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Abstract 

The paper discusses the development and application of GAMMQV in forecasting the long-term electricity 

demand in South Africa. The long-term hourly demand from 2007 to 2023 with in-sample forecasts from 

2007 to 2012 and out-of-sample forecasts from 2013 to 2023 were done. The actual and forecasted demand 

distributions closely matched between 2013 and 2015. Therefore, the forecasted demand distribution is 

expected to represent the actual demand distribution until 2023. The findings are that (a) the expected 

demand and daily demand profiles are well forecasted and (b) future distributions of hourly demand and 

peak daily demand are likely to shift towards lower demand over the years until 2023. The contributions of 

the paper are (a) the development of GAMM with trend model in forecasting long-term electricity demand, 

harnessing the correlation structures within different hours (c) inclusion of a nonlinear trend with forecasted 

values from quantile regression (QR) and (d) the development and application of GAMMQV to the South 

African data. 
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1. Introduction

The economic growth of any country is dependent on its energy security. Long-term electricity demand forecasts are 

important to those who manage power utility companies including political principals making decisions pertaining to 

the countries energy security. The decisions include generation capacity, maintenance planning, decisions on the 

optimal energy mix and plans for future infrastructure expansions. Electricity demand trend in South Africa is 

unpredictable, it showed an upward trajectory between 1997 and 2007, and it then stabilized between 2008 and 2011 

and started declining in the last four years until 2015, so it is uncertain whether the latest downward trend will continue 

or will revert to the earlier upward trajectory. The accuracy of the demand trend is important otherwise long-term 

forecasts could vastly deviate from the future actual demand which could have serious planning implications. For 

planning purposes, the country must assess its capacity to continue meeting its electricity demand in future with the 
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existing generation infrastructure and whether there will be a need for infrastructure expansion. These decisions are 

made under uncertainties which among others emanate from the changing weather conditions, market penetration of 

renewable sources of electricity whose data are not adequately collected in South Africa, the growing market of 

electric vehicles, market penetration of power saving appliances, the escalating cost of electricity and unpredictable 

long-term economic growth. The decisions could have far reaching consequences because the decision for 

infrastructure expansion could result in the construction of unnecessary power generating facilities while the decision 

not to expand on the current infrastructure could result in failure to meet future electricity demand which could hurt 

the economy and result in an unintended loss of jobs. Hyndman & Fan (2010) argue that an overestimate of long-term 

electricity demand will result in substantial wasted investment in the construction of excess power facilities, while an 

underestimate of demand will result in insufficient generation and unmet future demand. 

 

In the literature to date, short-term electricity demand forecasting has attracted substantial attention due to its 

importance for power system control, unit commitment, economic dispatch and electricity markets while on the other 

hand the medium and long-term forecasting has not received as much attention, despite their value for system planning 

and budget allocation (Fasiolo, Goude, Nedellec, & Wood, 2017; Gaillard, Goude, & Nedellec, 2016; Hyndman & 

Fan, 2010). Sigauke (2017) indicated that medium-term electricity demand is important to decision-makers in power 

utility companies for planning power generation, maintenance planning and for risk assessment. Long-term demand 

forecasting according to Hyndman & Fan (2010) corresponds to the forecast horizon from several months to several 

years ahead.  Hong, Wilson, & Xie (2014) argue that forecasting by nature is a stochastic problem, but most of the 

utilities are still developing and using point forecasts instead of probabilistic forecasts. One of the advantages of 

probabilistic forecasts is that they provide estimates of the full probability distributions of the possible future values 

of electricity demand and most importantly the uncertainties in the forecasts are quantifiable (Hong et al., 2016, 2014; 

Hong & Fan, 2016; Hyndman & Fan, 2010; McSharry, Bouwman, & Bloemhof, 2005; Mokilane et al., 2018; Sigauke, 

2014, 2017). The literature on statistical models used in electricity demand forecasting is dominated by parametric 

modelling approaches. In parametric modelling, the model is completely defined by a small set of parameters. There 

is limited literature on the application of non-parametric models in long-term electricity demand forecasting. In non-

parametric modelling, the relationships between the outcome variable and the covariates are defined by functions 

whose shapes are fully determined by the data, and the number of parameters is determined by the size of the data. A 

semi-parametric model is the hybrid of parametric and non-parametric models. Semi-parametric models have been 

applied in electricity demand forecasting (Farland, 2013; Hyndman & Fan, 2010; Ruppert, Wand, & Carroll, 2003; 

Sigauke, 2017). Sigauke (2017) indicated that a generalised additive model (GAM) is classified as a statistical learning 

technique in forecasting electricity demand which is not discussed in the literature in South Africa. A generalised 

additive mixed model (GAMM) is the extension of the GAM model. 

 

The critical review of literature on other approaches to electricity demand forecasting such as computational 

intelligence-based techniques is discussed in Hippert, Pedreira, & Souza (2001). Some comprehensive reviews of 

demand forecasting models which are commonly used in the energy sector are given by Suganthi & Samuel (2012); 

(Hong & Fan (2016); (Jebaraj & Iniyan (2006); Alfares & Nazeeruddin (2002). There is a vast body of literature on 

the electricity demand forecasting in South Africa (Amusa, Amusa, & Mabugu, 2009; Rasuba et al., 2010; Inglesi-

Lotz, 2011; Koen & Holloway, 2014; Koen, Magadla, & Mokilane, 2014; Mokilane et al., 2018; Sigauke & Chikobvu, 

2011; Sigauke, 2014, 2017; Ziramba, 2008).  This paper focuses on the development and application of the GAMM 

quantile averaging (GAMMQV) model in electricity demand forecasting which is an alternative approach to the GAM 

model developed by Hastie & Tibshirani (1986) applied to load forecasting and the one used by Sigauke (2017) applied 

to electricity demand forecasting in South Africa. 

 

2. Methodology 
 

The GAMM is an additive and a functional modelling technique where the impact of predictive variables is not only 

captured through the fixed effects but also through smooth functions which could be nonlinear. The goal of GAMM 

in this study is to model electricity demand (outcome variable) using its drivers (covariates), which are expressed in 

the form of fixed effects and others in the form of some smooth functions (splines). Smoothing splines are real 

functions that are piecewise-defined by polynomial functions called basis functions. The places, where the polynomial 

pieces connect are called knots. In GAMM, penalized regression splines are used in order to regularize the smoothness 

of the spline. The GAMM model is generally written as; 

𝑦𝑡ℎ = 𝛽0ℎ + ∑ 𝛽ℎ𝑗𝑥𝑡ℎ𝑗

𝑝

𝑗=1
+ ∑ 𝑠ℎ𝑗(𝑥𝑡ℎ𝑗  )

𝑝

𝑗=1
+ 𝑍𝑡ℎ𝑏𝑡 + 𝑢𝑡ℎ                                                                         (1) 
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where 𝑦𝑡ℎ is an electricity demand on day t at hour h; 𝛽ℎ𝑗𝑥𝑡ℎ𝑗 is the linear part of the model, 𝛽ℎ𝑗 is the corresponding 

fixed parameters, 𝛽0ℎ is the constant parameter of the linear component of the model; 𝑠ℎ𝑗  are smooth functions of 

covariates 𝑥𝑡ℎ𝑗; 𝑍𝑡ℎ is a row of random effects model matrix; 𝑏𝑡 is a vector of random effects coefficients and 𝑢𝑡ℎ are 

residual errors. 𝑡 = 1, 2, … , 𝑛  ; ℎ = 1, 2, … , 24  and 𝑗 = 1, 2, … , 𝑝  and 𝑥𝑡ℎ1, 𝑥𝑡ℎ2, … , 𝑥𝑡ℎ𝑝  are p covariates. Each 

smooth, 𝑠ℎ𝑗(𝑥𝑡ℎ𝑗  ) in (1) is treated as having a fixed effects (unpenalised) component, which can be absorbed into the 

linear part of the model, and a random effects (penalised) component, which can be absorbed into 𝑍𝑡ℎ𝑏𝑡  . The random 

effects component of the smooth has an associated Gaussian distribution assumption. The “Month”, “day of week” 

and “day of year” were included in (1) as smooth functions. The following variables “fribtwn”, “monbtwn” and 

“lngwknd” in Table A.1 in the appendix were included in (1) as part of the linear component of the model together 

with the trend variables. The GAMM in (1) is estimated using penalised cubic splines (Goude, Nedellec, & Kong, 

2014; Wood, 2006). 

 

min
𝛽 ,𝑠ℎ𝑗

 [∑ [ 𝑦𝑡ℎ − ∑ 𝛽ℎ𝑗𝑥𝑡ℎ𝑗

𝑝

𝑗=1

𝑛

𝑡=1
− 𝑍𝑡ℎ𝑏𝑡 − ∑ 𝑠ℎ𝑗( 𝑥𝑡ℎ𝑗)

𝑝

𝑗=1
]2 + ∑ 𝜆𝑗

𝑝

𝑗=1
[∫(𝑓′′ (𝑥))2𝑑𝑥]                 (2) 

 

According to Wood (2017), the degree of smoothness is controlled by the penalty parameter Λ = (𝜆𝑗, 𝑗 = 1,2, … , 𝑝), 

determining the roughness of the function estimate to the data. The generalised cross-validation criterion (GCV) is 

used to optimise this function. The smooth function 𝑠ℎ𝑗  is the sum of basis functions, where; 𝑏ℎ𝑖(𝑥) is the i th basis 

function at hour h and 𝛽ℎ𝑖 are unknown parameters. Therefore,  𝑠ℎ𝑗  can be written as; 

 

𝑠ℎ𝑗(𝑥) = ∑ 𝛽ℎ𝑖

𝑞

𝑖=1
𝑏ℎ𝑖(𝑥)                                                                                                                                               (3) 

 

where, q in (3) denotes the number of bases functions (dimensions). GAMM assumes that the model errors are 

identically and independently distributed. This assumption is not fulfilled in the case of a time series regression. 

Present values of the time series are correlated with past values and hence the errors of the model are also correlated. 

In such cases, the errors are said to be autocorrelated. This implies that estimated regression coefficients and residuals 

of the model might be biased, which also implies that the confidence intervals would be incorrect. This problem is 

avoided by including the autoregressive moving average model (ARMA) for the errors in our GAMM models. 

Harnessing the correlation structures within hours could improve the forecasts. The correlation structures within hours 

were found to differ. Some hours have simple correlation structures (autoregressive (AR) process) while others have 

ARMA (p,q) correlation structures. Errors in equation (1) are therefore modelled using the ARMA (p, q) process given 

in (4);  

 

𝑢𝑡 = ∅1𝑢𝑡−1 + ∅2𝑢𝑡−2 + ⋯ + ∅𝑡−𝑝𝑢𝑡−𝑝 +  𝜀𝑡  +  𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞                                                               (4) 

 

where; 𝑢𝑡−1, 𝑢𝑡−2,…, 𝑢𝑡−𝑝 are the AR component with coefficients ∅1, ∅2, … , ∅𝑡−𝑝 and 𝜀𝑡 , 𝜀𝑡−1, … , 𝜀𝑡−𝑞 are the MA 

components with coefficients 𝜃1, 𝜃2, … , 𝜃𝑞 . The p in (4) represents the number of AR terms while the q represents the 

number of MA terms. The GAMM model was extended in this paper by including the fitted trend to the fixed effects 

component of the model. The nonlinear trend was fitted to the electricity demand data as shown in Figure 1 (electricity 

demand at hour 18h00). The red line represents the fitted demand trend between 2007 and 2012. The fitted values 

were then extracted to form the derived variable referred to as “trendfitted”. The challenge was that only trend values 

up to 2015 were available and in order to use trend to forecast electricity demand beyond 2015, the trend values needed 

to be forecasted. The “trendfitted” was then used as the outcome variable and various time-related variables were used 

as covariates, namely day, public holidays, months, weekends, December break and the Fourier series or harmonic 

terms were used to capture the cycles inherent in the “trendfitted” variable in order to forecast its future values using 

quantile regression. The trend was forecasted at 0.05, 0.10, 0.25, 0.50, 0.75, 90, 95 quantiles of its distribution. The 

same procedure was followed to get the “trendfitted” for other hours. 
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Figure 1: The nonlinear trend fitted to the demand data at hour 18 

 

The GAMM model was then used to predict hourly electricity demand using calendar variables and the derived trend 

variable as drivers of electricity demand. A separate model for each hour was fitted and this is consistent with 

approaches of other researchers (Fan & Chen, 2006; Fay, Ringwood, Condon, & Kelly, 2003; Hyndman & Fan, 2010; 

Ramanathan, Engle, Granger, Vahid-Araghi, & Brace, 1997) who considered methods that fit separate models to the 

data from each half-hourly period in order to forecast future electricity demand. Their argument is that, the demand 

patterns change throughout the day and therefore, better estimates can be obtained if each half-hourly period is treated 

separately. Soares & Medeiros (2005) argue that considering separate models for each hour of the day, avoids 

modelling complicated intraday patterns in the hourly load, which is commonly called load profile. We argue that 

people carry out similar electricity demand influencing activities at specific hours across days, for example, at around 

18h00 when people usually return home, some of the common activities include, cooking, watching television, bathing 

and ironing clothes for the next day. These activities are carried out every day at around the same time, hence the 

within hour correlation is expected to be stronger than the between hours correlation, therefore, modelling hours 

separately is likely to give better forecasts especially if within hour correlation structures are harnessed. The fitted 

model was referred to as a “GAMM with trend”. The simple GAMM model with no trend was fitted and it was referred 

to as a “GAMM” model. The forecasts of the developed “GAMM with trend” and the “GAMM” models were 

combined to develop a model referred to as a “GAMM quantile averaging” model (GAMMQV). The GAMMQV 

model is given in (5); 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝐺𝐴𝑀𝑀 + 𝛽2𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑 + 𝜀𝑖  and  𝑖 = 1, 2, … , 𝑛                                       (5) 

 

where; 𝐺𝐴𝑀𝑀 are forecasts from GAMM model and 𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑 are forecasts from the GAMM model with trend 

and 𝛽1 and 𝛽2 are their corresponding respective regression coefficients. The 𝜏th quantile of 𝜀𝑖 is assumed to be zero 

and the corresponding quantile regression model is; 

 

𝑄𝜏(𝑌|𝐺𝐴𝑀𝑀, 𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑  ) =   𝛽0 + 𝛽1𝐺𝐴𝑀𝑀 + 𝛽2𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑                                   (6) 
where;     

𝑄𝜏(𝑌|𝐺𝐴𝑀𝑀, 𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑) = inf{𝑦: 𝐹𝜏 (𝑦|𝐺𝐴𝑀𝑀, 𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑) ≥ 𝜏} ,                          (7) 

 

is the conditional 𝜏 th quantile of the response ( 𝑦𝑖 ) given the covariates (𝐺𝐴𝑀𝑀 𝑎𝑛𝑑 𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑 ) and 

𝑄𝜏(𝑌|𝐺𝐴𝑀𝑀, 𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑) is a non-decreasing function of 𝜏 for any given covariate. 𝛽 = (𝛽1, 𝛽2) is the vector of 

electricity demand parameters and is the marginal change in the quantile because of the marginal change in covariate. 

In estimating the QR model for a given quantile, the ideas of Koenker (2005) and Yue & Rue (2011) who used the 

standard approach of Koenker & Bassett Jr (1978)  to estimate their QR model were used. QR minimises the tilted 

absolute function 𝜌𝜏 (.), which they called the check-function (Maistre, Lavergne, & Patilea, 2017), which 

asymmetrically weights residuals from the model to a degree that depends upon 𝜏. 
 

𝜌𝜏(𝜀) = {
(1 − 𝜏)𝜀, 𝜀 < 0
𝜏𝜀,                     𝜀 ≥ 0,

                  0 < 𝜏 < 1 ;                                                  (8) 

 

𝜌𝜏(𝜀) is a continuous piecewise linear function and non-differentiable at 𝜀 = 0  but differentiable everywhere else 

(Yue & Rue, 2011). This check-function ensures that all 𝜌𝜏 are positive and the scale is based on the probability 𝜏.  
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The model parameters are estimated by; 

 𝛽̂(𝜏) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝜖ℛ𝑝  ∑ 𝜌𝜏[(𝑦𝑖 − (𝛽0 + 𝛽1𝐺𝐴𝑀𝑀 + 𝛽2𝐺𝐴𝑀𝑀𝑡𝑟𝑒𝑛𝑑)].

𝑛

𝑖

      (9) 

𝜌𝜏(𝜀) is a continuous piecewise linear function. The detailed formulation of quantile regression is available in Koenker 

& Bassett Jr (1978).  The objectives of the study were; to forecast electricity demand distributions in South Africa in 

the long-term horizon (ten years), to forecast the distributions of the morning (demand at 06h00, 07h00 and 08h00) 

and the afternoon (demand at 18h00, 19h00 and 20h00) peak electricity demand over the years until 2023 in South 

Africa and to investigate the shifts in the distributions of electricity demand over the years until 2023. 

 

3. Data 
 

The South African total hourly electricity demand data from 1997 to 2015 is depicted in Figure 2. During this period 

the highest hourly electricity demand was 36 826 kW in 2011, while the minimum was 13 533 kW in 1998. Figure 2 

shows an upward trend between 1997 and 2011 which could be attributed to the government’s efforts to make 

electricity accessible to every South African household and consequently a lot of households were being connected to 

the grid and the growing economy during the same period (Mokilane et al., 2018). The electricity demand in Figure 2 

took a downward trend in the latest four years until 2015 which could be attributed to the growing renewable sources 

of electricity, the sluggish economic growth, the steep increases in electricity tariffs and the market penetration of 

energy efficient appliances among others. 

 

 
Figure 2: Hourly electricity demand between 2013 and 2015 

 

The model was built from the logarithmically transformed time series. Logarithmic transformations are convenient 

means of transforming a highly skewed variable into one that is approximately normal (Benoit, 2011). After carrying 

out a number of transformations of hourly demand from the Box & Cox (1964) family, we found that the logarithm is 

the best fit to the available data. We, therefore, modelled the logarithmic hourly demand data and this is consistent 

with Hyndman & Fan (2010) approach. The demand data between 2007 and 2012, inclusively, were used to train the 

model, while the data from 2013 to 2015 was withheld and used in model validation. The variables used in the 

modelling are given in Table A.1 in the appendix 

 

4. Results and discussion 
 

4.1 Sub-Headings 
 

The electricity demand forecasts were validated; a) by comparing the distributions of the actual and the forecasted 

electricity demand (Figure 3), b) by comparing the daily profiles of the actual and the forecasted electricity demand 

(Figure 5), and c) by assessing the closeness of the point electricity demand forecasts to the actual electricity demand 

using the mean absolute percentage errors (MAPE) in Table 1. The electricity demand densities generated from the 

GAMMQV and the GAMM are compared to that of the actual electricity demand (Figure 3). Figures 3(a), 3(b) and 
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3(c) show that the forecasted electricity demand densities from the GAMMQV model (red graphs in Figure 3) better 

represented the densities of the actual electricity demand in 2013, 2014 and 2015 respectively. 

 

 
(a)     (b)                                                   (c) 

                                            

Figure 3: Comparisons of actual and forecasted demand densities - GAMMQV vs GAMM: ((a) =2013 actual 

demand density against forecasted, (b) = 2014 actual demand density against forecasted density, (c) = 2015 

actual demand density against forecasted) 

 

The MAPE between the actual and the point electricity demand forecasts in 2013, 2014 and 2015 were below 4% in 

all hours, as shown in Table 1. Lewis (1982) indicates that a MAPE of less than 10% can be classified as highly 

accurate forecast. The GAMMQV model, therefore, provided better point forecasts compared to the GAMM model 

and the model produced accurate forecasts. 

 

Table 1. Mean absolute percentage errors  
GAMM GAMMQV 

Hours 2013 2014 2015 Average 2013 2014 2015 Average 

0 2.013 2.600 3.190 2.601 1.706 1.914 2.633 2.084 

1 2.105 2.686 3.093 2.628 1.701 1.942 2.657 2.100 

2 2.115 2.635 3.088 2.613 1.688 1.896 2.653 2.079 

3 1.880 2.327 2.852 2.353 1.901 1.927 2.587 2.138 

4 1.847 1.937 2.535 2.107 2.294 2.217 2.641 2.384 

5 2.648 2.601 2.931 2.727 3.183 3.152 3.181 3.172 

6 3.371 3.258 3.970 3.533 3.146 3.124 3.490 3.254 

7 2.684 3.089 3.714 3.162 2.018 2.172 2.886 2.359 

8 2.434 2.760 3.331 2.842 1.742 2.029 2.681 2.151 

9 2.380 2.618 2.783 2.594 1.791 2.031 2.284 2.035 

10 2.290 2.666 3.124 2.693 1.826 1.969 2.507 2.100 

11 2.245 2.610 3.121 2.659 1.893 2.022 2.592 2.169 

12 2.223 2.593 3.075 2.630 1.934 2.041 2.608 2.194 

13 2.148 2.507 2.939 2.531 2.028 2.102 2.583 2.238 

14 2.140 2.481 2.916 2.512 2.156 2.207 2.646 2.337 

15 2.056 2.297 2.799 2.384 2.381 2.226 2.649 2.419 

16 2.054 2.077 2.811 2.314 2.513 2.308 2.709 2.510 

17 2.033 2.025 3.245 2.434 2.397 2.510 3.013 2.640 

18 2.128 1.958 3.205 2.431 2.111 2.677 2.777 2.522 

19 2.346 1.962 3.176 2.495 1.872 2.304 2.504 2.227 

20 2.300 2.395 3.742 2.812 1.900 1.946 2.925 2.257 

21 2.290 2.670 3.806 2.922 1.806 1.806 2.907 2.173 

22 2.214 2.574 3.401 2.730 1.664 1.835 2.718 2.072 

23 2.117 2.639 3.150 2.635 1.726 1.873 2.659 2.086 

Average 2.253 2.498 3.167 2.639 2.057 2.176 2.729 2.321 
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The MAPE and density functions in Table 1 and in Figure 3 respectively indicated that the GAMMQV gives better 

forecasts than the simple GAMM model. Therefore, the GAMMQV was used to forecast hourly electricity demand 

in this study. 

 

4.2 Model diagnostics-GAMMQV 
 

For illustration purposes, the model diagnostic results for hour 18 (corresponding to 18:00) are given in Figure 4. 

Figure 4 shows that a GAMMQV model is a good fit to the data. Figure 4(d) shows a plot of fitted values versus the 

response values which are scattered around a diagonal line showing a good fit. The clustering of residuals around zero 

in Figure 4(c) is the indication that the errors are independent of each other and there is no apparent relationship 

between them while Figure 4(b) shows that the residuals distribution was skewed to the left. The amount of variation 

explained by the GAMMQV model is 87.7% (𝑟2 = 0.877). 

 

                                      
(a)                 (b) 

                                       
(c)               (d) 

Figure 4: diagnostic plots (a = normal quantile-quantile, b = residuals histogram plot, c = linear predictor 

values against residuals, d = fitted values plotted against response values) 

 

4.3 Forecasts 
 

The three year out of sample forecasts were further validated by comparing the actual and forecasted daily electricity 

demand profiles. For discussion purposes, 4 days in June were selected in such a way that the day with the highest 

hourly electricity demand of the year was included. The highest electricity demand in 2013 was 35 393 kW on the 18 

June, it was 36 039 kW in 2014 on the 12 June and 34 481 kW in 2015 on the 11 June and they were all at 18h00. 

Figures 5(a), 5(b) and 5(c) show that the forecasted (blue graph) electricity demand well represented the actual (red 

circles) electricity demand in 2013, 2014 and in 2015 respectively. The black graphs in Figure 5 represent the 

electricity demand forecasts at the 1st and 99th quantiles of the demand distribution. Considering the electricity demand 

forecasts on the 18th June 2013, at 18h00, the forecasted electricity demand was 34 602 kW (logdemand=4.5391) 

while the actual electricity demand was 35 393 kW (logdemand=4.5489). The forecasted electricity demand at the 1st 

quantile was 32 839 kW (logdemand=4.51639) while the forecast at the 99th quantile was 37 717 kW 

(logdemand=4.57654). Therefore, electricity demand at 18h00 on the 18th June 2013 is expected to fall between 32 839 

kW and 37 717 kW with a 98% probability. 
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(a)      (b)                                                                 (c) 

Figure 5: comparisons of actual and forecasted daily profiles: (a) = 2013 actual hourly demand against 

forecasted; (b) = 2014 actual hourly demand against forecasted; (c) = 2015 actual hourly demand against 

forecasted) 

 

4.4 Comparing electricity demand distributions over the years 
 

The electricity demand for each hour was forecasted at various quantiles of the demand distribution using the fitted 

GAMMQV model. The forecasted values were used to generate the density functions in Figures 6 (a), (b) and (c). By 

comparing the electricity demand density functions over the years, the insight into expected shifts in electricity demand 

patterns can be obtained, that is, whether the distribution of electricity demand in Figure 6 (a) is expected to shift 

towards higher or lower demand. The forecasted electricity demand distributions in Figure 6 (a) obtained from the 

GAMMQV model for the period investigated suggest that electricity demand from Eskom is likely to shift towards 

lower demand over the years until 2023. 

 

 
(a)                                                (b)                                                                     (c) 

 

Figure 6: Demand distribution between 2013 and 2023 - (a) Overall; (b) Morning peak; (c) Afternoon peak 

 

The daily peak electricity demand is very important for planning purposes, as this represents the maximum that would 

need to be supplied in an hour and if the power generating company could meet the daily peak hourly electricity 

demand, it could meet any hourly demand. The morning and afternoon peak electricity demand distributions suggest 

a shift towards lower peak demand over the years until 2023 (Figures 6 (b) and (c)). 

 

4.5 Conclusions 
 

The forecasted electricity demand distributions closely match the actual electricity demand distribution between 2013 

and 2015; therefore, there is no reason to doubt that the GAMMQV model will continue to forecast electricity demand 

accurately beyond 2015.  The distribution of electricity demand from Eskom is expected to shift towards lower demand 

over the years. Both morning and afternoon peak electricity demand distributions are also expected to shift towards 
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lower demand in future. The decline in electricity demand is apparent in the latest four years until 2015 which could 

be attributed to the growing renewable sources of electricity in South Africa, the sluggish economic growth, the steep 

increases in electricity tariffs and the market penetration of energy efficient appliances among others. The forecasted 

daily profiles from the GAMMQV model accurately capture the actual daily profiles in the long-term. The MAPE 

shows that the GAMMQV model gives good point forecasts. The probabilities of exceeding certain electricity demand 

can be obtained from the quantile forecasts of the GAMMQV model. The first contribution of the paper is the 

development and application of GAMMQV model in forecasting the long-term electricity demand in South Africa. 

The second contribution is the harnessing of the within hour correlation structures in forecasting the long-term hourly 

electricity demand using AR in some hours and ARMA in other hours. The third contribution is the probabilistic 

forecasting of long-term electricity demand using the South African data. The fourth contribution is the inclusion of 

the nonlinear trend with the future values forecasted using QR model. The trend values beyond 2012 were forecasted 

at 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95 quantiles of the distribution. 
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TABLE A.1: Variables used in the GAMM 
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Variable Type of variable Scale Created variables 

Demand Dependent Continuous Log transformed 

Newyear Independent Dichotomous 1 if day is 01 January; 0 otherwise 

Humanrights Independent Dichotomous 1 if day is 21 March; 0 otherwise 

FreedomDay Independent Dichotomous 1 if day is 27 April; 0 otherwise 

WorkersDay Independent Dichotomous 1 if day is 01 May; 0 otherwise 

YouthDay Independent Dichotomous 1 if day is 16 June; 0 otherwise 

HeritageDay Independent Dichotomous 1 if day is 24 September; 0 otherwise 

ReconciliationDay Independent Dichotomous 1 if day is 16 December; 0 otherwise 

ChristmasDay Independent Dichotomous 1 if day is 25 December; 0 otherwise 

GoodwillDay Independent Dichotomous 1 if day is 26 December; 0 otherwise 

Month1 Independent Dichotomous 1 if Month is January; 0 otherwise 

Month2 Independent Dichotomous 1 if Month is February; 0 otherwise 

Month3 Independent Dichotomous 1 if Month is March; 0 otherwise 

Month4 Independent Dichotomous 1 if Month is April; 0 otherwise 

Month5 Independent Dichotomous 1 if Month is May; 0 otherwise 

Month6 Independent Dichotomous 1 if Month is June; 0 otherwise 

Month7 Independent Dichotomous 1 if Month is July; 0 otherwise 

Month8 Independent Dichotomous 1 if Month is August; 0 otherwise 

Month9 Independent Dichotomous 1 if Month is September; 0 otherwise 

Month10 Independent Dichotomous 1 if Month is October; 0 otherwise 

Month11 Independent Dichotomous 1 if Month is November; 0 otherwise 

Sin6 Independent Continuous Sine term of Fourier series with Period 6 

Cos6 Independent Continuous Cosine term of Fourier series with Period 6 

Sin12 Independent Continuous Sine term of Fourier series with Period 12 

Cos12 Independent Continuous Cosine term of Fourier series with Period 12 

Sin18 Independent Continuous Sine term of Fourier series with Period 18 

Cos18 Independent Continuous Cosine term of Fourier series with Period 18 

Sin24 Independent Continuous Sine term of Fourier series with Period 24 

Cos24 Independent Continuous Cosine term of Fourier series with Period 24 

Lag70128 Independent Continuous The 1st time lag 

Lag70152 Independent Continuous The 2nd time lag 

Lag70176 Independent Continuous The 3rd time lag 

Lag70200 Independent Continuous The 4th time lag 

Lag70224 Independent Continuous The 5th time lag 

Lag70248 Independent Continuous The 6th time lag 

Sun Independent Dichotomous 1 if day is Sunday; 0 otherwise 

Mon Independent Dichotomous 1 if day is Monday; 0 otherwise 

Tues Independent Dichotomous 1 if day is Tuesday; 0 otherwise 

Wed Independent Dichotomous 1 if day is Wednesday; 0 otherwise 

Thurs Independent Dichotomous 1 if day is Thursday; 0 otherwise 

Fri Independent Dichotomous 1 if day is Friday; 0 otherwise 

Fribtwn Independent Dichotomous 1 if Friday preceded by a holiday; 0 otherwise 

Monbtwn Independent Dichotomous 1 if Monday preceded a holiday; 0 otherwise 

Lngwknd Independent Dichotomous Long weekend 

Dec_closure Independent Dichotomous 1 if period between 16 December and 01 January; 0 otherwise 

Winter_schoolholiDay Independent Dichotomous 1 if period is during school closure in June/July; 0 otherwise 

Easter Independent Dichotomous 1 if day is Easter; 0 otherwise 

Winter Independent Dichotomous 1 if period is between June and August 
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