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Abstract

Continuously welded heavy haul railway lines experience very large stresses due to high axle loads and varying
environmental conditions. These extreme loading conditions can lead to the development of cracks and eventually
rail breaks, which are the most common cause of train derailment. The need to detect rail breaks led to development
of the Ultrasonic Broken Rail Detection (UBRD) System, making it possible to detect only complete rail breaks. Current
research efforts are aimed at detecting damage such as cracks before a complete break occurs, at long range using
guided wave ultrasound. A method to quantify the probability of detecting various damage types would be very
useful to evaluate system performance during the development phase. Cracks growing in rails can be detected by
comparing numerous ultrasonic signals, recorded using a permanently installed monitoring system, over a period of
time. These signals will contain reflections from benign structural features (such as welds) which do not represent
damage, as well as potentially small but growing reflections from damage. Variations in environmental and
operational conditions may produce large changes in the ultrasonic signals thereby masking the damage. The
challenge is therefore to distinguish between these benign signals and the true damage signals. This task is further
complicated by the fact that obtaining monitoring data for different damage scenarios under varying environmental
and operational conditions is virtually impossible since detected defects in sections of an operational rail track are
immediately removed and replaced with new rail. Laboratory damage experiments are also not possible due to end
reflections from short sections of rail dominating the response. Therefore, damage signals can only practically be
obtained from numerical simulations. The aim of this paper is to demonstrate a procedure to combine simulated
damage signals and measured data obtained under operational conditions, concentrating specifically on temperature
variations. Unsupervised machine leaning algorithms for extracting and classifying signal features associated with
different sources from measurements are then be applied to detect and classify the synthetic damage. Receiver
Operator Characteristic curves, which plot the probability of detection against the probability of false alarm, are then
estimated for selected damage scenarios.

Keywords: Probability of Damage Detection, Environmental and Operational Conditions, Receiver Operator
Characteristic Curves, Guided Wave Ultrasound
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1. Introduction

The development of a reliable monitoring system for defect detection in rails is still of great significance to the rail
industry as it guarantees a solution to the problem of train derailments caused by broken rails. An example of a currently
existing system which was developed to fulfil such a purpose is the Ultrasonic Broken Rail Detection System (UBRD).
The system detects complete breaks in railway lines by relying on ultrasonic guided waves propagating the head of the
rail, transmitted from and received by piezoelectric transducers, [1]. Since April 2016, the installation of the UBRD
system on the Sishen-Saldanha Ore line has reported seven rail breaks and a number of major flaws [2] which were
recorded as false alarms as the system was designed to detect only complete breaks. Detecting complete rail breaks
and halting train operation generally prevents derailments. Rail breaks can occur under a train and in this case can cause
derailment of part of the train. Detecting a crack before the rail breaks would avoid these derailments and also allow
condition based maintenance. Current research efforts are aimed at upgrading the UBRD system to include this
functionality while relying on multiple propagating modes to achieve complete coverage of the rail cross-section. The
employment of multiple ultrasonic guided wave modes would allow for damage detection anywhere in the rail, Fig 1.

Damage detection in the head Damage detection in the web Damage detection in the foot

Fig. 1. Guided wave modes for detecting damage in different regions of the rail

Damage in rails can be detected from ultrasonic signals containing reflections from different structural features
where some of the reflections would be due to any damage present in the rail. The procedure would be to collect
measured signals from a rail track for a specified time frame over which damage is growing; and then employ
appropriate algorithms to distinguish and classify the reflections according to their sources; and thereafter determine
and locate the reflection coming from damage. Liu et.al [3] demonstrated the application of this procedure to pipelines
where unsupervised machine learning algorithms were adopted to detect corrosion. Although superficially, application
of this proposed technique to pipe and rail problems may appear similar, there are important differences which present
challenges in rail applications. Specifically in our application, many more modes are excited and propagation is generally
dispersive in our case, making signal processing significantly more challenging. Furthermore, variations in environmental
(e.g. temperature) and operational (e.g. passing trains) conditions may produce large changes in the ultrasonic signals
thereby masking the damage. The challenge is therefore to distinguish between these benign signals and the true
damage signals. One major challenge which we would like to address in this paper is that of obtaining ultrasonic data
containing damage signatures. For both pipelines and rail tracks, obtaining monitoring data for different damage
scenarios under varying environmental and operational conditions is virtually impossible since detected defects in
sections of an operational waveguide are immediately removed and replaced. The alternative has thus been to carry
out a series of laboratory experiments while inducing a growing damage on the waveguide test piece. However,
laboratory damage experiments are also not possible for rail tracks due to end reflections from short sections of rail
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dominating the response. Therefore, damage signals for rails can only practically be obtained from numerical
simulations.

The aim of this paper is to demonstrate a procedure to combine simulated damage signals and measured data
obtained under operational conditions, concentrating specifically on temperature variations. A method to quantify the
probability of detecting various damage types would be very useful to evaluate system performance during the
development phase. We thus further extend the study to quantify the performance of damage detection schemes by
estimating the probabilities of detection and false alarms.

Firstly, field measurements from a damage-free rail subjected to real operational conditions are obtained. Thereafter
artificial damage signals computed using numerical simulations, and modified to represent the appropriate operational
conditions, are added to the experimental signals. To this point, the three damage detection schemes which have been
identified and proven to be effective when applied to GWU are Baseline Subtraction, Independent Component Analysis
and Singular Value Decomposition [4]. In this paper we only explore the baseline subtraction and ICA methods when
applied to a synthetic dataset (field measurements combined with simulated damage) respectively, to classify and
detect the imposed damage. Using Receiver Operator Characteristic (ROC) curves, the probabilities of detection are
determined for the selected damage scenario. In future studies, ROC curves will be used to improve the reliability of
the system by minimizing false alarms and optimizing true detections.

Guided waves are complex in nature due to their multi-modal and dispersive nature. To account for this, several pre-
processing techniques are employed to simplify the recorded signals. Dispersion causes a pulse of energy to spread out
in space and time as it propagates. A dispersion compensation procedure [5] which maps measurements from the time
domain to distance domain, is thus carried out with the purpose of removing the dispersion effects from guided wave
signals. In the mapping process, dispersed signals are compressed to their original shape. To account for variations
brought by temperature change, the measurements are brought to the same baseline by applying a temperature
compensation strategy proposed by Harley et.al [6]. Thus far, other operational and environmental conditions (EOCs)
affecting field measurements are not yet known and thus still needs to be determined and compensated for.

The procedure steps followed to detect damage and quantify the probabilities of detection are summarized in Fig 2.

Guided wave Dispersion
ultrasonic data compensation (time
froman to distance domain)

operational rail
for varying EOCs

Threshold

Synthetic dataset EOC Damage e
— Classification for

with growing Pl compensation detection RoC )
damage computation
Damage
. & Dispersion
modelling and .
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simulation

Fig. 2. The procedure steps employed to detect damage and quantify the probabilities of detection
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2. Problem Description

Consider a schematic representation of an operational railway line plotted in Fig 3. The track is made up of an
effectively infinite number of 240m long sections, joined with aluminothermic welds. Suppose that just after weld C,
there exist a growing defect (i.e. a crack) within the rail, which we would like to detect and quantify its probability of
detection.
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Fig. 3. Schematic representation of an operational railway line with damage just after weld C

The rail track is exposed to real operational (passing trains and external noise) and environmental (i.e. temperature
variations) conditions. The ultrasonic data measured from the rail will therefore be influenced by these conditions.

3. Synthetic dataset with growing damage

To be able to detect the damage in the rail using machine learning algorithms, we need to collect a set of similar
measurements over a specified period of time during which damage progression is monitored. To solve the hypothetical
problem in Section 2, we employ the procedure in Fig 2 to superimpose simulated defect signals on measured data from
an operational rail, to generate the synthetic dataset.

A dataset of 50 guided wave reflection signals under different environmental and operational conditions were
collected from a damage free operational rail way line using a piezoelectric transducer attached to the rail. It is assumed
that during the time frame over which these signals are collected, a damage would initiate and grow in the rail. The
guided waves in the rail were excited using a transmitting transducer driven using a 17.5 Hanning windowed tone burst
voltage signal at a center frequency of 35kHz. The same transducer was also used as a sensor to receive the reflections.
Fig 4a below shows two measurement signals collected at different temperature readings. In Fig 4b, the signals are
mapped to the distance domain using Wilcox’s dispersion compensation procedure [5] combined with a simple filtering
procedure to remove unwanted frequencies from the signals. The wave packet envelope is plotted in Fig 4b. The
reflections from the welds are clearly visible in the distance domain.
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Fig. 4. Field measurement signals at two temperature conditions in the (a) time domain and (b) distance domain after dispersion
compensation

194



@SACAM 2018

For each of the 50 collected measurements, a number of 50 growing damage signals were respectively superimposed
to generate a synthetic dataset for a linear growth pattern damage progression scenario. Simple damage signals were
simulated by simply propagating a 17.5 Hanning windowed tone burst signal at a center frequency of 35kHz to the
appropriate location distance. The modelling technique proposed by [7], which combines the traditional 3D finite
element procedure [8] for modelling the near field surrounding the damage and the Semi-Analytical Finite Element
(SAFE) method [9], [10] for modelling the ingoing and outgoing waves from the damage region is still under evaluation
and will be adopted in future to achieve realistic damage models. A displacement field equation adopted from the Semi-
Analytical Finite Element method [9] for modelling ultrasonic wave propagation was used to produce damage signals in
the time domain:

y(t) = yo(t)e  k@iz-0n "

where y, is the tone burst signal, t is the time, w is the frequency, k is the wavenumber of the propagated mode
computed from a SAFE model of the rail and z is the distance through which the wave is propagated.

EOC conditions such as temperature will have a random variation for the measurements in the dataset while damage
size will grow from the measurement collected at the earliest time to the last measurement collected. When a
waveguide in which an ultrasonic signal propagates, is subjected to a temperature change, the time of arrivals for the
reflections will change. A temperature increase will cause the reflections to arrive late in time. This is because
temperature change slightly changes the Young’s Modulus of the rail. The Young’s Modulus of the rail is related to
temperature through:

E=E0—g—i(T—To) (2)

where E, and T, are respectively the Young’s Modulus and temperature of the baseline distance of propagation. A
change in the Young’s Modulus causes a change in the group velocity of the wave in the rail. If this change is not included
in the dispersion compensation procedure the distance to a reflector will appear to change with temperature. The
apparent propagation distance for a specified temperature reading was evaluated as:

z=(1+0.000137T)z, (3)

Z, is the baseline propagation distance. Equation 3 was deduced after evaluating the influence of temperature on
field measurements. The damage signatures were thus added at the correct location by including temperature effects
in the model using equations 2, 3 and 1. Other EOCs which are not yet known at this point, are still to be investigated.
The inclusion of damage to field measurements was carried out in the distance domain after performing dispersion
compensation.

Figures 5a and 5b shows the temperature history and damage locations for each measurement in the dataset,
respectively. In Fig 5¢c and Fig 5d the first, 26th and last measured signals are plotted, with measurement 1 having no
damage and measurement 50 having the maximum damage with an amplitude of 0.35. This maximum damage is small
compared to cracks that have led to broken rails and was selected to compare the capabilities of different detection
methods.

195



11" South African Conference on Computational and Applied Mechanics, 17-19 Sept 2018

Measurement no.

40 331.6
35 3314
30 § 331.2
< —_—
g 25 gﬂ 331
15 g
- 5
20 330.8
15 330.6
3304
10
0 0
(b)
1 T T T T T 0.5 ;
| | | | | |
| | | | |
|
| i | i | 1
e - Ak I _
0.8 T : : T 0.4 |
) | | | | 1)
< |
E | | | | E ;
= | | | | =
2 06F----- 4--=---- e B -t--=-- t-—--=-7 [ !
g
z | | | | E
- | | | | -
s l l l l s
= 04F----- 4= == B e o i e B~
: | | | | :
z A :\ | : 2
oal i il el
| ‘ |
‘ e ‘ ‘ ‘ M‘\ m \w ‘\\
: “‘“ H\ |‘MM“ ‘l“\‘\\‘”w‘luw‘h‘\‘H‘ ““\ ”1 ! M”“H UH‘H‘ ‘““'“Ml}‘\" “l l“H ‘ H
0 : :
0 100

frequencies from the signals and temperature was compensated for using the method proposed by [6].
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Fig. 5. (a) The temperature history and (b) damage locations for a dataset of 50 signals with (c) & (d) a plot of the first, 26t and
last signals in the dataset

As the synthetic dataset was generated for different practical EOCs, it is significant to compensate for this EOC
difference before any further processing. This will help to improve the performance of the damage detection technique
used. EOC compensation will help to bring the measurements to the same baseline by aligning the reflections such that
when the residuals are evaluated, only the components associated with damage will remain. Thus far, the known EOCs
affecting guided waves in rails are noise from a moving train, stochastic noise and temperature. Other EOCs are not yet
known and proven to exist. Noise from a moving train was compensated for during the data collection stage by avoiding
taking measurements when a train was passing. Stochastic noise was accounted for by filtering out unwanted
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4. Damage Detection

To identify damage signatures from the synthetic data, we employ the baseline subtraction and ICA methods. In the
Conventional Baseline Subtraction (CBS) method, 50 residual signals are computed by subtracting the first collected
measurement (the baseline signal without damage) in the dataset from subsequent measurements with growing
damage. Thereafter, we fit m (where mis the number of discrete distance points in the signals) linear regression models
to these residual signals at each distance point x using the least squares equation, where the intercepts () and slopes
(Bx1) are determined from equation 4.

Txi = Pxo + Prati + & (4)

The B, values are then used to identify the growing damage contained in the measurement signals. Detail explanations
of this method are included in [3].

In the ICA method explained in [11], damage is detected using blind source separation where the unknown source
signals (independent components - ICs) are determined from the synthetic dataset using independent component
analysis where a principal component analysis method is first employed. It is expected that damage should be extracted
as one of the independent components. We detect damage by determining the independent component associated
with an increasing weighting factor.

5. Receiver Operator Characteristic Curves

After the damage identification process is complete, the performance of the detection technique is quantified using
ROC curves.

To compute ROC, we first identify the correct damage region as explained above for CBS and ICA, respectively. Then
we classify all the points in the correct damage region as the Total True Positives (TTPs). All the other points in the signal
are classified as the Total False Positives (TFPs). The next step is then threshold classification, where we sweep a
threshold line from zero to one on a normalised residual signal (or independent component signal for ICA). For every
threshold value, all the points above the threshold that falls within the true damage region are classified as the True
Positives (TPs) and the rest of the points above the threshold line but not within the true damage region are classified
as the False Positives (FPs). Then a point on the ROC curve is associated with each threshold value and evaluated from
equations 5 and 6. Fig 6 below illustrates the computation of a ROC curve.

Probability of false alarm (FPR) = % (5)
Probability of detection (TPR) = % (6)
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Fig. 6. An illustration for ROC curve computation

197



6. Results

6.1. Baseline Subtraction
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In Figs 7a-c, the residuals obtained from baseline subtraction, linear regression models (equation 4) and the slope
(Bx1 from equation 4) are plotted, respectively. The reflection associated with damage was identified using the S,
coefficient. It is evident from the results that the temperature compensation strategy did not yield good results for
measured data. With perfect compensation, it is expected that that residual signals will have approximately zero
amplitude everywhere else except at the damage location. The residual signals still contain non-damage related
components. This is a clear indication that temperature is not the only EOC present in the measurements hence the
temperature compensation strategy did not successfully bring the signals to the same baseline, with damage growth
being the only difference.
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The ROC curves evaluated using the signals in Figs 7a-c are superimposed on the same plot in Fig 7d. The ROC curves
shows that the damage signatures could be detected though there is a possibility of a false alarm. When the threshold
is above the damage region, no damage will be detected. Fig 6d shows that the 8,; coefficient has a better performance.
It is expected that after compensating for all the EOCs present, the performance level will improve drastically as the
residual signals will mainly contain the damage reflection.

6.2. ICA

Using the ICA method, the principal components (PCs), independent components (ICs) and their associated weighting
factors were evaluated. The weighting factors were used to identify the components related to damage with the
expectation that it should have an increasing or decreasing trend.
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In Fig 8, the results from ICA are plotted, showing only the first ten components from the 50 which were computed.
Principal component analysis is the first step to signal separation. In Fig 8a, the weld components can be clearly seen in
PC 1, the damage component appears in PCs 5 and 10 while noise is present in almost all the components. In Fig 8b, we
see that a further separation of the reflections according to their sources was performed. The weighting factors in Fig
8c shows a random variation with WF 6 showing a global increasing trend, indicating that IC 6 in Fig 8b is the damage
component.

The ROC curve for IC 6 is plotted in Fig 9 below. It is seen that the performance here is better than that obtained for
baseline subtraction method.
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Fig. 9. (a) The damage component IC 6, and (b) the associated ROC performance

7. Conclusion and future work

The aim of this paper was to demonstrate a procedure to combine simulated damage signals and measured data
obtained under operational conditions; detect the damage signatures, and thereafter quantify the performance of the
damage detection schemes by estimating the probabilities of detection and false alarms. Simulated damage signals and
experimental field signals were combined using superposition. Damage was detected using a baseline subtraction
method and an ICA method, respectively. The performance of damage detection was quantified using ROC curves. It
was found that the ICA method performed better than the baseline subtraction method.

Although temperature was the only EOC considered, it was evident from the results that other EOCs are also present
and are highly influencing the guided wave signals. This led to the performance of the damage detection techniques
being bad and indicating high probabilities of false alarms.

It is expected that if we can compensate for all the EOCs present, the damage detection schemes (baseline subtraction
and ICA) will be able to detect damage with a higher probability of detection and less false alarms. Other EOCs thus
needs to be identified and properly compensated for.

This paper has successfully demonstrated a framework for designing monitoring systems to detect damage in rails.
In future work, the framework will be improved by considering the following:

° Using the method of Benmeddour [7] to model realistic damage signals.

° Identify other EOCs affecting the monitoring data and establish ways to compensate for them.

° Adopt non-linear ICA methods for damage detection. It is expected that non-linear ICA will
compensate for the non-linearities brought by EOC variations.
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