
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

An above-ground biomass map of African savannahs and woodlands at 25 m
resolution derived from ALOS PALSAR

Alexandre Bouveta,⁎, Stéphane Mermoza, Thuy Le Toana, Ludovic Villarda, Renaud Mathieub,
Laven Naidoob, Gregory P. Asnerc

a CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France
b Ecosystems Earth Observation, Natural Resource and the Environment, CSIR, Pretoria, South Africa
c Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA

A R T I C L E I N F O

Keywords:
Above-ground biomass
Africa
PALSAR
Savannahs
Woodlands

A B S T R A C T

Savannahs and woodlands are among the most important biomes in Africa: they cover half of sub-Saharan Africa,
provide vital ecosystem services to the rural communities, and play a major part in the carbon budget. Despite
their importance and their fragility, they are much less studied than other ecosystems like rainforests. In par-
ticular, the distribution and amount of the above-ground woody biomass (AGB) is largely unknown. In this
paper, we produce the first continental map of the AGB of African savannahs and woodlands at a resolution of
25 m. The map is built from the 2010 L-band PALSAR mosaic produced by JAXA, along the following steps: a)
stratification into wet/dry season areas in order to account for seasonal effects, b) development of a direct model
relating the PALSAR backscatter to AGB, with the help of in situ and ancillary data, c) Bayesian inversion of the
direct model. A value of AGB and its uncertainty has been assigned to each pixel. This approach allows esti-
mating AGB until 85 Mg·ha−1 approximately, while dense forests and non-vegetated areas are masked out using
the ESA CCI Land Cover dataset. The resulting map is visually compared with existing AGB maps and is validated
using a cross-validation approach and a comparison with AGB estimates obtained from LiDAR datasets, leading
to an RMSD of 8 to 17 Mg·ha−1. Finally, carbon stocks for savannahs in Africa and in 50 countries are estimated
and compared with estimates by FAO and from AGB maps available over Africa.

1. Introduction

The role of the African continent in the global carbon cycle has
received increasing attention over the last decade (Bombelli et al.,
2009; Ciais et al., 2009, 2011; Houghton and Hackler, 2006; Valentini
et al., 2014; Williams et al., 2007). Although large uncertainties affect
the continental estimation of the carbon budget, most recent studies
agree that Africa is currently a small sink of carbon, with an average
value of−0.61 ± 0.58 Pg·C·yr−1 (Valentini et al., 2014). Africa is also
a major source of interannual variability in the global atmospheric CO2

concentration (Williams et al., 2007). The uncertainties and interannual
variations associated to these estimates mostly involve savannahs and
woodlands, whose contribution to the carbon budget is much more
important in Africa than in the other tropical regions such as South
America or Southeast Asia. Indeed, while the carbon density of sa-
vannahs and woodlands is lower than that of closed forests, they cover
three times larger areas in Africa (Bartholomé and Belward, 2005), e.g.
roughly 50% of the continent, and therefore represent a large carbon

stock. Besides, with low – although increasing – fossil fuel emissions,
the carbon balance of Africa is currently dominated by the uptake and
release from terrestrial ecosystems, which is controlled by climate
fluctuations and human-induced disturbances, both of which have
stronger effects in savannahs and woodlands than in other ecosystems
in Africa. For example fires, which play a significant role in the African
carbon cycle with 1.03 ± 0.22 Pg·C·yr−1 of carbon emissions, occur in
savannahs and dry woodlands in 90% of the cases (Valentini et al.,
2014). Deforestation rates in African savannah woodlands are found to
be higher than in tropical rain forests, where massive deforestation has
been avoided so far, in favour of selective logging (Brink and Eva, 2009;
Ciais et al., 2011). Woody encroachment also appears to be a wide-
spread source of change in the carbon stocks of these biomes (Mitchard
and Flintrop, 2013). It is therefore important to accurately estimate and
monitor the carbon stocks of African savannahs and woodlands in order
to have a better knowledge of the African and global carbon budget.

Until recently, our knowledge of the global distribution and amount
of woody carbon stocks was mostly based on field measurements of
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relatively small-size plots, which fail to adequately account for the
spatial variability of their surrounding areas (Réjou-Méchain et al.,
2014), and which are not uniformly distributed over the different
forested biomes (Gibbs and Brown, 2007; Houghton et al., 2009). For
instance, forest plantations are fairly well represented through com-
mercial inventories but savannahs and woodlands, with no commercial
value, have received much less attention. Also, they are not always
considered as forests regarding the United Nations Framework Con-
vention on Climate Change national forest definitions, and may there-
fore be disregarded in some monitoring activities. Besides, most carbon
estimates are based on a handful of biome-average datasets where a
single representative value of forest carbon per unit area is applied to
broad forest categories or biomes (Achard et al., 2002, 2004; DeFries
et al., 2002; Fearnside, 2000; Houghton et al., 2009; Ramankutty et al.,
2007). Such approaches have led to large inconsistencies between
studies. In the past few years, remote sensing approaches have offered
considerable potential in support of woody carbon mapping as they
provide long-term and repetitive observations over large areas. How-
ever, optical data, such as provided by the MODerate resolution Ima-
ging Spectroradiometer (MODIS) or Landsat, are not sensitive to woody
above ground biomass (AGB) beyond the canopy closure, and for sa-
vannahs and woodlands, are contaminated by the grass layer present in
these open landscapes (Naidoo et al., 2016; Zeidler et al., 2012).
Spaceborne LiDAR data (e.g. ICESat GLAS) are less suitable for open
savannahs and woodlands and are limited by discontinuous coverage
(Lefsky et al., 2005). Combinations of ICESat GLAS data with MODIS
data have been developed to produce large-scale pan-tropical AGB
maps. The approach consists in spatially extrapolating above ground
woody carbon stocks obtained from in situ inventory plots and from
ICESat GLAS transects, using MODIS only (Baccini et al., 2012) or using
MODIS and Quick Scatterometer (QuikSCAT) data (Saatchi et al.,
2011). While these two pan-tropical biomass maps, being the first of
their kind with such a large coverage, have been widely used, they
however suffer from a number of limitations: they have low spatial
resolutions (0.5 to 1 km), no temporal repetition, and show large un-
certainties (Mitchard et al., 2013a). In order to reduce the biases and
improve the accuracy, independent reference plot datasets have been
used to combine these two maps into an integrated map (Avitabile
et al., 2016), but the limitations related to spatial and temporal re-
solutions remain. An update of the Baccini map has been recently
produced at 30 m resolution, using Landsat data, and is available in the
Global Forest Watch project (Baccini et al., 2015), but with reported
large uncertainty at pixel level. For savannahs and woodlands in Africa,
the uncertainty is expected to be very large, because of the above
mentioned limitations of MODIS, Landsat, and ICEsat, worsened by the
sparser GLAS coverage of such ecosystems used in the production of
these datasets.

It has long been known that SAR data have high potential for AGB
mapping and AGB stocks estimation, due to the relationships between
the SAR backscatter and biomass (Le Toan et al., 1992). These re-
lationships are affected by other parameters such as soil moisture
(Harrell et al., 1997; Kasischke et al., 2011), topography (Castel et al.,
2001), or the forest structure (Imhoff, 1995), which requires the
adoption of specific strategies to mitigate the impacts of these en-
vironmental effects on the retrieval of AGB. Despite these limitations,
SAR systems remain a promising tool for AGB estimation. Generally
speaking, the backscatter in images acquired at short wavelengths like
X-band or C-band show little dependence on biomass, although it has
been shown that this weak sensitivity can be counterbalanced with the
use of hyper-temporal observations, in particular in boreal forests
(Santoro et al., 2011, 2013). Images acquired at long wavelengths like
L-band or P-band are more strongly correlated with AGB. In the last
decades, L-band spaceborne SAR data have become available, with the
JERS-1 satellite active from 1992 to 1999 and ALOS PALSAR from 2006
to 2011, followed by PALSAR-2 onboard ALOS-2 launched in May
2014. SAOCOM (SAtélite Argentino de Observación COn Microondas)

and NISAR (NASA/ISRO SAR Mission) L-band SAR systems are planned
for launch in 2018 and 2020 respectively. Many theoretical and ex-
perimental studies showed that L-band SAR data are sensitive to forest
AGB until a saturation level is reached and sensitivity is lost; however, a
negative correlation between L-band backscatter and high AGB may
occur when the forest is dense (Mermoz et al., 2015). The saturation is
generally reported to occur between 70 and 150 Mg·ha−1 (Mermoz
et al., 2014; Mitchard et al., 2009; Yu and Saatchi, 2016), depending on
the experimental dataset and on the model used to relate the back-
scatter to AGB. L-band SAR data are therefore well suited to the esti-
mation of savannah AGB, typically below 100 Mg·ha−1. For the denser
woodlands, typically between 100 and 200 Mg·ha−1, and higher bio-
mass values, P-band SAR systems have a better potential, but are not
available so far in space because of frequency allocation limitations that
were lifted only recently. The BIOMASS mission (Le Toan et al., 2011),
planned for launch by the European Space Agency in 2021, will fill this
gap and make it possible to exploit the synergy between L-band and P-
band. Yearly PALSAR (2007–2010) and PALSAR-2 (2015-onwards)
mosaics at 25 m have been built by the Japan Aerospace Exploration
Agency (JAXA), and are freely available (http://www.eorc.jaxa.jp/
ALOS/en/palsar_fnf/fnf_index.htm), which facilitates the use of large
datasets for forest monitoring (Shimada et al., 2014). In the recent
years, ALOS PALSAR data have therefore been used for AGB estimation
in savannahs and woodlands for limited regions or countries in Africa
and Australia (Carreiras et al., 2012, 2013; Lucas et al., 2010; Mermoz
et al., 2014; Mitchard et al., 2009, 2011; Mitchard et al., 2013b; Naidoo
et al., 2015; Ribeiro et al., 2008). However, these local studies have not
been extended so far to continental scales, therefore the amount and
distribution of the AGB in the whole African savannahs and woodlands
remains to be better quantified (Bastin et al., 2017).

In this paper, we aim at filling this gap, by estimating woody AGB at
a spatial resolution of 25 m over the entire savannah biome of Africa
using ALOS PALSAR 2010 mosaics. The method comprises two steps.
The first step consists in defining a direct model that relates the PALSAR
backscatter to AGB, with the help of a selected set of field measure-
ments. In the second step, a Bayesian inversion of this model is per-
formed to produce the AGB gridded dataset. The paper is organised as
follows: Section 2 gives general information on the savannahs of the
African continent. Section 3 provides information on the data used in
this study, both in situ plot data and SAR data. Section 4 presents the
data analysis results and describes the development of the direct model
as well as the Bayesian inversion scheme. Section 5 discusses the re-
sulting estimates of savannah woody biomass in Africa and their asso-
ciated uncertainties, and provides a validation assessment and a com-
parison with other large-scale AGB datasets available over Africa and
national statistics.

2. Study area

2.1. Demography, climate and biomes

The African continent covers more than 30Mkm2, which accounts
for 20% of the Earth's land surface. The estimated population is nearly
1.2 billion people, mostly concentrated in savannah and woodland
landscapes (Chidumayo and Gumbo, 2010), and increases nearly three
times faster than in the rest of the world; demographers now project
that Africa's inhabitants will triple or quadruple by the end of this
century (Engelman, 2016). Africa comprises 54 member states of the
United Nations, among which 28 are partner countries supported by the
UN-REDD programme.

Africa lies mainly within the inter-tropical zone and is therefore a
consistently hot continent. The different climate zones are therefore
characterized primarily by their rainfall regimes. The number of dry
months per year is shown in Fig. 1. It was produced using the mean
monthly precipitations measured by the Tropical Rainfall Measuring
Mission (TRMM) between 1998 and 2016 (3B43 products at a
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0.25° × 0.25° resolution accessed through the Earthdata portal https://
earthdata.nasa.gov/), where a 60 mm monthly rainfall threshold has
been applied to define dry months following the threshold applied for
tropical climates in the Köppen climate classification (Köppen, 1936).
The rainfall regime controls the dominant vegetation types, which is
depicted in Fig. 1 following the UNESCO vegetation map of Africa
(White, 1984). The equatorial climate zone, characterized by high
rainfalls throughout the year, with no dry season, is the home of
evergreen rain forests, which are found in Africa mostly over the Congo
Basin - the second largest tropical rainforest in the world - as well as in
Western Africa and Madagascar. In regions with a short dry season (2 to
3 dry months per year), the evergreen rain forests transition to more
open landscapes, and as the length of the dry season increases, the
proportion of trees in the landscape decreases, from woodlands (ap-
proximately 4 to 8 dry months per year) to bushlands and grasslands (9
to 10 dry months per year). Obviously, in the most arid regions (11–12
dry months per year), a desert or semi-desert landscape prevails.

In this paper, we focus on the low woody biomass areas, which
therefore exclude dense forests and deserts. For simplicity, in this paper
such areas will be referred to as “savannahs”, understood in its broadest
sense, i.e. a subtropical or tropical grassland region with scattered trees,
grading from open plain to woodland. The term “savannahs” therefore
represents any kind of mixed tree-grass ecosystems, including wood-
lands and most dry forests, which stay below the canopy closure.
Referred to Fig. 1, the regions under study encompass most classes from
the UNESCO vegetation map except the forest and the desert classes,
which represents roughly 50% of the continent area.

As a physiological response to the water shortage during the dry
season, most tree species from these areas have a deciduous foliage and
lose their leaves at some point in the dry months. However, within a
region, the leaf fall and leaf emergence dates of individual trees vary
between species and as a function of local conditions (soil type, topo-
graphy, etc). In a given landscape, the simultaneous presence of leaf-on
and leaf-off conditions is therefore common.

2.2. Drivers and dynamics of biomass in savannahs and woodlands

Although the vegetation types generally follow the precipitation
regimes as seen in Fig. 1, a number of other parameters control the
regional distribution of forests, savannahs and grasslands and, within
savannahs, the local variation in woody cover. It has been shown that
the mean annual precipitation (MAP) governs the maximum woody
cover in African savannahs; however the actual woody cover, and

therefore the biomass, is regulated below the MAP-controlled upper
bound by soil properties, topography, and disturbances such as fire,
herbivory (Sankaran et al., 2005) or human-induced disturbances such
as clearing and logging. Below 650 mm·yr−1, the maximum woody
cover is constrained by MAP and increases linearly with it, resulting in a
“stable” savannah state, but above 650 mm·yr−1, the maximum woody
cover reaches the woody canopy closure (about 80% tree cover) and the
vegetation type can be a closed forest or a savannah depending on the
occurrence of disturbances (fire, herbivory). Savannahs and forests are
therefore alternative biome states in large parts of Africa (Hirota et al.,
2011; Staver et al., 2011).

The causes of change in the biomass of African savannahs are mostly
anthropogenic, either directly, e.g. through land-use change and for-
estry (LUCF) and agriculture, use of fire and grazing of domesticated
animals, or indirectly, e.g. through climate change. More than half of
the African population live in these ecosystems and largely depend on
them for their livelihoods, through activities such as subsistence
farming, livestock grazing, timber production and the extraction of fuel
wood (Chidumayo and Gumbo, 2010), all of which have direct impacts
on the carbon stocks. At the same time, the impact of these human
activities is poorly estimated: for example, reported deforestation rates
and changes in croplands are highly variable (Houghton and Hackler,
2006). Most of these direct human activities lead to carbon losses, but
carbon gains are also widespread (Bodart et al., 2013), for example in
the form of woody encroachment. The drivers of woody encroachment
are complex and related to human activities, through grazing density
and changes in fire regimes, but also to climate change, through in-
creased atmospheric CO2 concentration, which improves the competi-
tiveness of C3 trees over C4 grasses (Bond and Midgley, 2012), and
rainfall (O'Connor et al., 2014). The carbon gains brought by woody
encroachment are not necessarily considered as positive outcomes by
the local populations, who suffer from a reduced grazing capacity with
cascading effects on ecosystem services and rural livelihood main-
tenance (Eldridge et al., 2011).

Because these drivers of AGB changes are complex and intertwined,
and can result locally in carbon losses or gains, predictions on the
evolution of carbon stocks in Africa in the near future are extremely
uncertain. This reinforces the need of direct large-scale monitoring
activities, such as AGB estimation based on remote sensing observables.

Fig. 1. (Left) Map of the number of dry months per year in Africa, and (Right) the UNESCO vegetation map of Africa.

A. Bouvet et al. Remote Sensing of Environment 206 (2018) 156–173

158

https://earthdata.nasa.gov
https://earthdata.nasa.gov


3. Data

3.1. Field data

3.1.1. Field data selection
In order to train a model that relates PALSAR intensities to AGB, we

use AGB estimates derived from field measurements, from several
campaigns carried out in different countries in Africa between 2000 and
2013, both from published literature and from original campaigns. To
increase the reliability of the model, it is necessary to reduce as much as
possible the perturbations that affect the relationship between the SAR
backscatter and the AGB estimates. The error sources include firstly
mismatches between the size of the field plots and the pixel size of the
SAR images (Réjou-Méchain et al., 2014), tree canopy layover and
border effects, errors in data geolocation, and topographic effects. In
order to minimize these errors, we decided to consider only in situ AGB
plots with a size larger than 0.25 ha and located in flat areas (mean
slope lower than 5°). This first selection step ensures both higher plot
homogeneity and lower noise in the radar backscattering.

Georeferenced polygons were available for 1 ha plots in Cameroon
from the REDDAF (Reducing Emissions from Deforestation and
Degradation in Africa) project (Haeusler et al., 2012), and in South
Africa from the Council for Scientific and Industrial Research (CSIR),
and the SAR intensities were averaged over these polygons. For other
plots only the coordinates of the centre of the plots were available. In
this case, as the field plots were bigger than the pixel size, the SAR
intensities have been calculated on a 3 × 3 pixels neighbourhood
centred on each plot. A test was then applied to keep only the plots that
were located in a homogeneous area of the SAR mosaic. This test
consisted in discarding the field plots for which the coefficient of var-
iation (CV) of the SAR intensities in the considered 3 × 3 pixels
neighbourhoods was higher than 0.25. This threshold is a trade-off
between the need to discard heterogeneous plots and the need to keep a
sufficient number of plots for a reliable training of the model.

In total, 144 field plots were selected, located in 8 countries
(Cameroon, Burkina Faso, Malawi, Mali, Ghana, Mozambique,
Botswana and South Africa), with a mean plot size of 0.89 ha. The field
data collection period spreads between 2006 and 2012, with a dis-
tribution averaging 2010 ± 2.5 year. The selected in situ data char-
acteristics are summarized in Table S1.

In each field plot, the AGB has been estimated by applying allo-
metric equations to in situ measurements of tree parameters (diameter
at breast height, tree height, basal area), following proper sampling
methodologies. The corresponding allometric equations and meth-
odologies are described in the references cited in Table S1. Among the
studies that use the allometries described in Chave et al. (2005), the
“dry forest” equation is used for savannah species and the “moist forest”
for forest species.

3.1.2. Field data uncertainties
In situ AGB estimates are affected by a number of error sources,

including field measurement errors (diameter at breast height, tree
height), estimate of wood density and allometric models (Chave et al.,
2004). An error of 10% was reported for the wood density and an error
of 5% for the allometric equations by Chave et al. (2004), while the
errors related to diameter at breast height and tree height measure-
ments were estimated to be 2.25% and 4.47% respectively in a previous
study (Mermoz et al., 2014). The errors were propagated by Monte
Carlo simulations to yield a standard deviation associated with plot-
based AGB estimates, in the plots measured in Cameroon and South
Africa in 2012 and 2013 (plots 72 to 144 in Table S1). This approach
yielded a mean field measurement error of σM = 5.2% in Cameroon
and σM = 9.7% in South Africa. A trade-off error of σM = 7% was as-
sociated to the other plots, for which we did not have access to the
individual tree measurements that allow the direct estimation of σM
through the computation of Monte-Carlo simulations. The sampling

errors σS associated with the mismatch in spatial scales between the
field plots and the pixel size was estimated for each plot using Fig. S10
published in Réjou-Méchain et al. (2014), with a 9% mean error.

The field measurement error σM and sampling error σS were com-
bined by adding the associated standard deviations quadratically, to
obtain the overall field data uncertainties at the plot level:

= +σ σ σAGB field M S
2 2 (1)

3.2. SAR data

3.2.1. SAR data description
The global dual polarisation (HH, HV) 25 m resolution ALOS

PALSAR mosaic produced by JAXA for the year 2010 was used in this
study. The mosaic consists of a collage of Fine Beam Dual-polarisation
(FBD) data strips acquired in ascending mode with HH and HV polar-
izations. For each pixel, the mosaic dataset also includes values of the
local incidence angle and acquisition date. The FBD data have a swath
width of about 70 km. To cover the African continent, about 180 data
strips have been used. About 91% of the data have been acquired in
2010, between 1 May and 28 November, and the remaining gaps have
been filled with FBD imagery from 2009 and 2008. The data have been
processed by JAXA using the large-scale mosaicking algorithm de-
scribed in Shimada and Ohtaki (2010), including ortho-rectification,
slope correction and radiometric calibration between neighbouring
strips.

The digital numbers (DN) were converted into γo values using the
following equation:

= +γ dB DN CF( ) 10log ( )o
10

2 (2)

where CF is a calibration factor equal to −83.0 dB, as provided in
Shimada et al. (2009). In order to reduce the SAR backscatter un-
certainty related to the speckle noise, we applied a multi-image filter
developed by Bruniquel and Lopes (1997) and Quegan and Yu (2001) to
decrease the speckle effect while preserving the spatial resolution of the
images. The 2007, 2008, 2009 and 2010 PALSAR mosaics at HH and
HV polarizations (8 images) were used as inputs to the filter. The mo-
saic is generated with an equivalent number of looks (ENL) of 16. After
filtering, the theoretical ENL value is 112 using a 7 × 7 window. This
corresponds to a decrease of SAR backscatter uncertainty due to speckle
from 1.6 dB to 0.5 dB for a − 25 dB backscatter, and from 1.2 dB to
0.4 dB for a − 7 dB backscatter (See Section 3.2.3).

3.2.2. Issues related to data homogeneity in large mosaics composed of
multi-date acquisitions

When applying a single inversion scheme to radar data acquired at
different dates, as is the case in the PALSAR mosaic, sources of error
include variations of environmental effects between acquisition strips
(soil and vegetation moisture, leaf-on/leaf-off and grass/understory
conditions, e.g. if images are acquired during different seasons) and, less
importantly, radar backscatter variation caused by radar calibration
and incidence angle variation in a data strip. As a result, sharp radio-
metric discontinuities can be observed between adjacent PALSAR strips
when the mosaics are produced. These discontinuities, although they
locally represent the reality of the backscatter at the time of the ac-
quisitions, are considered troublesome for large-scale applications
based on the mosaics. To reduce this problem, inter-strip balancing
algorithms were applied by JAXA in order to equalize the backscatter
across the whole mosaics (Shimada and Ohtaki, 2010). In addition, the
seasonal effects were further minimised by the fact that, thanks to the
ALOS systematic observation strategy, most of the data (74% in Africa,
and 80% if Western Sahara is excluded) has been acquired within a
four-month period between June and September (Fig. 2, left). During
this period, Africa is subject to a wet season regime mostly in its
northern hemisphere, up to approximately 15° north. In the rest of the
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continent, i.e. Northern, Southern and Eastern Africa, this period cor-
responds to a dry season, with very low rainfall. During the dry season,
the soil moisture is consistently low and most trees have lost their
leaves, which minimizes discrepancies between strips and increases the
sensitivity of the backscatter-AGB relationships (Mathieu et al., 2013;
Urbazaev et al., 2015). In the wet season, the vast majority of trees have
their leaves on, but the random occurrence of rainfall events leads to
locally reduced sensitivity in the backscatter-AGB relationship as well
as larger inter-strip variations. As a consequence, we decided to esti-
mate the AGB separately in dry season areas and in wet season areas,
keeping in mind that better results should be found in the dry season.
The delimitation between dry and wet season areas is set by a rainfall
isoline corresponding to a mean total rainfall of 500 mm over the Ju-
ne–September period (Fig. 2, right), calculated from rainfall data of the
WorldClim database (http://www.worldclim.org) representative of the
1950–2000 period (Hijmans et al., 2005).

3.2.3. SAR data uncertainties
The errors impacting the estimation of SAR backscatter can be de-

composed into two terms: radiometric accuracy and radiometric re-
solution. Whereas the former expresses the mean difference between
the measured and the true value (usually from an ad-hoc calibration
target), the latter characterizes the stability of the observations, and is
mainly governed by the speckle effect, and therefore by the number of
looks. Assuming that radiometric accuracy is stable and does not de-
pend on the spatial location, this component can be considered as a
simple shift, with no impact in this study. We therefore focus on the
effect of the radiometric resolution, which can be expressed as a func-
tion of the coefficient of variation of the SAR backscatter (Massonnet
and Souyris, 2008):

= = + −
CV σ

μ
SNR
ENL

1SAR

SAR

1

(3)

where μSAR represents the mean SAR backscatter in linear scale, σSAR
represents its standard deviation, and SNR represents the signal-to-
noise ratio, which is defined as the ratio between the measured back-
scatter and the NESZ (Noise Equivalent Sigma Nought).

We can therefore express the SAR backscatter uncertainty under the
following form:

=
+

σ
μ

ENL
NESZ

SAR
SAR

(4)

In our case, Eq. (4) can be applied at the pixel level, considering the
local backscatter, an overall NESZ of −32 dB for PALSAR FBD data
(Shimada et al., 2009) and a number of looks equals to 112. This SAR
backscatter uncertainty, when transformed in dB, is higher for the
lower backscatter values and ranges between about 0.5 dB and 0.42 dB
for backscatter values of -25 dB and -7 dB respectively.

4. Development of the inversion scheme

4.1. Approach

The relationship between the radar backscatter and AGB is complex
and depends on a large number of parameters related to vegetation
(forest structure, vegetation water content, presence/absence of leaves)
and to the ground (soil moisture, soil roughness, topography), collec-
tively designated as “environmental conditions”. The lack of suitable
datasets available globally at sufficient resolutions makes it virtually
impossible to estimate AGB from the backscatter by taking into account
these environmental conditions explicitly.

In this study, the approach that we use consists in performing the
AGB estimation separately in the “wet season areas” and in the “dry
season areas” described in Section 3.2.2, such as most of the backscatter
variability is minimised with respect to the most important factors. A
simple model is developed, representing the relationship between the
backscatter and AGB for the average environmental conditions en-
countered in each area: leaf-on, wet soil, and high vegetation water
content in the “wet season areas”, and leaf-off, dry soil, and lower ve-
getation water content in the “dry season areas”. The variability of the
backscatter, caused by potential deviations from these average en-
vironmental conditions, is simulated using an electro-magnetic model
(Villard, 2009) and is used in the Bayesian inversion of the simple
model.

4.2. Analysis of backscatter versus biomass

The sensitivity of the radar backscatter to AGB is analysed using the
2010 ALOS mosaic and in situ AGB data. Fig. 3. shows the backscatter
data (γ0HH and γ0HV) as a function of the AGB of the in situ plots, where in
situ plots located in the wet season areas and dry season areas, as de-
fined in Section 3.2.2, are plotted in blue and red respectively. As ex-
pected, we found that the relationship between the radar backscatter
and AGB depends on wet and dry season areas. Note that for the wet

Fig. 2. (Left) Acquisition dates of the 2010 PALSAR mosaic (green: June to September; red: other months), and (Right) Precipitations from Worldclim aggregated from 1950 to 2000
between June and September, together with the location of the selected forest inventory plots (red disks) and the 500 mm isoline used to separate wet and dry season areas where two
different backscatter-AGB models are developed (red line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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season areas, in situ plots cover a larger range of AGB (up to
250 Mg·ha−1), whereas for the dry season areas, in situ AGB is under
120 Mg·ha−1. In the range of AGB under 100 Mg·ha−1, as expected, the
backscatter is mostly higher in wet season areas, which is explained by
the higher soil and vegetation wetness, and probably also by the ve-
getation structure and phenology (leaf-on). However, the dynamic
range of backscatter is lower in the wet season (about 3 dB and 4 dB
from 10 to 150 Mg·ha−1 for HH and HV respectively) than in the dry
season (about 7 dB and 9 dB for HH and HV respectively), because
lower soil moisture decreases the radar backscatter from the ground
and grass-dominated areas. This justifies our choice to derive two dif-
ferent models in the regions where the PALSAR data was acquired in
the wet season and in the dry season.

4.3. The model relating ALOS PALSAR to AGB

In general, the backscatter from a forest canopy is mainly governed
by scattering mechanisms from the vegetation, and from the bare
ground and underlying ground attenuated by the vegetation layer, plus
the coupling terms between ground and vegetation, commonly referred
to as double bounce scattering mechanism. The relative contribution of
each scattering mechanism in the backscatter depends on the radar
frequency, polarisation, incidence angle, the environment conditions
(soil moisture, surface roughness, topography) and the vegetation
characteristics (AGB, structure, moisture content).

The radar backscatter is sensitive to forest AGB through vegetation
scattering, through the wave attenuation by the vegetation, and
through the double bounce. One possible approach to characterize the
relationship between backscatter and AGB consists in retaining the
main scattering mechanisms in a simplified backscatter formulation,
and comparing the formulation with the empirical data. The compar-
ison will give information on the validity of the simplification.

One common formulation is a 3-parameter semi-empirical equation
which consists in a sum of the ground (a) and vegetation (b) con-
tributions weighted by the attenuation caused by different vegetation
layers (e-c.AGB):

a be 1 ec c0 AGB AGB= + −− −γ · ·( ). · (5)

This formulation corresponds to the modified Water Cloud Model
(Santoro et al., 2002), an adaptation of the original Water Cloud Model
(Attema and Ulaby, 1978) widely used at higher frequencies like C-
band, except that the stem volume is replaced by the biomass. This 3-
parameter model has already been used for L-band data by several
authors (Cartus et al., 2012; Mermoz et al., 2014; Michelakis et al.,
2014; Mitchard et al., 2011). For such long wavelengths however, at-
tenuation is significantly less important than at C-band so that the ef-
fects of ground scattering are more important, whether through its di-
rect contribution or through the double bounce contribution, especially
in open landscapes like savannahs. In order to introduce this double

bounce explicitly in Eq. (5), one can consider the following expression:

a d be 1 ec c0 AGB AGB= + + −− −γ ( )· ·( )· · (6)

based on the assumptions that scattering mechanisms are independent
and that in the monostatic configuration, the double bounce contribu-
tion (noted d) can be projected onto the ground (Villard and Borderies,
2015).

It is worth stressing that, unlike the ground and vegetation para-
meters (a, b) which can be reasonably assumed independent of the AGB
for low biomass forests, the double bounce parameter (d) is actually a
function of AGB, but also of forest structure and especially forest clo-
sure/openness. As an example, for the same AGB, the double bounce
contribution in HV can be significant in the case of sparsely distributed
trees with developed canopies, but almost null in the case of densely
distributed trees with few branches. With this respect, d and c can be
linked since forest closure also impacts attenuation. Despite this com-
plexity, we can easily demonstrate that Eq. (6) is equivalent to Eq. (5) if
parameter c is replaced by an effective parameter

= − + −
−( )c c lneff AGB

a d b
a b

1 . Beyond the mathematical trick, the physical
interpretation of Eq. (5) is now that c does not govern only attenuation
but also the double bounce scattering mechanism. This is also con-
sistent with the fact that c governs the growth rate of γ0, since the
dispersion in the backscatter is mainly due to the possible double
bounce for a given biomass.

This justifies our choice to keep the simple expression of Eq. (5) as
our regression model, and to use simulations from an electro-magnetic
model to account for the dispersion around the expected mean back-
scatter in the Bayesian inversion process described in Section 4.5.

4.4. Calibration of the direct model

Different approaches can be used to estimate the three parameters,
a, b, and c, required for Eq. (5). Regarding the parameters a and b, we
can use statistical regressions between the SAR data and in situ plot
data, provided there are a sufficient number of plots, well distributed
over the relevant range of AGB and plot conditions. When the in situ
plot data do not meet these requirements, parameter a can be estimated
from pixels corresponding to bare ground (i.e. bare soil or grassy areas)
and b from pixels corresponding to closed forests. One option is to use
ancillary data such as Landsat tree cover (LTC) continuous field from
Sexton et al. (2013), similarly to what was done in Cartus et al. (2014).
Mean values of backscatter from pixels corresponding to LTC values of
0% (or lower than a threshold) and 100% (or higher than a threshold)
crown cover are used as proxy for estimating parameters a and b. This
approach is however expected to provide better results for the estima-
tion of parameter b than for parameter a, as the low canopy pixels in the
LTC dataset will tend to incorporate, in addition to the targeted bare
soil or grassy areas, low shrub areas which can have a significant woody

Fig. 3. ALOS backscatter (γ0HV and γ0HH) from mosaic data acquired in 2010 versus in situ AGB estimated over 144 plots in wet and dry season areas. The dynamic range of backscatter is
lower in the wet season than in the dry season because higher soil moisture increases the radar backscatter over bare soils.
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biomass. Parameter c, which represents the vegetation attenuation,
varies as a function of vegetation water content and vegetation struc-
ture (vertical and horizontal distribution of scatterers, number of stems
per hectare, etc.). Hence c changes with forest type and must be derived
using in situ AGB plot data.

In this study, we had a sufficient amount of low AGB plots (below
25 Mg·ha−1) to accurately calibrate parameter a. However, there was a
lack of high AGB plots (above 150 Mg·ha−1) to estimate properly
parameter b, especially for the dry conditions. Thus, we extracted se-
parately for each region the backscatter values over values of LTC larger
than 90%, to pick up the “dense forest” pixels only. The probability
density functions of γ0HV and γ0HH over dense forests are plotted in Fig. 4.
The mean and standard deviations are −6.68 ± 0.69 dB for γ0HH and
−11.59 ± 0.65 dB for γ0HV acquired during wet conditions and
−6.76 ± 0.82 dB for γ0HH and −11.63 ± 0.83 dB for γ0HV acquired
during dry conditions. These values are consistent with the values ob-
tained from the in situ plots in the wet season areas, as can be seen in
Fig. 5. It can be noted that for closed canopy, small difference in the
backscatter is found between wet and dry season. This tends to indicate
that the b parameter is not sensitive to environmental conditions and
could therefore be estimated jointly in the dry and wet season areas.

After estimating parameter b, parameters a and c have been

estimated using statistical regressions between the SAR data and in situ
plot data. Table 1 summarises the values of the parameters a, b, and c,
together with the Pearson correlation coefficient (ρ) and Root Mean
Square Difference (RMSD) of the backscatter-AGB regressions on the 0-
100 Mg·ha−1 biomass range, for the wet season areas and the dry
season areas and for the case where we do not take into account this
seasonality. In Eq. (5), the backscatter γ0 is expressed in linear values,
and therefore parameters a and b as well, but we give only the corre-
sponding dB values in Table 1 as they are more easily understood.
Parameter a differs between wet and dry season by 0.6 dB in HH and
0.8 dB in HV, and parameter c changes significantly between wet and
dry season, for both HH and HV. This experimental result indicates that
for the backscatter at L-band of savannah and woodlands, a first as-
sumption that could be made is that the effect of tree structure is less
important than the moisture effect. The correlation coefficient and
RMSD values confirm the relevance of our approach which consists in
separating wet and dry season areas, as it reduces the backscatter dis-
persion (RMSD) and increases the correlation (especially for HV)
compared to the case where seasonality is not taken into account.

Fig. 5 shows the corresponding regression curves as well as the 144
field plots with their corresponding field and SAR data uncertainties
σAGB Field and σSAR, represented as error bars along the x and y axis
respectively.

4.5. Bayesian inversion of the model

In order to minimize the error propagation which would result from
the direct use of Eq. (5) to convert γ0 into AGB, a Bayesian approach is
preferred, as proposed in previous studies related to model parameter
estimations (Notarnicola and Posa, 2004; Tarantola, 2005).

Note that in this section, we use simplified expressions of the
probability density functions, where γHH0 = γHH obs

0 is replaced by γHH
obs

0, γHV0 = γHV obs
0 is replaced by γHV obs

0, and AGB = B is replaced by
B.

The Minimum Mean Square Error (MMSE) estimator of AGB is given
by the conditional expectancy:

∫= =E p

dB

AGB [AGB | γ , γ ] B. (B | γ , γ ).est HH obs V obs
AGB

HH obs HV obs
0

H
0

0
0 0max

(7)

where E[X] represents the expected value of X. The inversion therefore
requires the calculation of the posterior probability p(B|γHH obs

0, γHV
obs

0) of AGB given the observation (γHH obs
0,γHV obs

0), which is obtained
using Bayes' theorem:

Fig. 4. Distribution of HV and HH backscatters acquired in the wet season and dry season
areas in sub-Saharan Africa, over values of Landsat tree cover continuous field (Sexton
et al., 2013) larger than 90%.

Fig. 5. ALOS backscatter (γ0HV and γ0HH) from mosaic data acquired in 2010 versus in situ AGB estimated over 144 plots in African wet and dry season areas, with the regression curves
corresponding to the calculated direct model, together with field uncertainties σAGB field (described in Section 3.1.2) and SAR uncertainties σSAR (described in Section 3.2.3) associated to
each field plot.
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=p B γ γ
p γ γ B p B

p γ γ( | , )
( , | ) ( )

( , )HH obs HV obs
HH obs HV obs

HH obs HV obs

0 0
0 0

0 0 (8)

Three terms need to be assessed. The marginal likelihood p(γHH
obs

0, γHV obs
0) is constant in the scene and is therefore neglected, as a

normalization factor will be applied (see Eq. (11)).
The prior probability, p(B), corresponds to the distribution of AGB

in the scene. This distribution is unknown in most cases, and its prob-
ability density function is therefore considered uniform over the [0
AGBmax] range, where AGBmax represents the assumed highest biomass
in savannahs and woodlands of Africa. By analysing the distribution of
AGB obtained from Saatchi et al. (2011) across the areas of savannahs
and woodlands identified in Africa from the ESA Climate Change In-
itiative (CCI) Land Cover 2010 map (http://www.esa-landcover-cci.
org/), we found that a reasonable estimate of AGBmax is 100 Mg·ha−1.

The likelihood function p(γHH obs
0, γHV obs

0|B) accounts for the
dispersions of HH and HV backscatters caused by environmental con-
ditions and forest structure, for a given AGB value. These dispersions
are considered at a first approximation independent in HH and HV, and
the joint conditional probability density function can thus be expressed
as the product of the individual conditional probability density func-
tions:

= ∙p p p(γ , γ | B) (γ | B) (γ | B)H obs HV obs HH obs HV obsH
0 0 0 0 (9)

For a given biomass value B, the estimation of the probability
density function p(γobs0|B) for each polarisation requires two steps.

First, we estimate the theoretical backscatter γtheo0by inverting the
model from Eq. (5). Second, we express the probability that the ob-
served backscatter γobso deviates from this theoretical backscatter γtheo0
because of potential environmental effects (soil moisture, vegetation
structure, phenology). We model the probability of γobso using a Gaus-
sian distribution characterized by a mean value equal to γtheoo, and a
standard deviation σsimu estimated by simulation results from the MI-
PERS (Multistatic Interferometric Polarimetric Electro-magnetic model
for Remote-Sensing) model (Villard, 2009). This σsimu term models the
variability of γtheo0 with environmental conditions (soil and vegetation
moisture, presence or absence of leaves) and forest structure. The forest
growth model used to feed the geometrical parameters to the MIPERS
model is fully described in Mermoz et al. (2015) and is calibrated using
the in situ data available in this study. Assumptions are made to define
the range of values of other required MIPERS inputs, such as soil and
vegetation moisture, soil roughness etc. We vary the MIPERS inputs and
propagate these variations by Monte Carlo simulations to obtain the
standard deviation σsimu. Note that σsimu is not constant and varies with
AGB. Higher values are associated to low AGB (γtheoo being very de-
pendent on the environmental conditions) and lower values are asso-
ciated to high AGB (γtheoo is more stable over dense forests than over
bare soils). For a given γobso, the likelihood function p(γobs0|B) is
therefore estimated for each polarisation as follows:

=
− ⎛

⎝
⎜
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⎟p γ B

π σ B
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0 0 2
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Combining Eqs. (8) to (10) leads to the following expression of the

posterior probability:
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where K is a normalization factor, which includes the multiplicative
factors that have been removed from Eqs. (8) and (10).

The mode of the posterior probability density function described in
Eq. (11) gives the maximum likelihood estimate of AGB, i.e. the most
likely value of AGB for a given observation and for a uniform dis-
tribution of AGB. In this study, we prefer to retain the AGB estimate
obtained by the MMSE estimator given in Eq. (7) in order to minimize
the overall error in the dataset.

4.6. Post-processing of AGB estimates

The method described in Sections 4.2 to 4.5 is applied to the 2010
PALSAR mosaic data over Africa, independently over the dry season
and wet season areas. While the maximum AGB value used to define the
prior probability p(B) in the Bayesian scheme is equal to 100 Mg·ha−1,
as mentioned in Section 4.5, the resulting AGB values estimated
through the Bayesian inversion (MMSE estimator) never exceed
85 Mg·ha−1. Because AGB estimates in the range of 0 to 85 Mg·ha−1

would yield large errors in some biomes like dense forests, the inversion
should better be restricted to the savannah and woodland ecosystems.
One potential way of doing this could be to invert pixel values into AGB
with the direct model and mask out pixels with an AGB higher than
100 Mg·ha−1. However, as was evidenced in Mermoz et al. (2015),
backscatter coefficients over forest plots of> 150 Mg·ha−1 can de-
crease when the forest becomes a dense medium. AGB of such forest
pixels will be underestimated in the model-based inversion, resulting in
the failure of this approach.

Two options have been identified to overcome this problem. The
first option is to lower the AGB threshold value above which pixels are
masked out, in order to effectively discard all the dense forest pixels. A
drawback of this approach is that it lowers the value of the maximum
estimated biomass (approximately 70 Mg·ha−1 following Mermoz
et al., 2015, instead of approximately 85 Mg·ha−1 in this study). In
other terms, this would exclude all dense forests, but would also ex-
clude the highest range of savannah and woodland biomass. Instead, we
chose a more straightforward solution which uses independent sources
of information, such as land cover maps, to mask out dense forest areas.
Among the available land cover maps in Africa, the Global land cover
(GLC) 2000 map (Mayaux et al., 2004), which is based on SPOT-VE-
GETATION data, has a resolution of 1 km. The GlobCover 2009 (Arino
et al., 2012) and the CCI Land Cover 2010 map have a resolution of
300 m. From these maps, we selected the most recent CCI Land Cover
2010 map. In this map, we considered as dense forest the class Broad-
leaved evergreen closed to open forest. We also used the CCI Land Cover
2010 map to mask out flooded forests, mangroves, urban areas and
water bodies. The GLC 2000 map was used to mask out some bare areas
embedded with rocks that lead to false-alarms in AGB detection, for
example in Southern Algeria or in Northern Chad, as these areas are not

Table 1
Parameters of the direct model relating ALOS PALSAR to AGB.

HH HV

Wet Dry All Wet Dry All

a −14.9 dB −15.5 dB −16.4 dB −22.8 dB −22.0 dB −23.2 dB
b −6.7 dB −6.8 dB −6.8 dB −11.6 dB −11.6 dB −11.6 dB
c (ha·Mg−1) 0.0616 0.0154 0.0249 0.0291 0.0129 0.0174
ρ 0.64 0.68 0.62 0.77 0.71 0.64
RMSD 1.80 dB 1.54 dB 1.98 dB 1.43 dB 1.67 dB 1.78 dB
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accounted for in the CCI Land Cover 2010 map.
The pre-processed and filtered 2010 PALSAR mosaic data at 25 m

resolution, where the dense forest, flooded forests, mangroves, urban
areas, bare rocks and water bodies have been excluded, have been in-
verted on a pixel basis into AGB values using the Bayesian inversions for
dry and wet conditions. To avoid AGB discontinuities between the dry
and wet regions, we used a fuzzy approach so that pixels can be as-
signed grades of membership to the dry and wet parts in a fuzzy set
from zero to one, in a two-degree-wide buffer surrounding the 500 mm
rainfall isolines. The membership function we used is a S-shaped spline-
based curve:
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where x represents the distance (in degrees) to the 500 mm rainfall
isoline.

4.7. Uncertainties assessment

4.7.1. Accuracy
As the true AGB is unknown, the accuracy at each pixel, which is

defined by how close the estimated AGB is to the true AGB, cannot be
directly assessed. However, within the Bayesian inversion scheme, the
accuracy of the estimates can be approached by calculating credible
intervals, which represent the range of likely values of AGB under the
retained assumptions related to the variability of the backscatter with
environmental conditions (modelled with σsimu) and to the range of AGB
values in the savannahs and woodlands areas (0 to 100 Mg·ha−1).

In this study, we choose the 95% highest posterior density interval
(95% HPDI), which is commonly used in Bayesian statistics. It is de-
fined by the narrowest interval [Bmin Bmax] that contains the true AGB
value with a 95% probability, and therefore verifies:

∫ =p dB(B | γ , γ ) 0.95
B

B
HH obs HV obs
0 0

min

max

(13)

The width of this 95% HPDI is a measure of the error that we make
in our AGB retrieval scheme by not taking into account the environ-
mental conditions explicitly (i.e. at each pixel with ancillary data). It
can be used as a proxy of the accuracy of the AGB estimates that are
produced in this study.

4.7.2. Precision
The precision of the estimated AGB, which refers to how close the

agreement is between repeated estimates, is linked to the precision of
all the measurements involved in the Bayesian inversion scheme, i.e. the
in situ AGB measurements and the SAR data measurements.

The precision of the in situ AGB measurements is represented by the
standard deviation value σAGB field calculated for each in situ plot, fol-
lowing Eq. (1) and the methodology described in Section 3.1.2. The
precision of the SAR data measurements is defined by the standard
deviation value σSAR calculated for each HH and HV backscatter value,
following Eq. (4).

These uncertainties linked to the in situ AGB estimates and to the
SAR data are propagated step-by-step through the whole inversion
scheme using a Monte Carlo approach, which allows obtaining the
precision of the estimated AGB.

This approach therefore comprises two steps. First, the direct model
parameters (a and c) are estimated 1000 times by drawing randomly
the AGB, γ0HV and γ0HH values of each of the 144 fields according to
Gaussian distributions defined by the σAGB field and σSAR standard de-
viations.

Then, for a given observation characterized by γ0HV obs and γ0HH obs,

the standard deviation of the estimated biomass, σAGB est, is calculated
after 1000 iterations of the AGB estimator from Eq. (7), where γ0HV obs

and γ0HH obs are affected by the standard deviation σSAR following a
Gaussian distribution, with the direct model parameters a and c ob-
tained in the 1000 iterations of the first step.

This value σAGB est represents the precision associated with the es-
timated AGB in a pixel defined by γ0HV obs and γ0HH obs with the method
developed in this study.

4.7.3. Overall uncertainties
The overall uncertainties, taking into account both the accuracy and

precision of the AGB estimates, can be calculated by running a Monte
Carlo simulation in a similar way as in Section 4.7.2. However, in the
second step, instead of calculating the standard deviation of the esti-
mated AGB, the overall uncertainty is assessed by calculating the 95%
HPDI using the mean of the posterior probability density functions
obtained in the 1000 iterations. This approach provides an extended
95% HPDI that accounts for the uncertainties linked to both accuracy
and precision.

5. Results

Because the other large-scale AGB datasets available over Africa
(Avitabile et al., 2016; Baccini et al., 2012, 2015; Saatchi et al., 2011)
give conflicting estimates in the savannahs and woodlands regions, and
because very few inventory plots exist in these areas, it is impossible to
provide an overall evaluation of the AGB estimates that we have pro-
duced in this study. In order to provide a partial evaluation of our re-
sults, the AGB map produced in this study is visually compared with the
other datasets in Section 5.1 and some differences are analysed. We
then perform a cross-validation of our dataset using the available in situ
inventory data in Section 5.2.1, and a local validation with independent
LiDAR estimates in the lowveld region in South Africa in Section 5.2.2.
Finally, the carbon estimates aggregated at the country scale are com-
pared in Section 5.3 with the figures reported by FAO and with the
corresponding aggregated estimates provided by the other AGB data-
sets.

5.1. Visual assessment of the biomass dataset

Fig. 6 shows the AGB map of Africa produced using the approach
described in this paper. An uncertainty value is associated with each
AGB estimate, using the methodology described in Section 4.7. The four
pan-tropical AGB datasets mentioned in the Introduction (Avitabile
et al., 2016; Baccini et al., 2012, 2015; Saatchi et al., 2011) are dis-
played in Fig. 7 for comparison with our AGB dataset.

Fig. 7 shows a clear under-estimation of biomass in savannas in the
dataset of Avitable when compared to others, as well as less inter-
mediate values between high and low biomass. For example, biomass
stocks estimated in Ethiopia are much larger in the datasets of Saatchi
and Baccini than in Avitabile's. Whereas Baccini's dataset shows larger
biomass estimates than Saatchi's and Avitabile's in some areas like in
Angola, it shows as well less areas of intermediate values (from 40 to
60 t/ha) than Saatchi's dataset, like in Kenya, Somalia and Ethiopia for
example. The dataset derived in this study (Fig. 6) shows even more
biomass dynamics than Saatchi's dataset, e.g. in Somalia.

Figs. 8 and 9 show full-resolution comparisons between the AGB
estimates produced from ALOS PALSAR in this study and the four other
datasets for three subsets selected across different biomes of Africa. In
the forest-savannah transition zone depicted in Fig. 8, it can be seen
that the datasets by Saatchi and Baccini have a generally higher bio-
mass in the savannahs than our estimates, which have a range of AGB
similar to the dataset by Avitabile. A visual inspection of high-resolu-
tion optical imagery available in Google Earth reveals that the very low
biomass areas (0–10 Mg·ha−1) depicted in our dataset and in Avitabile's
actually correspond to treeless areas. Therefore, the datasets of Saatchi
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and Baccini provide in this case incorrect estimates, around
30–40 Mg·ha−1, probably because the spatial extrapolation of LiDAR
samples with passive optical observations is misled by the grass layer.
Besides, the two high resolution maps show fine details that cannot be
seen in the three coarser resolution maps, like gallery forests along
rivers.

The second cross-dataset comparison represents a “tiger bush”
landscape in Sudan (Fig. 9), i.e. a patterned vegetation community
consisting of alternating narrow bands of trees or shrubs, with bare
ground or low herb cover in between, that run roughly parallel to
contour lines of equal elevation in arid and semi-arid regions (Lefever
and Lejeune, 1997). These patterns are too fine to be observed in the
coarse resolution maps, but the 30 m resolution map by Baccini et al.
(2015) also fails to capture these features, while they are clearly visible
in the PALSAR map as well as in the very high resolution optical image
shown in the figure. Our biomass estimates could therefore be helpful to
understand the distribution and formation of tiger bush and other si-
milar patterns occurring between savannah, forest and grassland on a
wide scale, as a potential extension to what was done in small-scale
studies using high-resolution optical imagery (Deblauwe et al., 2011).

Fig. 10 shows the precision and accuracy datasets calculated on a
pixel basis as described in Section 4.7. The percent precision error re-
presents σAGB est/AGBest, where σAGB est is the standard deviation of the

AGB estimates obtained through repeated inversions affected by field
and SAR measurement errors. In the savannahs and woodlands, this
value is remarkably stable, at around 11% in the dry season areas and
14% in the wet season areas. The higher error values in the wet season
areas reflect the smaller dynamic range of the backscatter-AGB re-
lationships. In areas of very low/high AGB values (i.e. low/high HH and
HV backscatters), the precision error falls to very low values as the AGB
estimator consistently gives values close to the minimum/maximum
invertible value. The 95% HPDI is represented by a map of its lower and
higher bounds. The absolute accuracy error, approximated as the width
of the 95% HPDI, i.e. the difference between the higher bound and the
lower bound of the 95% HPDI, is found to be generally lower for low
AGB areas and higher for high AGB areas. The relative accuracy error is
however higher for low AGB areas, where it can reach values of 100%,
for example in the case of a 10 Mg·ha−1 area with a 95% HPDI ranging
from 0 to 20 Mg·ha−1. It is worth noting that these accuracy figures are
conservative estimates that represent the worst-case scenario corre-
sponding to environmental conditions differing strongly from the
average conditions considered in these “wet season” and “dry season”
areas. In most cases, the actual errors are actually lower than the values
suggested by the 95% HPDI.

The overall uncertainties, represented by the extended 95% HPDI,
differ only very slightly from the accuracy error represented by the

Fig. 6. The above-ground biomass map of African savannahs and woodlands at 25 m resolution derived in this study from the 2010 ALOS PALSAR mosaic.
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regular 95% HPDI, and are therefore not represented here.

5.2. Validation

In order to validate the AGB dataset produced in this study, we used
two different approaches. The first one is a cross-validation that uses
the reference field dataset described in Section 3.1, and the second is a
comparison with independent AGB estimates obtained from airborne
LiDAR imagery in South Africa.

5.2.1. Monte-Carlo cross-validation
In this approach, we randomly split the reference dataset (N = 144)

a thousand times into two equal subsets, one for training and one for
validation, for the wet season area and the dry season area separatelyAt
each iteration, the a and c parameters of the direct model are calibrated
using the training dataset as described in Section 4.3, and the predictive
accuracy of the Bayesian inversion is assessed using the validation data.
Fig. 11 shows the distribution of the Root Mean Square Difference
(RMSD) and correlation coefficient ρ of the corresponding 1000 AGB
inversions. The overall mean RMSD, calculated at the plot scale, is
17.0 Mg·ha−1 (16.6 Mg·ha−1 for the wet season area and 17.1 Mg·ha−1

for the dry season areas) and the overall correlation coefficient is 0.76
(0.75 for the wet season area and 0.77 for the dry season areas). Note
that these figures are calculated by keeping only in situ AGB estimates
lower than 100 Mg·ha−1 in the analysis, because most field plots higher
than 100 Mg·ha−1 are masked out during the post-processing, and they
are overrepresented in our samples compared to the real distribution of

AGB in the woodlands and savannahs of Africa. Including them in this
cross-validation provides degraded results which are not thought to be
representative of our dataset, which focuses on the 0–100 Mg·ha−1

biomass range: the overall mean RMSD reaches 46.3 Mg·ha-1 (wet
season: 69.3 Mg·ha−1, dry season: 22.9 Mg·ha−1), and the overall
correlation coefficient decreases to 0.60 (wet season: 0.61, dry season:
0.69).

5.2.2. LiDAR-based validation in South Africa
The second validation approach consisted in comparing the ALOS

PALSAR AGB estimates with AGB estimates obtained from airborne
LiDAR acquisitions over South African savannahs (Naidoo et al., 2015).

The LiDAR data was acquired by the Carnegie Airborne
Observatory-2 AToMS sensor during April–May 2012 at a flight height
of 1200 m with a scan frequency of 50 kHz, a laser spot spacing of
0.56 m, a point density of 6.4 points per m2 and covered approximately
63,000 ha over the lowveld savannah region (Asner et al., 2012). A
1.1 m Digital Elevation Models (DEM) and top-of-canopy surface
models (CSM) were created by processing the raw LiDAR point clouds
according to the steps outlined in Asner et al. (2012). Canopy height
models (CHM, pixel size of 1.12 m) were computed by subtracting the
DEM from the CSM. The AGB LiDAR derived metric was modelled using
a linear regression, ground estimated AGB (within 25 m field plots) and
a simple H × CC LiDAR metric (where H is the mean top-of-canopy
height and CC is the canopy cover of a 25 m pixel resolution) (Colgan
et al., 2012). The RMSD of the LiDAR derived AGB estimates is reported
to be 19.2 Mg·ha−1 (Naidoo et al., 2015).

Fig. 7. The existing AGB maps in Africa, from
Baccini et al. (2015) at 30 m, Avitabile et al.
(2016) at 1 km, Baccini et al. (2012) at 500 m,
and Saatchi et al. (2011) at 1 km.
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Fig. 12 shows a comparison between the AGB maps obtained from
this LiDAR dataset and the corresponding AGB maps developed in this
study from the PALSAR mosaics. The AGB patterns observed in the
LiDAR data are remarkably well reproduced in the PALSAR maps and
the range of AGB values in the two datasets are consistent.

We calculated the coefficient of determination ρ and RMSD between
the AGB estimates from this LiDAR dataset on one hand, and the AGB
estimates from the PALSAR data or from the 30 m resolution dataset of
Baccini et al. (2015) on the other hand. The PALSAR dataset produced
in this study generally performs better than the 30 m Baccini dataset
over these savannah and woodland landscapes, with a ρ of 0.84 (0.58
for Baccini) and RMSD of 7.7 Mg·ha−1 (10.8 Mg·ha−1 for Baccini),
despite a slight overestimation for AGB values larger than 40 Mg·ha−1.
The corresponding scatterplots are shown in Fig. 13, and reveal that
unlike our estimates, the estimates from Baccini et al. (2015) are sig-
nificantly biased with respect to the LiDAR estimates. Note that the
outstanding agreement between our dataset and the LiDAR dataset,
although covering a variety of soil types (granitic, basaltic) and land
management practices (communal rangelands, protected areas), is
limited to a small region of a specific biome (the lowveld) and may not
be representative of the whole African savannahs.

5.3. Analysis of carbon stocks in African countries

The AGB dataset produced in this study was used to assess the
above-ground biomass and carbon contained in all African countries,
except the small insular countries (Cape Verde, Comoros, Mauritius,

São Tomé and Príncipe, and Seychelles). To account for the limitations
of the method, which estimates AGB only until 85 Mg·ha−1, we as-
signed to the masked dense forest and flooded forest pixels an AGB of
300 Mg·ha−1. This value was chosen as a trade-off between the AGB
estimates of tropical forest reported in Saugier et al. (2001)
(390 Mg·ha− 1) and in FAO (2001) (190 Mg·ha−1), and of African
equatorial forest reported in IPCC (2006) (400 Mg·ha−1) and Gibbs and
Brown (2007) (198 Mg·ha−1). Mangroves were assigned an AGB value
calculated in each country from the Saatchi et al. (2011) estimates. The
total AGB of each country is calculated from the ALOS PALSAR AGB
dataset, and transformed to above-ground carbon stocks by using a 0.5
conversion factor. The C stocks per country (broken down into dense
forests, savannahs and woodlands, and total) are reported in Table S2,
together with the proportion of the country area masked as dense for-
ests, flooded forests, mangroves, urban areas, and water bodies.

Fig. 14 shows a comparison between the national carbon stocks
estimated in this study and those estimated by FAO, Saatchi et al.
(2011), Baccini et al. (2012) and Avitabile et al. (2016). The corre-
sponding values are also reported in Table S2. Our carbon stocks esti-
mates are generally very well correlated with the other remote-sensing-
based estimates (correlation coefficient ρ between 0.94 and 0.97). The
correlation with the estimates from FAO is slightly lower (ρ = 0.84),
but the same is true when the other remote-sensing-based estimates are
compared with FAO (ρ = 0.87 to 0.90, see Fig. S1). Our estimates
provide slightly higher total carbon stocks compared to FAO (+6.8%).
This could be partly explained by the fact that we account for the total
AGB of each country while FAO estimates the carbon stocks of forests

This study
25m

Baccini et al. (2015)
30m

Avitabile et al. (2016)
1km

Baccini et al. (2012)
500m

Saatchi et al. (2011)
1km

Fig. 8. Comparison between the AGB map produced in this study and the existing AGB maps in a subset located in the Democratic Republic of Congo, around geographic coordinates
6.4°S/18.4°E.
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only, which are defined as vegetation patches with a minimum tree
cover of 10% and minimum area of 0.5 ha. The comparison between
our estimates and the FAO estimates can therefore give an idea of the
amount of carbon that is ignored when only forests are considered. It
can also be noted that the FAO estimates are based on reports provided
by each country, and some countries have limited capacities to estimate
their carbon stocks accurately. Our total estimates are very similar to
those of Saatchi et al. (2011) (−1.5%), while we provide significantly
lower values than Baccini et al. (2012) (−11.8%), and higher values
than Avitabile et al. (2016) (+19.4%). These discrepancies can be
further analysed by considering the calculated carbon stock density in
each country (in MtC·ha−1). Fig. S2 reveals that our dataset tends to
provide lower AGB estimates than Baccini et al. (2012) in countries
dominated by savannahs and woodlands and higher AGB estimates in
the countries dominated by dense forests, while the opposite is true
with Avitabile et al. (2016). The comparison between the mean national
carbon stock densities calculated in our study and in Saatchi et al.
(2011) show highly-correlated and almost unbiased estimates.

The values calculated in this study show that 52% of the total
African above-ground carbon is stored in savannahs and woodlands,
and 48% in dense forests (including mangroves and flooded forests).

5.4. Caveats

While the validation approaches adopted in Section 5.2 indicate
that the AGB dataset described in this paper has a good accuracy (RMSD
of 17 Mg·ha−1 for the cross-validation with the field plots from all
Africa, and 7.7 Mg·ha−1 for the local validation in the South African
lowveld), it is still worth mentioning a few caveats linked to the in-
trinsic limitations of the PALSAR mosaic dataset and of the method.

First, as already mentioned in Section 4.1, our approach consists in

estimating AGB separately in the “wet season areas” and in the “dry
season areas” in order to minimize the backscatter variation linked to
non-homogeneous environmental conditions (soil moisture levels or
vegetation phenology). However, these environmental conditions can
locally deviate significantly from the average environmental conditions
of the area they belong to (wet season area or dry season area), for
example in case of a heavy rainfall shortly before the PALSAR acqui-
sition in the dry season area or an exceptional draught in the wet season
area. In such cases, the AGB estimates will be locally affected by sub-
stantial errors. These errors are nonetheless taken into account in the
calculation of the 95% HPDI.

Another source of error is the influence of topography, which affects
the backscatter in two ways: it changes the pixel scattering area, and it
modifies the local incidence angle and therefore the response of the
target. Although both these impacts have been reduced in the produc-
tion of the PALSAR mosaics (Shimada and Ohtaki, 2010), it is not
possible to correct them perfectly and residual topographic distortions
remain. As a consequence, the AGB estimates are less reliable in areas of
strong topography.

Masking out land cover classes where the AGB is not estimated
(dense forests, flooded forests, mangroves, urban areas, water bodies,
and bare areas embedded with rocks), as described in Section 4.6, can
also locally degrade the information content of our dataset. Because the
land cover datasets used for masking have a coarser resolution and have
their own errors, of, these areas are imperfectly masked out. In parti-
cular in forest/savannah transition areas, it is expected that small dense
forest pockets and gallery forests will not be masked out and will be
assigned an AGB value lower than their actual value, while small sa-
vannah pockets inside dense forest areas will be masked out.

The national estimates provided in Section 5.3 can therefore be
affected by the quality of the masking, and by other assumptions used

This study
25m

Baccini et al. (2015)
30m

Avitabile et al. (2016)
1km

Baccini et al. (2012)
500m

Saatchi et al. (2011)
1km

VHR op�cal (2015)
©DigitalGlobe

Fig. 9. Comparison between the AGB map produced in this study and the existing AGB maps in a “tiger bush” region located in Sudan, around geographic coordinates 11.26°N/28.23°E.
The legend is the same as in Fig. 8. The bottom left panel represents a VHR optical image visualized in Google Earth.
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in the calculation (e.g. the assignment of an AGB equal to 300 Mg·ha−1

for the dense forests). The overall accuracy of the retained/not-retained
classification used for masking (where the “not-retained” class contains
all the CCI Land Cover classes for which we do not want to provide AGB
estimates, i.e. dense forest biomes and non-vegetated areas) has been
calculated to be equal to 95% from the confusion matrix provided in the
Land Cover CCI Product User Guide. Therefore, the quality of the
masking should not affect national estimates to a large extent.

Regarding the AGB values assigned to “dense forests”, we have re-cal-
culated the total carbon stocks per country using AGB values from
Saatchi et al. for the dense forests, instead of the 300 Mg·ha−1 default
value, and the results are very similar (ρ= 1.0, RMSD = 5.05 Mg·ha−1

for the mean national carbon density).

Fig. 10. The AGB dataset produced in this study, together with the percent precision error and with the minimum and maximum values of the HPDI. Dense forests (including flooded
forests and mangroves) are masked in grey.

Fig. 11. Distribution of the RMSD and correlation coefficient ρ over the 1000 simulations of the cross-validation. At each simulation, the reference dataset is randomly split into two equal
subsets, one for training and one for validation, keeping only in situ AGB estimates lower than 100 Mg·ha−1.
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6. Conclusion

Based on a dual-polarisation PALSAR mosaic produced from ALOS
PALSAR imagery acquired in 2010, we developed the first 25 m re-
solution wall-to-wall map of Africa dedicated specifically to the AGB of
savannahs and woodlands, a biome of paramount importance in the
carbon budget of this continent.

Visual comparisons of our AGB dataset with the other AGB datasets
at similar (30 m) or coarser (300 m to 1 km) resolutions, and with in-
dependent estimates from an airborne LiDAR dataset in a savannah
area, highlight the merits of our dataset in the savannahs and wood-
lands areas, both in terms of resolution and sensitivity. Uncertainties
linked in particular to the effects of the environmental conditions are
minimised by performing the AGB inversion in “dry season” and “wet
season” areas separately. Errors associated with remaining

environmental effects are estimated and provided at the pixel level in
the form of a credible interval, the 95% HPDI, which reveals potentially
large errors locally when the environmental conditions contrast dras-
tically with the average conditions of each area. Two validation ap-
proaches, namely one cross-validation with the in situ dataset and a
validation with a LiDAR AGB dataset, reveal a good accuracy of our
dataset, with an RMSD between 8 and 17 Mg·ha−1. Finally, the dataset
has been used to provide estimates of the total national carbon stocks of
most African countries, which have been compared to other estimates
from FAO and existing AGB maps.

The approach developed in this study can be applied to similar L-
band mosaics produced at later epochs, for example the ALOS-2
PALSAR-2 mosaics that are being produced on a yearly basis since
2015, or on the open forests of other continents. To do so, the model
developed in Africa in 2010 in this study would require minor

Fig. 12. Comparison between AGB estimated over the LiDAR dataset (left) and from the PALSAR mosaic (right) over the whole LiDAR dataset (top) and over a close-up of one of the
LiDAR patches (bottom).

Fig. 13. Scatterplots between the CAO LiDAR AGB estimates and the AGB estimates from this study (left) or from the AGB estimates at 30 m by Baccini et al. (2015). The dashed line is the
1:1 line and the plain line represents the linear regression.
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adjustments to account for systematic radiometric differences occurring
in the production of the mosaics. In the case of other continents, these
adjustments would ideally require another set of high quality in situ
AGB estimates. In the absence of such high quality in situ datasets, other
approaches that do not rely on in situ measurements, as described in
previous studies over temperate or boreal forests (Cartus et al., 2012),
can be considered. The potential of such methods in tropical woodlands
and savannahs should therefore be investigated, e.g. in comparison with
the results produced in this study. In the future, the L-band time-series
that will be provided by NISAR will provide a good opportunity to
correct for errors linked to local variations of the environmental con-
ditions, and therefore to overcome the major limitation of our approach
based on mono-temporal mosaic datasets only.
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