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Abstract. Description logics have been extended in a number of ways to
support defeasible reasoning in the KLM tradition. Such features include
preferential or rational defeasible concept subsumption, and defeasible
roles in complex concept descriptions. Semantically, defeasible subsump-
tion is obtained by means of a preference order on objects, while defeasi-
ble roles are obtained by adding a preference order to role interpretations.
In this paper, we address an important limitation in defeasible extensions
of description logics, namely the restriction in the semantics of defeasible
concept subsumption to a single preference order on objects. We do this
by inducing a modular preference order on objects from each preference
order on roles, and use these to relativise defeasible subsumption. This
yields a notion of contextualised rational defeasible subsumption, with
contexts described by roles. We also provide a semantic construction for
and a method for the computation of contextual rational closure, and
present a correspondence result between the two.

1 Introduction

Description Logics (DLs) [2] are decidable fragments of first-order logic that serve
as the formal foundation for Semantic-Web ontologies. As witnessed by recent
developments in the field, DLs still allow for meaningful, decidable extensions,
as new knowledge representation requirements are identified. A case in point is
the need to allow for exceptions and defeasibility in reasoning over logic-based
ontologies [6, 5, 4, 15, 12, 13, 19, 21, 23–25, 29, 30, 34, 36]. Yet, DLs do not allow for
the direct expression of and reasoning with different aspects of defeasibility.

Given the special status of concept subsumption in DLs in particular, and the
historical importance of entailment in logic in general, past research efforts in this
direction have focused primarily on accounts of defeasible subsumption and the
characterisation of defeasible entailment. Semantically, the latter usually takes
as point of departure orderings on a class of first-order interpretations, whereas
the former usually assume a preference order on objects of the domain.

Recently, we proposed decidable extensions of DLs supporting defeasible
knowledge representation and reasoning over ontologies [19, 21, 22]. Our proposal
built on previous work to resolve two important ontological limitations of the
preferential approach to defeasibility in DLs — the assumption of a single pref-
erence order on all objects in the domain of interpretation, and the assumption
that defeasibility is intrinsically linked to arguments or conditionals [18, 20].
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We achieved this by introducing non-monotonic reasoning features that any
classical DL can be extended with in the concept language, in subsumption
statements and in role assertions, via an intuitive notion of normality for roles.
This parameterised the idea of preference while at the same time introducing
the notion of defeasible class membership. Defeasible subsumption allows for the
expression of statements of the form “C is usually subsumed by D”, for example,
“Chenin blanc wines are usually unwooded”. In the extended language, one can
also refer directly to, for example, “Chenin blanc wines that usually have a wood
aroma”. We can also combine these seamlessly, as in: “Chenin blanc wines that
usually have a wood aroma are usually wooded”. This cannot be expressed in
terms of defeasible subsumption alone, nor can it be expressed w.l.o.g. using
typicality-based operators [8, 26, 27] on concepts. This is because the semantics
of the expression is inextricably tied to the two distinct uses of the term ‘usually’.

Nevertheless, even this generalisation leaves open the question of different,
possibly incompatible, notions of defeasibility in subsumption, similar to those
studied in contextual argumentation [1, 3]. In the statement “Chenin blanc wines
are usually unwooded”, the context relative to which the subsumption is normal
is left implicit — in this case, the style of the wine. In a different context such as
consumer preference or origin, the most preferred (or normal, or typical) Chenin
blanc wines may not correlate with the usual wine style. Wine x may be more
exceptional than y in one context, but less exceptional in another context. This
represents a form of inconsistency in defeasible knowledge bases that could arise
from the presence of named individuals in the ontology. The example illustrates
why a single ordering on individuals does not suffice. It also points to a natural
index for relativised context, namely the use of preferential role names as we
have previously proposed [19]. Using role names rather than concept names to
indicate context has the advantage that constructs to form complex roles are
either absent or limited to role composition.

In this paper, we therefore propose to induce preference orders on objects
from preference orders on roles, and use these to relativise defeasible subsump-
tion. This yields a notion of contextualised defeasible subsumption, with contexts
described by roles. The remainder of the present paper is structured as follows: in
Section 2, we provide a summary of the required background on ALC, the proto-
typical description logic and on which we shall focus in the present work. In Sec-
tion 3, we introduce an extension of ALC to represent both defeasible constructs
on complex concepts and contextual defeasible subsumption. In Section 4, we
address the most important question from the standpoint of knowledge represen-
tation and reasoning with defeasible ontologies, namely that of entailment from
defeasible knowledge bases. In particular, we present a semantic construction of
contextual rational closure and provide a method for computing it. Finally, with
Section 5 we conclude the paper.

We shall assume the reader’s familiarity with the preferential approach to
non-monotonic reasoning [31, 33, 37]. Whenever necessary, we refer the reader to
the definitions and results in the relevant literature.
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2 The description logic ALC
The (concept) language of ALC is built upon a finite set of atomic concept
names C, a finite set of role names R and a finite set of individual names I such
that C, R and I are pairwise disjoint. With A,B, . . . we denote atomic concepts,
with r, s, . . . role names, and with a, b, . . . individual names. Complex concepts
are denoted with C,D, . . . and are built according to the following rule:

C ::= > | ⊥ | A | ¬C | C u C | C t C | ∀r.C | ∃r.C

With LALC we denote the language of all ALC concepts.
The semantics of LALC is the standard set theoretic Tarskian semantics. An

interpretation is a structure I := 〈∆I , ·I〉, where ∆I is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI of ∆I , role names r to binary relations rI over ∆I , and individual
names a to elements of the domain ∆I , i.e., AI ⊆ ∆I , rI ⊆ ∆I ×∆I , aI ∈ ∆I .
Define rI(x) := {y | (x, y) ∈ rI}. We extend the interpretation function ·I to
interpret complex concepts of LALC in the following way:

>I := ∆I , ⊥I := ∅, (¬C)I := ∆I \ CI

(C uD)I := CI ∩DI , (C tD)I := CI ∪DI

(∃r.C)I := {x ∈ ∆I | rI(x) ∩ CI 6= ∅}, (∀r.C)I := {x ∈ ∆I | rI(x) ⊆ CI}

Given C,D ∈ LALC , C v D is called a subsumption statement, or general
concept inclusion (GCI), read “C is subsumed by D”. C ≡ D is an abbreviation
for both C v D and D v C. An ALC TBox T is a finite set of subsumption
statements and formalises the intensional knowledge about a given domain of
application. Given C ∈ LALC , r ∈ R and a, b ∈ I, an assertional statement (asser-
tion, for short) is an expression of the form a : C or (a, b) : r. An ALC ABox A
is a finite set of assertional statements formalising the extensional knowledge
of the domain. We shall denote statements, both subsumption and assertional,
with α, β, . . .. Given T and A, with KB := T ∪A we denote an ALC knowledge
base, a.k.a. an ontology.

An interpretation I satisfies a subsumption statement C v D (denoted I 

C v D) if and only if CI ⊆ DI . I satisfies an assertion a : C (respectively,
(a, b) : r), denoted I 
 a : C (respectively, I 
 (a, b) : r), if and only if aI ∈ CI
(respectively, (aI , bI) ∈ rI).

An interpretation I is a model of a knowledge base KB (denoted I 
 KB)
if and only if I 
 α for every α ∈ KB. A statement α is (classically) entailed
by KB, denoted KB |= α, if and only if every model of KB satisfies α.

For more details on Description Logics in general and on ALC in particular,
the reader is invited to consult the Description Logic Handbook [2].

3 Contextual defeasibility in DLs

In this section, we introduce an extension of ALC to represent both defeasible
constructs on complex concepts and contextual defeasible subsumption. The
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logic presented here draws on the introduction of defeasible roles [19] and recent
preliminary work on context-based defeasible subsumption for SROIQ [21, 22].

3.1 Defeasible constructs

Our previous investigations of defeasible DLs included parameterised defeasible
constructs on concepts based on preferential roles, in the form of defeasible value
and existential restriction of the form

∨∼r.C and −∼−|r.C. Intuitively, these concept
descriptions refer respectively to individuals whose normal r-relationships are
only to individuals from C, and individuals that have some normal r-relationship
to an individual from C. However, while these constructs allowed for multiple
preference orders on (the interpretation of) roles, only a single preference order
on objects was assumed. This was somewhat of an anomaly, which we address
here by adding context-based orderings on objects that are derived from prefer-
ential roles [21]. Briefly, each preferential role r, interpreted as a strict partial
order on the binary product space of the domain, gives rise to a context-based
order on objects as detailed in Definition 3 below.

The (concept) language of defeasible ALC, or dALC, is built according to the
following rule:

C ::= > | ⊥ | A | ¬C | C u C | C t C | ∀r.C | ∃r.C |
∨∼r.C | −∼−|r.C

With LdALC we denote the language of all dALC concepts.
The extension of ALC we propose here also adds contextual defeasible sub-

sumption statements to knowledge bases. Given C,D ∈ LdALC and r ∈ R, C@∼rD
is a defeasible subsumption statement or defeasible GCI, read “C is usually sub-
sumed by D in the context r”. A defeasible dALC TBox D is a finite set of
defeasible GCIs. A classical dALC TBox T is a finite set of (classical) subsump-
tion statements C v D (i.e., T may contain defeasible concept constructs, but
not defeasible concept inclusions).

This begs the question of adding some version of “contextual classical sub-
sumption” to the TBox, but, as we shall see in Section 3.2, this simply reduces
to classical subsumption.

Given a classical dALC TBox T , an ABox A and a defeasible dALC TBox D,
from now on we letKB := T ∪D∪A and refer to it as a defeasible dALC knowledge
base (alias defeasible ontology).

3.2 Preferential semantics

We shall anchor our semantic constructions in the well-known preferential ap-
proach to non-monotonic reasoning [31, 33, 37] and its extensions [8, 9, 7, 11, 16–
18], especially those in DLs [15, 19, 28, 35].

Let X be a set and let < be a strict partial order on X. With min<X :=
{x ∈ X | there is no y ∈ X s.t. y < x} we denote the minimal elements of X
w.r.t. <. With #X we denote the cardinality of X.
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Definition 1 (Ordered Interpretation). An ordered interpretation is a
tuple O := 〈∆O, ·O,�O〉 such that:

• 〈∆O, ·O〉 is an ALC interpretation, with AO ⊆ ∆O, for each A ∈ C, rO ⊆
∆O ×∆O, for each r ∈ R, and aO ∈ ∆O, for each a ∈ I, and

• �O:= 〈�O1 , . . . ,�O#R〉, where �Oi ⊆ rOi × rOi , for i = 1, . . . ,#R, and such
that each �Oi is a strict partial order and satisfies the smoothness condi-
tion [31].

As an example, suppose C := {A1, A2, A3}, R := {r1, r2}, I := {a1, a2, a3},
and O = 〈∆O, ·O,�O〉, with ∆O = {xi | 1 ≤ i ≤ 9}, AO1 = {x1, x4, x6},
AO2 = {x3, x5, x9}, AO3 = {x6, x7, x8}, rO1 = {(x1, x6), (x4, x8), (x2, x5)}, rO2 =
{(x4, x4), (x6, x4), (x5, x8), (x9, x3)}, aO1 = x5, aO2 = x1, aO3 = x2, and �O1 =
{(x4x8, x2x5), (x2x5, x1x6), (x4x8, x1x6)} and�O2 = {(x6x4, x4x4), (x5x8, x9x3)}.
(For the sake of readability, we shall henceforth sometimes write tuples of the
form (x, y) as xy.) Figure 1 below depicts the r-ordered interpretation O. In the
picture,�O1 and�O2 are represented, respectively, by the dashed and the dotted
arrows. (Note the direction of the �O-arrows, which point from more preferred
to less preferred pairs of objects. Also for the sake of readability, we omit the
transitive �O-arrows.)

O :
∆O

AO
1 AO

2

AO
3

xa2
1 xa3

2
x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

Fig. 1. A dALC ordered interpretation.

Given O = 〈∆O, ·O,�O〉, the intuition of ∆O and ·O is the same as in a stan-
dard DL interpretation. The intuition underlying each of the orderings in �O
is that they play the role of preference relations (or normality orderings), in a
sense similar to that introduced by Shoham [37] with a preference on worlds in a
propositional setting and as investigated by Kraus et al. [31, 33] and others [11,
14, 26]: the pairs (x, y) that are lower down in the ordering �Oi are deemed as
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the most normal (or typical, or expected, or conventional) in the context of (the
interpretation of) ri.

In the following definition we show how ordered interpretations can be ex-
tended to interpret the complex concepts of the language.

Definition 2 (Concept Interpretation). Let O = 〈∆O, ·O,�O〉, let r ∈ R

and let rO|xi := rOi ∩ ({x} × ∆O) (i.e., the restriction of the domain of rOi to
{x}). The interpretation function ·O interprets dALC concepts as follows:

>O := ∆O; ⊥O := ∅;
(¬C)O := ∆O \ CO;
(C uD)O := CO ∩DO;
(C tD)O := CO ∪DO;
(∀r.C)O := {x | rO(x) ⊆ CO};
(
∨∼r.C)O := {x | min�Or (r

O|x)(x) ⊆ CO};
(∃r.C)O := {x | rO(x) ∩ CO 6= ∅};
(−∼−|r.C)

O := {x | min�Or (r
O|x)(x) ∩ CO 6= ∅}.

If, as in Definition 2, the role name r is not indexed, we use r itself as subscript
in �Or . It is not hard to see that, analogously to the classical case,

∨∼ and −∼−| are
dual to each other.

Definition 3 (Satisfaction). Let O = 〈∆O, ·O,�O〉, r ∈ R, C,D ∈ LdALC,
and a, b ∈ I. Define ≺Or ⊆ ∆O ×∆O as follows:

≺Or := {(x, y) | (∃(x, z) ∈ rO)(∀(y, v) ∈ rO)[((x, z), (y, v)) ∈ �Or ]}.

The satisfaction relation 
 is defined as follows:

O 
 C v D if CO ⊆ DO;
O 
 C @∼rD if min≺Or C

O ⊆ DO;
O 
 a : C if aO ∈ CO;
O 
 (a, b) : r if (aO, bO) ∈ rO.

If O 
 α, then we say O satisfies α. O satisfies a defeasible knowledge base KB,
written O 
 KB, if O 
 α for every α ∈ KB, in which case we say O is a model
of KB. We say C ∈ LdALC is satisfiable w.r.t. KB if there is a model O of KB
s.t. CO 6= ∅.

It follows from Definition 3 that, if �Or = ∅, i.e., if no r-tuple is preferred to
another, then @∼r reverts to v. This reflects the intuition that the context r be
taken into account through the preference order on rO. In the absence of any
preference, the context becomes irrelevant. This also shows why the classical
counterpart of @∼r is independent of r — context is taken into account in the
form of a preference order, but preference has no bearing on the semantics of v.

The following result, of which the proof extends that in the classical case to
deal with preferences, will come in handy in Section 4.2:
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Lemma 1. dALC ordered interpretations are closed under disjoint union.

Lemma 2 below shows that every preferential role interpretation gives rise to
a preference order on objects in the domain. Conversely, Lemma 3 shows that
every strict partial order on objects in the domain∆O can be obtained from some
strict partial order on the interpretation of a new role name as in Definition 3.
This means that the more traditional preference order on all objects in the
domain is a special case of our proposal.

Lemma 2. Let O = 〈∆O, ·O,�O〉, r ∈ R and let ≺Or be as in Definition 3.
Then ≺Or is a strict partial order on ∆O.

Proof. We show that ≺Or is (i) transitive, (ii) irreflexive and (iii) antisymmetric.
(i) Suppose (x, y) ∈≺Or and (y, z) ∈≺Or . Then ∃(x, u) ∈ rO and ∃(y, v) ∈ rO

such that (∀(z, v′) ∈ rO)[((x, u), (y, v)) ∈�Or and ((y, v), (z, v′)) ∈ �Or ]. Since
�Or is transitive, (x, z) ∈≺Or . Hence ≺r is transitive.

(ii) Suppose (x, x) ∈≺Or , then ∃(x, y) ∈ rO such that ((x, y), (x, y)) ∈�Or ,
which contradicts the irreflexivity of �Or . Hence ≺Or is irreflexive.

(iii) Suppose (x, y) ∈≺Or and (y, x) ∈≺Or . Then (∃(x, z) ∈ rO)(∃(y, u) ∈
rO[((x, z), (y, u)) ∈�Or and ((y, u), (x, z)) ∈�Or ], which contradicts the asym-
metry of �. Hence ≺Or is asymmetric (antisymmetric and irreflexive). ut

Lemma 3. Let O = 〈∆O, ·O,�O〉, and let ≺ be a strict partial order on ∆O.
Let O′ be an extension of O with fresh role name r ∈ R added, such that O′ 

> v ∃r.>, and �O′r := {((x, z), (y, v)) | x ≺ y and (x, z), (y, v) ∈ rO′}. Define
≺O′r as in Definition 3. Then ≺ =≺O′r .

Proof. Suppose (x, y) ∈ ≺. Then x and y are both in the domain of rO
′
, and

((x, z), (y, v)) ∈ �O′r for all (x, z), (y, v) ∈ rO
′
. Therefore (x, y) ∈ ≺O′r . Con-

versely, suppose (x, y) ∈ ≺O′r . Then (∃(x, z) ∈ rO′)(∀(y, v) ∈ rO′)[((x, z), (y, v)) ∈
�O′r ]. Since y is in the domain of rO

′
, (x, y) ∈ ≺. ut

Corollary 1. Let O′, ≺ and r be as in Lemma 3, and let @∼ be defined by:
O′ 
 C @∼D if and only if min≺ C

O′ ⊆ DO
′
. Then @∼r has the same semantics

as @∼.

Corollary 1 states that, in the special case where the domain of a new desig-
nated context-providing role includes all objects, contextual defeasible subsump-
tion coincides with defeasible subsumption based on a single preference order.
For the more general parameterised case, consider the role hasOrigin, which links
individual wines to origins. Wine y is considered more exceptional than x w.r.t.
its origin if it has some more exceptional origin link than x, and none that are
less exceptional.

Contextual defeasible subsumption @∼r can therefore also be viewed as defea-
sible subsumption based on a preference order on objects in the domain of rO,
bearing in mind that, in any given interpretation, it is dependent on �Or . For
the remainder of this paper, we use @∼ as abbreviation for @∼r, where r is a new
role name introduced as in Lemma 3.



8 Katarina Britz and Ivan Varzinczak

This raises the question whether a preference order on objects in the range
of rO could be considered as an alternative. In a more expressive language al-
lowing for role inverses, @∼inv(r) achieves this goal [21], but in dALC, this would
have to be added as an additional language construct.

Proposition 1. For every r ∈ R, @∼r is ampliative and non-monotonic:

• Ampliativity: for every O, if O 
 C v D, then O 
 C @∼rD;
• Non-monotonicity: it is not generally the case that, for every O, if O 

C @∼rD, then O 
 C u E @∼rD for every E ∈ LdALC.

The following result, of which the proof is analogous to that in the single-
ordering case [12], shows that contextual defeasible subsumption is indeed an
appropriate notion of non-monotonic subsumption:

Lemma 4. For every r ∈ R, @∼r is a preferential subsumption relation on
concepts in that the following rules (a.k.a. KLM-style postulates or properties)
hold for every ordered interpretation O, i.e., whenever O satisfies the rules’ an-
tecedent, it satisfies the consequent as well:

(Ref) C @∼rC (LLE)
C ≡ D, C @∼rE

D @∼rE
(And)

C @∼rD, C @∼rE
C @∼rD u E

(Or)
C @∼rE, D @∼rE
C tD @∼rE

(RW)
C @∼rD, D v E

C @∼rE
(CM)

C @∼rD, C @∼rE
C uD @∼rE

We now turn to a class of ordered interpretations that are of special im-
portance in non-monotonic reasoning, namely modular interpretations. A strict
partial order is called a modular order if its set-theoretic complement is a tran-
sitive relation.

Definition 4 (Modular Interpretation). A modular interpretation is an or-
dered interpretation O := 〈∆O, ·O,�O〉, where �Or is modular, for each r ∈ R.

We call an ordered model of a knowledge base KB which is a modular inter-
pretation a modular model of KB. It turns out that if the preference order �Or
on the interpretation of r is modular, then the defeasible subsumption @∼r it
induces is also rational:

Lemma 5. For every r ∈ R, @∼r is a rational subsumption relation on concepts
in that every modular interpretation O satisfies the following rational mono-
tonicity property:

(RM)
C @∼rD, C 6@∼r¬C ′

C u C ′ @∼rD
.

The proof of this lemma is along the lines of that for rationality in the single-
ordering case [12] and we do not provide it here.
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3.3 Modelling with contexts

The motivation for defeasible knowledge bases is to represent defeasible knowl-
edge, and to reason over defeasible ontologies. We conclude this section with
an illustration of the different aspects of defeasibility that can be expressed in
dALC. We first consider defeasible existential restriction:

Cheninblanc u −∼−| hasAroma.Wood v ∃hasStyle.Wooded

This statement is read: “Chenin blanc wines that normally have a wood aroma
are wooded”. That is, any Chenin blanc wine that has a characteristic wood
aroma, has a wooded wine style. For an example of defeasible subsumption,
consider the statement

Cheninblanc@∼∃hasAroma.Floral

where @∼ is as in Corollary 1, which states that Chenin blanc wines usually have
some floral aroma. That is, the most typical Chenin blanc wines all have some
floral aroma. Similarly,

Cheninblanc@∼∀hasOrigin.Loire

states that Chenin blanc wines usually come only from the Loire Valley. Now
suppose we have a Chenin blanc wine x, which comes from the Loire Valley but
does not have a floral aroma, and another Chenin blanc wine y which has a floral
aroma but comes from Languedoc. No model of this ontology can simultaneously
have x ≺ y w.r.t. origin and y ≺ x w.r.t. aroma. There can therefore be no model
that accurately models reality.

This is precisely the limitation imposed by having only a single ordering on
objects, as is broadly assumed by preferential approaches to defeasible DLs [14,
15, 26, 28, 29], and the motivation for introducing context-based defeasible sub-
sumption. Although the two defeasible statements are not inconsistent, the pres-
ence of both rules out certain intended models. In contrast, with contextual
defeasible subsumption, both subsumption statements can be expressed and x
and y can have incompatible preferential relationships in the same model:

Cheninblanc@∼hasAroma∃hasAroma.Floral
Cheninblanc@∼hasOrigin∀hasOrigin.Loire

Note that this knowledge base cannot be changed to:

Cheninblanc v −∼−|hasAroma.Floral
Cheninblanc v

∨∼hasOrigin.Loire
as the latter states that every Chenin blanc wine has a characteristic floral aroma
and is usually exclusive to the Loire Valley. This rules out the possibility of a
Chenin blanc without a floral aroma, or one that comes only (or just typically)
from Languedoc.
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We can also add subsumption statements indexed by different contextual
roles. For example,

Cheninblanc@∼ ∃hasAcidity.(Medium t High)
Cheninblanc@∼hasOrigin∃hasAcidity.High

states that Chenin blanc wines usually have a medium or high acidity, whereas
Chenin blanc wines of typical origin have a high acidity.

4 Entailment in dALC

Given a defeasible dALC knowledge base KB, we are interested in the reason-
ing task of entailment of statements from KB. That is, given the knowledge
specified in KB, how do we decide what other subsumption statements follow
from KB? In Section 4.1, we first introduce the natural generalisation of entail-
ment to a preferential setting. Thereafter we consider the additional assumption
of modularity on preferential models. This serves as motivation for our semantic
characterisation of rational entailment in Section 4.2.

4.1 Preferential entailment

In order to get to a definition of entailment for dALC, an obvious starting point
is to adopt a Tarskian notion thereof:

Definition 5 (Preferential Entailment). A statement α is preferentially en-
tailed by a defeasible dALC knowledge base KB, written KB |=pref α, if every
ordered model of KB satisfies α.

When assessing how appropriate a notion of entailment is, a task we shall
devote time to in this section, the following definitions come in handy, as it will
become clear in the sequel:

Definition 6. A defeasible dALC knowledge base KB is called preferential if it
is closed under the preferential rules in Lemma 4.

Definition 7 (Preferential Closure). Let KB be a defeasible dALC knowledge
base. With

KB∗pref :=
⋂
{KB′ | KB ⊆ KB′ and KB′is preferential}

we denote the preferential closure of KB.

Intuitively, the preferential closure of a defeasible dALC knowledge base KB
corresponds to the ‘core’ set of statements that hold given those in KB. It pro-
vides an alternative, and, in our context, quite convenient, way to look at en-
tailment, as the following result shows:
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Lemma 6. Let KB be a defeasible dALC knowledge base and let α be a state-
ment. Then KB |=pref α iff α ∈ KB∗pref .

Hence, preferential entailment and preferential closure are two sides of the
same coin, mimicking an analogous result for preferential reasoning in both the
propositional [31] and the DL [12, 15] cases. A further feature of preferential
closure (and, therefore, of preferential entailment) is the following:

Lemma 7. KB∗pref is preferential.

In other words, preferential entailment ensures that the set of statements
(in particular the @∼r-ones) that follow from the knowledge base satisfies the
dALC versions of the basic KLM-style properties for defeasible reasoning (cf.
Lemma 4).

Of course, preferential entailment is not always desirable, one of the reasons
being that it is monotonic, courtesy of the Tarskian notion of consequence it
relies on (see Definition 5). In most cases, as witnessed by the great deal of
work in the non-monotonic reasoning community, a move towards rationality is
in order. Thanks to the definitions above and the result in Lemma 5, we already
know where to start looking for it:

Definition 8 (Modular Entailment). A statement α is modularly entailed
by a defeasible dALC knowledge base KB, written KB |=mod α, if every modular
model of KB satisfies α.

We say a defeasible dALC knowledge base KB is rational if it is closed un-
der the preferential rules in Lemma 4 and the rational mononotonicity rule in
Lemma 5.

Definition 9 (Modular Closure). Let KB be a defeasible dALC knowledge
base. With

KB∗mod :=
⋂
{KB′ | KB ⊆ KB′ and KB′is rational}

we denote the modular closure of KB.
Just as in the preferential case, it turns out modular closure and modular

entailment coincide:

Lemma 8. Let KB be a defeasible dALC knowledge base and let α be a state-
ment. Then KB |=mod α iff α ∈ KB∗mod.

Unfortunately, modular closure (and modular entailment) falls short of pro-
viding us with an appropriate notion of non-monotonic entailment. This is so
because it coincides with preferential closure, as the following result, adapted
from a well-known similar result in the propositional case [33, Theorem 4.2],
shows.

Lemma 9. KB∗mod = KB
∗
pref .

More fundamentally, this means the set of @∼-statements that are modularly
entailed by a knowledge base need not satisfy the rational monotonicity property,
since KB∗mod (or KB

∗
pref) is not, in general, rational. In what follows, we overcome

precisely this issue.
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4.2 Rational entailment

In this section, we introduce a definition of semantic entailment which, as we
shall see, is appropriate in the light of the discussion above. The constructions
we are going to present are inspired by the work by Booth and Paris [10] in
the propositional case and those by Britz et al. [12] and Giordano et al. [29,
30] in a single-ordered preferential DL setting. (We shall give a corresponding
proof-theoretic characterisation of such a notion of entailment in Section 4.3.)

Let KB be a defeasible knowledge base and let ∆ be a fixed countably infinite
set. We define OKB∆ := {O = 〈∆O, ·O,�O〉 | O 
 KB and O is modular and
∆O = ∆}. The following result shows that the set OKB∆ characterises modular
entailment:

Lemma 10. For every KB, every C,D ∈ LdALC and every r ∈ R, KB |=mod

C @∼rD iff O 
 C @∼rD, for every O ∈ OKB∆ .

Since ∆ is countable, for every O ∈ OKB∆ , we can partition ∆ × ∆ into a
sequence of layers (L0, . . . , Ln, . . .), where, for each i ≥ 0, Li := 〈Lr1i , . . . , L

r#R

i 〉,
and such that, for every x, y ∈ ∆ and every r ∈ R, (x, y) ∈ Lr0 iff (x, y) ∈
min�r

rO and (x, y) ∈ Lri+1 iff (x, y) ∈ min�r
(rO \

⋃
0≤j≤i L

r
j). (That these

constructions are well defined follows from the fact that for every r ∈ R, �r is
smooth.)

Definition 10 (Height of a pair). Let O = 〈∆O, ·O,�O〉, let x, y ∈ ∆O and
let r ∈ R. The height of (x, y) in O w.r.t. r is denoted hO(x, y, r) and is equal
to i iff (x, y) ∈ Lri .

We can now use the set OKB∆ as a springboard to introduce a version of
‘canonical’ modular interpretation.

Definition 11 (Big modular interpretation). Let KB be a defeasible knowl-
edge base and define OKB⊕ := 〈∆O

KB
⊕ , ·O

KB
⊕ ,�O

KB
⊕ 〉, where

• ∆O
KB
⊕ :=

⊕
O∈OKB∆

∆O, i.e., the disjoint union of the domains from OKB∆ ,
where each O = 〈∆O, ·O,�O〉 ∈ OKB∆ has the elements x, y, . . . of its domain
renamed as xO, yO, . . . so that they are all distinct in ∆O

KB
⊕ ;

• xO ∈ AO
KB
⊕ iff x ∈ AO;

• (xO, yO′) ∈ rO
KB
⊕ iff O = O′ and (x, y) ∈ rO;

• (xO, yO′)�
OKB⊕
r (x′O, y

′
O′) iff hO(x, y, r) < hO′(x

′, y′, r).

The proofs for the two lemmas below follow from the definition of OKB⊕ :

Lemma 11. For every C ∈ LdALC, xO ∈ CO
KB
⊕ iff x ∈ CO.

Lemma 12. For every r ∈ R, hOKB⊕ (xO, yO, r) = hO(x, y, r).

These results, together with the fact that dALC modular interpretations are
closed under disjoint union (Lemma 1), allow us to show the following:
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Lemma 13. OKB⊕ is a modular model of KB.

Given OKB⊕ , we can then define contextual modular orderings on the do-
main ∆O

KB
⊕ in the same way as in Definition 3.

Armed with the definitions and results above, we are now ready to provide
an alternative definition of entailment in dALC:

Definition 12 (Rational Entailment). A statement α is rationally entailed
by a knowledge base KB, written KB |=rat α, if OKB⊕ 
 α.

That such a notion of entailment indeed deserves its name is witnessed by
the following result:

Lemma 14. Let KB be a defeasible knowledge base. For every r ∈ R, {C @∼rD |
OKB⊕ 
 C @∼rD} is rational.

4.3 Computing contextual rational closure

In the remaining of the section, we discuss a known instance of entailment for
defeasible reasoning that meets all the requirements of rational entailment. It is
a generalisation of the DL version of the propositional rational closure studied
by Lehmann and Magidor [33], to deal with context-based rational defeasible
entailment. We present a proof-theoretic characterisation here, based on the
work of Casini and Straccia [24, 25]; an alternative semantic characterisation
of rational closure in DLs (without contexts) was proposed by Giordano and
others [29, 30].

Rational closure is a form of inferential closure based on modular entailment
|=mod, but it extends its inferential power. Such an extension of modular entail-
ment is obtained formalising what is called the presumption of typicality [32,
Section 3.1]. That is, we always assume that we are dealing with the most typi-
cal possible situation compatible with the information at our disposal. We first
define what it means for a concept to be exceptional in a given context:

Definition 13 (Contextual Exceptionality). A concept C is exceptional in
the context r in the defeasible knowledge base KB = T ∪D if KB |=mod >@∼r¬C.
A defeasible subsumption statement C@∼rD is exceptional in the context r in KB
if C is exceptional in the context r in KB.

So, a concept C is considered exceptional in a given context in a knowledge
base if it is not possible to have a modular model of the knowledge base in which
there is a typical individual (i.e., an individual at least as typical as all the oth-
ers) that is an instance of the concept C. Applying the notion of exceptionality
iteratively, we associate with every concept C and context r a rank in the knowl-
edge base KB, which we denote by rankKB(C, r). We extend this to subsumption
statements, and associate with every context r and contextual defeasible con-
cept inclusion C @∼rD a rank, denoted rankKB(C @∼rD, r) and abbreviated as
rankKB(C @∼rD):
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1. Let rankKB(C, r) = 0 if C is not exceptional in the context of r and KB,
and let rankKB(C @∼rD) = 0 for every defeasible statement having C as
antecedent, with rankKB(C, r) = 0. The set of statements in D with rank 0
is denoted as Drank

0 .
2. Let rankKB(C, r) = 1 if C does not have a rank of 0 in the context of r

and it is not exceptional in the knowledge base KB1 composed of T and the
exceptional part of D, that is, KB1 = 〈T ,D\Drank

0 〉. If rankKB(C, r) = 1, then
let rankKB(C @∼rD) = 1 for every statement C @∼rD. The set of statements
in D with rank 1 is denoted Drank

1 .
3. In general, for i > 0, a tuple 〈C, r〉 is assigned a rank of i if it does not have

a rank of i − 1 and it is not exceptional in KBi = 〈T ,D \
⋃i−1
j=0Drank

j 〉. If
rankKB(C, r) = i, then rankKB(C @∼rD) = i for every statement C @∼rD. The
set of statements in D with rank i is denoted Drank

i .
4. By iterating the previous steps, we eventually reach a subset E ⊆ D such

that all the statements in E are exceptional (since D is finite, we must reach
such a point). If E 6= ∅, we define the rank of the statements in E as ∞, and
the set E is denoted Drank

∞ .

Following on the procedure above, D is partitioned into a finite sequence
〈Drank

0 , . . . ,Drank
n ,Drank

∞ 〉 (n ≥ 0), where Drank
∞ may possibly be empty. So, through

this procedure we can assign a rank to every context-based defeasible subsump-
tion statement.

For a concept C to have a rank of ∞ corresponds to not being satisfiable
in any model of KB, that is, KB |=mod C v ⊥. Note that this relationship is
independent of context:

Lemma 15. Let C ∈ LdALC. Then rankKB(C, r) =∞ for all r ∈ R if and only
iff KB |=mod C v ⊥.

Adapting Lehmann and Magidor’s construction for propositional logic [33], the
contextual rational closure of a knowledge base KB is defined as follows:

Definition 14 (Contextual Rational Closure). Let C,D ∈ LdALC and let
r ∈ R. Then C@∼rD is in the rational closure of a defeasible knowledge base KB if

rankKB(C uD, r) < rankKB(C u ¬D, r) or rankKB(C) =∞ .

Informally, the above definition says that C @∼rD is in the rational closure
of KB if the ranked models of the knowledge base tell us that, in the context
of r, some instances of C uD are more plausible than all instances of C u ¬D.

Theorem 1. Let KB be a knowledge base having a modular model. For every
C,D ∈ LdALC and every r ∈ R, C @∼rD is in the rational closure of KB iff
KB |=rat C @∼rD.

4.4 Rational reasoning with contextual ontologies

The following example shows how ranks are assigned to concepts in a defeasible
TBox, and used to determine rational entailment. We first consider only a single
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context hasE ∈ R with intuition ‘has employment’, and then extend the example
to demonstrate the strength of reasoning with multiple contexts.

Let KB = T ∪ D with T = {Intern v Employee, Employee v ∃hasE.>} and

D =

 Employee@∼hasE∃hasID.TaxNo,
Intern@∼hasE¬∃hasID.TaxNo,

Intern u Graduate@∼hasE∃hasID.TaxNo


Examining the concepts on the LHS of each subsumption in D, we get that:

1. rankKB(Employee, hasE) = 0, since Employee is not exceptional in KB.
2. rankKB(Intern, hasE) 6= 0 and rankKB(Intern u Graduate, hasE) 6= 0, since both

concepts are exceptional in KB.
3. KB1 is composed of T and D \ Drank

0 , which consists of the defeasible sub-
sumptions in D except for Employee@∼hasE∃hasID.TaxNo.

4. rankKB(Intern, hasE) = 1, since Intern is not exceptional in KB1.
5. rankKB(Intern u Graduate, hasE) 6= 1, since Intern u Graduate is exceptional

in KB1.
6. KB2 is composed of T and {Intern u Graduate@∼hasE∃hasID.TaxNo}.
7. Intern u Graduate is not exceptional in KB2 and therefore rankKB(Intern u

Graduate, hasE) = 2.

There are algorithms to compute rational closure [23, 25, 30] that can readily
be adapted to account for context, but one can also apply Definition 14 to deter-
mine rational entailment. For example, since rankKB(InternuGraduate, hasE) = 2
but rankKB(Intern u ¬Graduate, hasE) = 1, we find that interns are usually not
graduates: KB |=rat Intern@∼hasE¬Graduate.

The context hasE is used to indicate that it is an individual’s typicality in
the context of employment which is under consideration. Now suppose that KB
in the above example is extended to KB′ = 〈T ′,D′〉, where T ′ = T and D′ =
D ∪ {Millennial @∼hasE¬Employee, Millennial @∼hasQGraduate}. The context hasQ is
used here to indicate that it is an individual’s typicality w.r.t. qualification which
is under consideration. The rankings calculated above remain unchanged; in
addition, we get rankKB′(Millennial, hasE) = 0 and rankKB′(Millennial, hasQ) = 0.
It now follows that:

• In the context hasQ, millennial interns are usually graduates: KB′ |=rat

Millennial u Intern @∼hasQGraduate. This follows because rankKB′(Millennial u
InternuGraduate, hasQ) = 0, whereas rankKB′(Millennialu Internu¬Graduate,
hasQ) = 1.

• In the context hasE, millennial interns are usually not graduates: KB′ |=rat

Millennial u Intern@∼hasE¬Graduate. This follows because rankKB′(Millennial u
InternuGraduate, hasE) = 2, whereas rankKB′(Millennialu Internu¬Graduate,
hasE) = 1.

On the other hand, suppose we were restricted to a single context hasE, i.e.,
replace hasQ with hasE in KB′ to obtain KB′′. We then only get that KB′′ |=rat

Millennial u Intern@∼hasE¬Graduate.
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Which one of these rational entailments is more intuitively correct depends
(sic) on the context, and can perhaps be understood better by looking at the
postulates for non-monotonic reasoning in Lemmas 4 and 5. Looking at models
of KB′, in particular OKB′⊕ , it follows from (RM) that KB′ |=rat Millennial u
Intern @∼hasQGraduate. That is, in the context of qualifications, since millennials
are usually graduates, so are millennial interns. Also in KB′, applying (RM)
to Intern @∼hasE¬Graduate we get Intern uMillennial @∼hasE ¬Graduate. That is, in
the context of employment, since interns are usually not graduates, neither are
millennial interns.

In contrast, in models of KB′′, including the big model OKB′′⊕ , the for-
mer deduction is blocked: Applying (RW) to Millennial @∼hasE¬Employee yields
Millennial@∼hasE¬Intern. (RM) is now blocked by Millennial@∼hasE¬Intern, hence we
cannot conclude that KB′′ |=rat Millennial u Intern@∼hasEGraduate.

5 Concluding remarks

In this paper, we have made a case for a context-based notion of defeasible
concept inclusion in description logics. We have shown that preferential roles can
be used to take context into account, and to deliver a simple, yet powerful, notion
of contextual defeasible subsumption. Technically, this addresses an important
limitation in previous defeasible extensions of description logics, namely the
restriction in the semantics of defeasible concept inclusion to a single preference
order on objects. Semantically, it answers the question of the meaning of multiple
preference orders, namely that they reflect different contexts.

Building on previous work in the KLM tradition, we have shown that restrict-
ing the preferential semantics to a modular semantics allows us to define the
notion of rational entailment from a defeasible knowledge base, and to compute
the rational closure of a knowledge base as an instance of rational entailment.
Future work should consider the implementation of contextual rational closure,
as well as the addition of an ABox. Much work is also required on the modelling
side once a stable implementation exists. Contextual subsumption provides the
user with more flexibility in making defeasible statements in ontologies, but
comprehensive case studies are required to evaluate the approach.
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