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Abstract—The performance loss due to incomplete information
in denial of service (DoS) detection is quantified in this paper.
Volumetric DoS detection is formulated as a signal detection
problem. Two detectors are defined: the first operates without
knowledge of the attack model and the second operates as if the
attack model were known. The performance loss is quantified
by comparing the two detectors. Simulation results demonstrate
that the performance loss is greatest for low intensity attacks and
slowly diminishes as the attack intensity increases.

Index Terms—Intrusion Detection, Anomaly Detection, Signal
Detection, Denial of Service (DoS)

I. INTRODUCTION

Anomaly-based intrusion detection operates by constructing
a model of normal network traffic patterns and detecting
deviations from the model as potential intrusions [1]. The
anomaly-based approach operates without an attack model,
thus allowing the detection of previously unknown attacks.
However, this feature requires that assumptions be made
about the attack. Depending on the problem conditions, the
assumptions may lead to a performance decrease [2], [3].

In this paper, volumetric denial of service (DoS) detection is
formulated as a signal detection problem; i.e., the detection of
a signal (the attack traffic) embedded in noise (the background
traffic). This formulation is similar to previous work utilizing
sequential change-point methods [4], but differs in that it
employs explicit models of network traffic rather than detect-
ing distributional changes in network traffic. Signal detection
theory provides the necessary tools to quantify the effects
of incomplete information on detection performance. Two
detectors are compared in this paper. The first detector operates
without knowledge of the attack model and the second detector
operates as if the attack model were known. By comparing the
detectors, the performance loss due to the lack of an attack
model is quantified. Simulations are performed on real network
traffic from the Measurement and Analysis on the WIDE
Internet (MAWI) archive [5] superposed with synthetically
generated attacks.

The paper is organized as follows. The volumetric DoS
detection problem is formulated in Section II, and the two
detectors are defined in Section III. Section IV presents the
simulation results and numerical analysis. Finally, Section V
concludes and proposes future directions.
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II. PROBLEM FORMULATION

Formulated within the framework of signal detection theory,
the problem is to detect whether a signal (the DoS attack
traffic) is present in noise (the background traffic).

Modelling Network Traffic: The time series of interest
is the number of packets arriving at the network within
the n'™ non-overlapping observation interval of duration A,
denoted by w(n] for n = 1,---, Niota1- It has been empirically
demonstrated that the marginal distribution of w[n] can be
reasonably approximated by a gamma distribution over a wide
range of observation interval lengths 1073s < A < 10s [6].
The gamma marginal distribution model has been implemented
to effectively detect network attacks in [6]—[8], and is assumed
here. Formally, it is assumed that each w[r] is a sample value
of a random variable with gamma probability density function
(PDF) given by

[(a[n]) (ﬂ[n]

w(n]
X exp (—m) ,

for w(n], @[n], B[n] > 0. Here, I'(-) denotes the gamma func-
tion, and a[n] and B[n] denote the shape and scale parameters
of the gamma distribution.

Furthermore, w[n] is assumed to be locally stationary (in
accordance with [9]); i.e., the parameters «[n] and B[n] are
assumed to vary slowly with respect to n. A standard approach
for dealing with locally stationary time series is to construct
a sliding window, such that w[n] observed within the window
are stationary (a[n] and B[n] are approximately constant for
n within the window). A window of length Nief + Nese Sample
points is constructed, and shifted across the time series by
S sample points in each iteration. For each position of the
window m =0, - - -, M—1, the first Nf sample points comprise
the reference subsequence (n = mS + 1,--- ,mS + Net) and
the next Ny sample points comprise the test subsequence
(n =mS+Neer+1,- -+, mS+ Nper + Niegt)- Fig. 1 on the next page
provides a schematic description of the windowing procedure,
demonstrated for an example time series of 10 sample points.
Selection of appropriate values for Nef, Nest, and S will be
guided in Section IV.
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Fig. 1. A schematic description of the problem setup for a time series of
length Ny (= 10) sample points. A sliding window is started at the initial
position m = 0 (not shifted). The first N.f(= 3) sample points of the window
comprise the reference subsequence, represented by the grey circles; and the
next Niesi(= 2) sample points comprise the test subsequence, represented by
the black circles. White circles represent sample points that are not processed
for a given window position. The window is shifted by S(= 1) sample points
to give the next position m = 1 (shifted once). The process is repeated for a
total of M window positions.

Detection Problem: The subsequences corresponding to
each consecutive window position are assumed to be sta-
tistically independent, therefore the problem is statistically
invariant to the choice of the window position m. Without
loss of generality, the case m = 0 will be considered here for
notational simplicity. The detection problem is to distinguish
whether an attack of amplitude A > 0 appears in background
network traffic w[n]. Denoting, the observed time series by
x[n], the problem is to distinguish between the two hypotheses:

Ho : x[n] = w[n], )
H, : x[n] = A+wn], 3)
for n = Nes + 1, -+, Nef + Niest. Due to the assumed local

stationarity, and provided Ny is chosen appropriately, w(n]
are identically gamma-distributed with parameters @ and S;
i.e., the parameters are no longer n-dependent within the
window. The parameters ¢ and S are unknown. However, it
is assumed that the reference subsequence (x[1], - -, x[Neet]),
consists only of noise, from which @ and 8 can be estimated
provided Nf is sufficiently large. The attack amplitude A
plays an important role in this paper and will be discussed
in the next section, after defining the two detectors.

III. DETECTION METHODS

Signal detection problems are typically solved by optimiz-
ing a specified criterion. Two fundamental criteria include the
Bayes risk and the Neyman-Pearson (NP) criterion. The Bayes
risk assigns a prior probability to each hypothesis and a cost
to each possible decision outcome. When it is difficult to
assume prior probabilities or error costs, the NP criterion is
appropriate, which attempts to maximize the probability of
detection, Pp, for a given probability of false alarm, Pga.
It is well known that optimizing either criterion leads to
detectors of the same general form; i.e., the likelihood ratio
test (LRT) [10].

Denoting an observed test subsequence by the vector x :=
(X[Nref + 1], X[Nrer + 2], -+, X[ Nper + Neest]), the LRT decides
that H; was true if

_ X (x|H))
px|H,X|IHo) ~ "

and decides that 9y was true otherwise. In (4), A(x) de-
notes the likelihood ratio,  denotes the threshold value, and
Px|H,(X|Hp) and pxqq (x|H)) denote the conditional PDFs
of x under each hypothesis. In the Bayesian approach, 7 is
defined in terms of the assumptions about error costs and prior
probabilities, whereas in the NP approach, n is defined such
that a given Ppp is achieved. Here, the choice of criterion will
be left arbitrary by referring in general to 7.

In practice, it is rare that the attack amplitude A will be
known before the occurrence of the attack. This challenge
is a primary reason for the growing interest in anomaly-
based detection, which operates without an attack model. In
this paper, a comparison is drawn between anomaly-based
detection and signal detection without a signal-plus-noise
model; i.e., without knowledge of px|#, (x|H;). Therefore,
anomaly-based detection is modelled here as a detector that
decides H; was true if

A(x) : 4)

1
_— >
x|+, (X|Ho)

and decides that H, was true otherwise, where ¢ is a threshold
value. In contrast with (4), there is no optimality associated
with (5). However, Bishop [11] has shown that under certain
assumptions about pxq, (X|H1), (4) and (5) are equivalent
detectors. The first assumption being that px|s, (X|H) is
equal to a constant on the support of px g, (X|Ho). And, the
second assumption being that px|s, (x|H;) is of the form
F(px|#,(x|Hp)), where F(:) is a strictly decreasing function.
The details of the assumptions are contained within &.

These assumptions are not often appropriate in real prob-
lems. Thus follows the main contribution of this paper: to
quantify the performance loss of (5), hereafter referred to as
the anomaly-based (AB) detector, under more realistic condi-
tions. This is accomplished by comparing the performance of
the suboptimal AB detector with the optimal LRT detector for
a simple class of volumetric DoS attacks, via the simulations
presented in the next section.

&, (&)

IV. SIMULATIONS

The simulations presented here were performed with net-
work traffic data from the MAWTI archive. Details of the MAWI
dataset and the simulation parameter settings will be provided
next. Thereafter, the simulation results will be presented and
discussed.

A. Simulation Setup

The MAWI Dataset: The publicly available MAWI work-
ing group archive samplepoint-F [5] connects several Japanese
research institutes and universities to the Internet. The archive
offers 15 minutes of traffic from 14:00 to 14:15 (Japanese
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Fig. 2. Plots of the accuracy of each detector, in terms of AUC, versus logarithmically-scaled test subsequence length, Nies, for a fixed attack intensity of
(@) I =1%, (b) I =5%, (c) I =10%, and (d) I = 15%. Orange curves represent the LRT detector and blue curves represent the AB detector.

Standard Time) every day of the year since the year
2000. Packet payloads are removed and IP addresses are
anonymized. The present experiments were performed on the
traffic trace from Tuesday 25™ July 2017, the latest available at
the time. The traffic trace contains roughly 121 million packets
and has an average traffic rate of 974 Mbit/s.

Synthetic attacks were used, similar to [6] and [7]. In partic-
ular, the authors of [7] simulated flooding attacks using iPerf!
on a quiet network, and superposed the resulting pure attack
traffic on real recorded background traffic. Those authors ac-
knowledge that this approximation does not take into account
the changing behaviour of the underlying network protocols
under the effect of the attack. However, they demonstrated
that the marginal distribution of the superposed time series
reasonably approximates that of a real attack time series [7,
Fig. 4]. In this paper, attacks have been synthesized as a
constant-valued time series, rather than simulated via tools
such as iPerf. While this approximation allows to demonstrate
the main contributions of the paper, performing the analysis

liPerf is a network bandwidth measurement tool. Available: https://iperf.fr/

with real attack tools on a real or simulated network is
preferable. Work is currently underway in that direction.

Parameter Settings: The fixed parameters were set as
follows: A = 1ms, Ner = 1 min = 60000 sample points, and
Nghire = 100 ms = 100 sample points. Given the short duration
(15min) of the traffic trace, the sample period A was chosen
to give a large total sample size of Ny = 900000 sample
points. The reference subsequence length Nr was selected to
attain a balance between avoiding non-stationarity within each
window position and providing a sufficient number of samples
so that model parameter estimation accuracy did not affect the
results. The shift length S ensured M ~ 9000 window positions
per experiment, therefore roughly 9000 detection opportunities
from which to reliably compute Pgs and Pp.

The test subsequence length was dyadically increased,
Nest = 2K for k = 0,---, 11, until further increases resulted
in erratic detection accuracy (which the authors suspect is
due to introducing non-stationarities). The attack intensity was
uniformly increased, I = 0.01/ for [ = 1,---,50, such that
any smaller lead to barely detectable attacks, and any larger
resulted in too easily detectable attacks.
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Fig. 3. Plots of the accuracy of each detector, in terms of AUC, versus attack intensity, I (%), for a fixed test subsequence length of (a) Niest = 1 sample
point and (b) Nt = 1024 sample points. Orange curves represent the LRT detector and blue curves represent the AB detector.

B. Simulation Results

The purpose of the simulations is to evaluate the perfor-
mance, in terms of detection accuracy, of two detectors for a
constant-rate volumetric DoS attack (as detailed in Sections II
and IIT). The AB detector operates without knowledge of the
attack-plus-noise PDF, and the LRT detector operates as if
the attack-plus-noise PDF were known. By comparing the
two detectors, the performance loss due to the incomplete
information utilized by the AB detector is assessed. The
numerical analysis to follow serves to investigate how the
performance loss varies with respect to the test subsequence
length, Ny, and the attack intensity, /. A complete measure
of performance, in terms of detection accuracy, is given by the
receiver operating characteristic (ROC) curve; i.e., Ppa versus
Pp with varying detector threshold. The ROC curve allows
to disentangle the assessment of a detector’s accuracy from
problem-specific assumptions, such as prior probabilities and
error costs. Performance is measured here by the area under
the ROC curve (AUC), ranging from 0.5, meaning that the
detector is no better than flipping a coin, to 1, meaning that
the detector has perfect accuracy.

AUC Versus Test Subsequence Length: Each subfigure
in Fig. 2 fixes I and plots the AUC as a function of Ngg
on a semi-logarithmic axis. The blue curve corresponds to
the AB detector, and the orange curve corresponds to the
LRT detector. For small intensities / < 5% (Fig. 2a), the AB
detector performance is roughly constant, whereas the LRT
detector performance is increasing and piecewise linear with
a breakpoint at Neg € (200,300). Note that the piecewise
linearity is observed on a semi-logarithmic axis. The figure
demonstrates that the AB detector performance remains poor,
with negligible improvement despite a substantial increase in
the number of samples available for detection.

At I = 5% (Fig. 2b), the AB detector performance begins to
increase with Mg, however, the performance difference still
increases with Neg. The AB detector performance also shows

approximate piecewise linearity (on the semi-logarithmic axis)
with the breakpoint at Ny € (200,300). When the intensity
reaches I = 10% (Fig. 2c), LRT performance begins to
saturate for Ny € (500,600); i.e., further increasing Nt
yields minimal increase in the AUC. This observation is to be
expected as detection accuracy draws nearer to perfect. The
saturation has the effect that at this intensity, the performance
difference decreases for large Ng.

Whereas for I < 15%, both curves have positive curvature,
for I > 15% (Fig. 2d), both curves have negative curvature.
The authors are not yet able to explain structural change.
At this intensity, AB performance begins to saturate for
Nest € (500,600). For greater intensities than have been
plotted here, no further structural changes were observed;
the curves draw increasingly nearer to each other as they
asymptotically approach perfect accuracy (AUC ~ 1).

AUC Versus Attack Intensity: Each subfigure in Fig. 3
fixes Neg and plots the AUC as a function of 1. As before,
the blue curve corresponds to the AB detector, and the orange
curve corresponds to the LRT detector. While the LRT curve
has positive curvature throughout, the AB curve has negative
curvature for small intensities (roughly /I < 5%) and positive
curvature thereafter. The negative curvature demonstrates a
structural defficiency in the AB detector for small intensity
attacks. For each fixed Ny, both detectors’ performances
saturate with increasing I and the performance difference
diminishes. As Ny increases, the curves appear to be increas-
ingly compressed along the I-axis, giving the effect that the
performance difference diminishes at lower intensities.

Performance Loss Measure: The performance difference
is characterized in another way in Fig. 4. In order to describe
the function R(I) plotted in the figure, the reader is first
referred to Fig. 2c. For I = 10%, the LRT detector achieves
an AUC of approximately 0.7 at Ny = 1. Since the curve is
monotonically increasing, it can be said that Ny = 1 is the
minimum required value for the LRT detector to achieve an
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Fig. 4. Plot of the performance comparison measure, R, versus attack

intensity, I (%). See the text for a description of the measure R.

AUC of 0.7. Similarly, Neg ~ 400 is the minimum required
value for the AB detector to achieve the same AUC of 0.7.
Denote by R(AUC,I) the ratio of minimum required Mg
values to achieve a desired AUC. Continuing with the example,
it follows that R(0.7, 10%) = 400; i.e., for attacks of intensity
I = 10%, the AB detector requires a test subsequence length
400 times that of the LRT detector to achieve the same AUC
of 0.7. Finally, denote by R(I) the average of R(AUC, I) over
all AUC values, which has been plotted in the figure. The
curve in Fig. 4 demonstrates two key points. First, for small
intensities, the AB detector requires a significantly larger Mg
than the LRT detector. Second, as the intensity increases, R(I)
decays slowly; even at I = 50%, the AB detector requires on
average 1.5 times the N of the LRT detector.

V. CONCLUSION

The performance loss due to the lack of an attack model in
the anomaly-based approach to DoS detection was quantified.
Real background network traffic from the MAWI archive was
superposed with synthetic DoS attacks. Detection performance
was evaluated in terms of the AUC, with varying attack
intensity and test subsequence length. It was observed that
the performance loss is most notable for attacks of small
intensities (I < 5%). The performance loss diminishes as [/
increases, however at a slow rate; at a high attack intensity
(I = 50%), the AB detector still requires a test subsequence
of length 1.5 times that of the LRT detector in order to match
its performance on average.

Three future directions are proposed. 1) Although indepen-
dence has been assumed here, it has long been known that
network traffic exhibits long-range dependence. Furthermore,
while the gamma distribution accommodates the skewness in
the data, it does not address the inherent heavy-tailedness of
network traffic. Research into improved modelling of network
traffic is ongoing and these models can be incorporated into
the present framework for improved detection accuracy. 2) The
simplistic attack model can also be extended to better reflect

the effects of the attack on the underlying network protocols.
For instance, the present framework provides a platform to
utilize previous work on the spectral characterization of DoS
attacks [12] for enhanced detection. The framework can also
easily be extended to attacks other than the DoS. 3) In
this study, the attack model was either completely known or
completely unknown. It is perhaps unrealistic to know the
attack model completely before the attack occurs. Therefore,
the effects of an attack model mismatch could be studied. This
would allow to identify whether, realistically, it may be more
effective not to assume an attack model at all; i.e., to take the
anomaly-based approach, rather than to assume a mismatched
attack model.
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