <0.0001 0.0146 0.0116 0.0176 <0.0001 

Wed 0.033 0.0281 0.038 <0.0001 0.0153 0.0133 0.0174 <0.0001 0.0089 0.0055 0.0123 <0.0001 

Thurs 0.0341 0.0298 0.0385 <0.0001 0.0159 0.0141 0.0177 <0.0001 0.0105 0.0069 0.0141 <0.0001 

Fri 0.0314 0.0274 0.0354 <0.0001 0.0155 0.0137 0.0173 <0.0001 0.0062 0.0035 0.0088 <0.0001 

Fribtwn -0.1295 -0.1758 -0.0833 <0.0001 -0.0673 -0.0738 -0.0608 <0.0001 -0.0348 -0.0686 -0.001 0.0438 

Monbtwn -0.0115 -0.0416 0.0187 0.4561 -0.0289 -0.0357 -0.0222 <0.0001 0.0006 -0.0136 0.0148 0.933 

Lngwknd -0.0579 -0.0666 -0.0492 <0.0001 -0.0264 -0.0288 -0.0239 <0.0001 -0.0175 -0.0222 -0.0128 <0.0001 

Dec_closure -0.1011 -0.1117 -0.0906 <0.0001 -0.0563 -0.0593 -0.0533 <0.0001 -0.0405 -0.0449 -0.0361 <0.0001 

Winter_SchoolholiDay -0.0069 -0.0117 -0.0021 0.0051 0.0045 0.0028 0.0062 <0.0001 0.0078 0.0044 0.0112 <0.0001 

Easter -0.0826 -0.0996 -0.0656 <0.0001 -0.0502 -0.0546 -0.0458 <0.0001 -0.0495 -0.0578 -0.0412 <0.0001 

Winter 0.0411 0.029 0.0532 <0.0001 0.0341 0.0303 0.038 <0.0001 0.042 0.0332 0.0508 <0.0001 

 

Sin, Sine term of Fourier series; 

Cos, Cosine term of Fourier series; 

Lag, time lag; 

Fribtwn, Friday preceded by holiday; 

Monbtwn, Monday preceded a holiday;  

Newyear, New year; Humanrights, Human rights day; FreedomDay, Freedom day; WorkersDay, Workers day; YouthDay, Youth day; HeritageDay, Heritage 

day; ReconciliationDay, Reconciliation day; ChristmasDay, Christmas day; GoodwillDay, Day of Goodwill; Sun, Sunday; Mon, Monday; Tues, Tuesday; Wed, 

Wednesday; Thurs, Thursday; Fri, Friday; Lngwknd, Long weekend; Dec_closure, December closure; Winter_SchoolholiDay, Winter school holiday. 
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TABLE 2-A1: Mean absolute percentage error – Forecasts at the 50th percentile. 

 
Hours 2012 2013 2014 2015 Average 

0 2.92 2.23 3.29 3.93 3.09 

1 2.75 1.83 3.02 3.67 2.82 

2 2.67 1.65 2.82 3.58 2.68 

3 2.58 1.54 2.64 3.37 2.53 

4 2.46 1.72 2.35 3.02 2.39 

5 3.85 3.67 3.68 3.84 3.76 

6 4.30 4.15 3.99 4.32 4.19 

7 2.76 3.44 3.88 4.62 3.68 

8 2.15 2.55 2.89 3.47 2.77 

9 2.15 2.26 2.54 2.65 2.40 

10 2.35 1.88 1.97 2.38 2.15 

11 2.59 1.79 1.91 2.48 2.19 

12 2.47 1.72 2.21 2.83 2.31 

13 2.50 1.79 2.49 3.15 2.48 

14 2.55 1.79 2.55 3.20 2.52 

15 2.58 1.75 2.30 2.96 2.40 

16 2.41 1.94 2.14 2.93 2.36 

17 2.85 3.23 2.80 3.60 3.12 

18 3.34 4.29 3.67 3.67 3.74 

19 2.19 2.42 2.12 2.55 2.32 

20 2.42 2.22 1.98 2.83 2.36 

21 2.19 2.21 2.22 3.31 2.48 

22 2.15 2.22 2.84 3.81 2.76 

23 2.60 2.19 3.23 3.93 2.99 

Average 2.66 2.35 2.73 3.34 2.77 

 

Source: created by me  
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Appendix 2 
 

 

 
FIGURE 1-A2: The autocorrelation plot: Correlation of hourly electricity demand data. 

 

Source: created by me 

 

 

Commented [JV17]: Please provide an editable graph – with 
y and x-axis present and the x-axis values horizontal (not vertical) 
 
Note:  
The graph is correctly done. The x axis is correctly given by lag 
and it is horizontal and the autocorrelation is correctly shown on 
the y axis as depicted by the graph.  


