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Abstract. Description Logics (DLs) that support uncertainty are not
as well studied as their crisp alternatives, thereby limiting their use in
real world domains. The Bayesian DL BEL and its extensions have been
introduced to deal with uncertain knowledge without assuming (prob-
abilistic) independence between axioms. In this paper we combine the
classical DL ALC with Bayesian Networks. Our new DL includes a so-
lution to the consistency checking problem and changes to the tableaux
algorithm that are not a part of BEL. Furthermore, BALC also supports
probabilistic assertional information which was not studied for BEL. We
present algorithms for four categories of reasoning problems for our logic;
two versions of concept satisfiability (referred to as total concept satis-
fiability and partial concept satisfiability respectively), knowledge base
consistency, subsumption, and instance checking. We show that all rea-
soning problems in BALC are in the same complexity class as their clas-
sical variants, provided that the size of the Bayesian Network is included
in the size of the knowledge base.

1 Introduction

Description Logics (DLs) [1] that support uncertainty are currently not as ma-
ture as their crisp alternatives. Furthermore, DLs capable of representing uncer-
tain contextual knowledge are even more scarce. This lack of mature probabilis-
tic reasoning services limits the application of DLs in many real world domains,
which often require reasoning about uncertain or contradictory information. For
example when planning free time activities, the weather is often a very real con-
sideration. The kind of activities that are pleasant in poor weather are often
very different from summer activities. As such, building an ontology that mod-
els activities will be quite difficult. However, modeling the weather as uncertain
contexts simplifies this task. Consider for example the axiom

(Swimming v Fun)Sunny (1)

which intuitively states that Swimming is Fun when the weather is Sunny.
Importantly this axiom states nothing about the relation between swimming
and fun when the context sunny does not hold. In other words, the axiom (1)
expresses that if it is Sunny then Swimming is Fun. However, that is not to say
that Swimming is always fun. By attaching probabilities to the contexts we are



able to reason about how probable it is that an activity will be fun. Furthermore,
if we make these probabilities conditional then we can use our knowledge of the
world in these queries.

To move towards being able to perform this kind of reasoning we study the
Bayesian Description Logic BALC. BALC is a contextual Bayesian Description
Logic based on the existing DL BEL and Bayesian ontology languages [5, 6].
Unlike many other probabilistic DLs (for a survey see [8]), Bayesian DLs do
not directly encode the probabilities that concepts or roles are related. Instead
axioms and assertions are annotated with an optional context in which they are
required to hold. The probability of these contexts holding are then represented
using a Bayesian Network (BN). This gives Bayesian DLs the ability to per-
form conditional probabilistic reasoning. In terms of the underlying logic, our
approach is similar to [10]. However, contrary to [10], we do not assume indepen-
dence between the different axioms, but rather describe their joint probability
distribution with the help of the contextual knowledge.

2 BALC

Bayesian networks (BNs) are graphical models capable of representing the joint
probability distribution of several discrete random variables in a compact man-
ner. Given a random variable X, we denote as val(X) the set of values that X
can take. Given an x ∈ val(X), we denote as X = x the valuation of X taking
the value x. This notation is extended to sets of variables in the obvious way.
Given a set of random variables V , a world ω is a set of valuations containing
exactly one valuation for every random variable X ∈ V . A V -literal is an or-
dered pair of the form (Xi, x), where Xi ∈ V and x ∈ val(Xi). The name literal
refers to them generalizing Boolean literals which are often denoted as x or ¬x
for the random variable X. For simplicity, in this paper we will often use the
notation X for (X,T ) and ¬X for (X,F ). A V -context is any set of V -literals.
It is consistent if it contains at most one pair for each random variable. We will
often call V -contexts primitive contexts.

Definition 1 (Bayesian Network). A Bayesian network is a pair B = (G,Θ)
where G = (V,E) is a directed acyclic graph and Θ is a set of conditional prob-
ability distributions for every variable X ∈ V given its parents π(X) on G:

Θ = {P (X = x|π(X) = x′) | X ∈ V }.

We now describe BALC as an extension of the classical DL ALC. The concept
language for BALC is the same as for ALC, but axioms are considered to hold
only in a given context. This is expressed by annotations given to these axioms,
as formalized next.

Definition 2 (KB). Let V be a finite set of discrete random variables. A
V -restricted general concept inclusion (V -GCI) is an expression of the form
(C v D)κ where C and D are ALC concepts and κ is a V -context. A V -TBox is



a finite set of V -GCIs. A V -restricted assertion (V -assertion) is an expression
of the form C(x)κ or r(x, y)κ where C is an ALC concept, r is an ALC role
name, x, y are individual names, and κ is a V -context. A V -ABox is a finite set
of V -assertions. A BALC knowledge base (KB) over V is a triple K = (T ,A,B)
where B is a BN over V , T is a V -TBox, and A is a V -ABox.

Note that this definition does not prevent the encoding of classical statements.
Axioms or assertions annotated with the empty set will hold in all contexts. We
abbreviate (C v D)∅ as (C v D) and C(x)∅ as C(x) . When it is clear from
the context, we will omit the V prefix and refer only to literals, contexts, GCIs,
assertions, ABoxes, and TBoxes.

As BALC is based on a model-theoretic semantics we next need to define
what constitutes a model of a BALC knowledge base. In order to do this we first
define two different types of interpretations; V -interpretations and probabilis-
tic interpretations. V -interpretations should be thought of as an interpretation
linked to a specific Bayesian world, while probabilistic interpretations are inter-
pretations over all all worlds.

Definition 3 (V -interpretation). A V -interpretation is a tuple V = (∆V , ·V , vV)
where ∆V is a non-empty set called the domain, vV is a valuation function de-
fined as vV : V → ∪X∈V val(X) such that vV(X) ∈ val(X), and ·V is an inter-
pretation function that maps every concept name C to a set CV ⊆ ∆V and every
role name r to a binary relation rV ⊆ ∆V ×∆V .The interpretation function vV

is extended to complex ALC concepts as usual.
The V -interpretation V is a model of the GCI (C v D)κ, (V |= (C v D)κ),

iff (i) vV 6|= κ, or (ii) CV ⊆ DV . V is a model of the assertion C(x)κ (respectively
r(x, y)κ), denoted as V |= C(x)κ (respectively V |= r(x, y)κ), iff (i) vV 6|= κ, or
(ii) xV ∈ CV (respectively (xV , yV) ∈ rV). It is a model of the TBox T (ABox
A) iff it is a model of all the GCIs in T (assertions in A). It is a model of the
knowledge base K iff it is a model of both T and A.

Given a valuation function vV , a Bayesian world ω, and a context κ we will
denote vV = ω when a valuation function assigns each random variable the same
value as it has in ω; vV |= κ when for all (X,x) ∈ κ we have that vV(X) = x;
and ω |= κ when we have that ω = vV such that vV |= κ.

V -interpretations focus on only a single world, but a KB has information
about the uncertainty of being in one world or another. Probabilistic interpreta-
tions combine multiple V -interpretations and the probability distribution from
the BN.

Definition 4 (Probabilistic interpretation). A probabilistic interpretation
is a pair of the form P = (J ,PJ ), where J is a finite set of V -interpretations
and PJ is a probability distribution over J such that PJ (V) > 0 for all V ∈ J .

The probabilistic interpretation P is a model of the GCI (C v D)κ, denoted
as P |= (C v D)κ, iff every V ∈ J is a model of (C v D)κ. We say that P
is a model of the TBox T iff every V ∈ J is a model of T . P is a model of
the assertion C(x)κ (respectively r(x, y)κ), denoted as P |= C(x)κ (respectively



P |= r(x, y)κ), iff every V ∈ J is a model of C(x)κ (respectively r(x, y)κ). We
say that P is a model of the ABox A iff every V ∈ J is a model of A.

The distribution PJ is consistent with the BN B if for every possible world
ω of the variables in V it holds that∑

V∈J ,vV=ω

PJ(V) = P (ω).

The probabilistic interpretation P is a model of the KB K = (T ,A,B) iff it is a
(probabilistic) model of both T and A, and is consistent with B.

BALC allows for the notion of a complex context and a context language. Due
to space requirements we provide only the basic definitions required for the
presentation of the reasoning problems in BALC. For a thorough explanation,
the interested reader can consult [4].

A complex context φ is a finite set containing one or more primitive contexts.
Note that this allows us to easily convert from primitive to complex contexts
by simply enclosing primitive contexts in an additional set; e.g., the primitive
context κ would be converted into the complex context {κ}. Given a valuation
function vV and a complex context φ = {α1, . . . , αn} we say that vV |= φ iff vV

satisfies at least one αi ∈ φ. This immediately gives the result that if vV |= κ
then vV |= {κ} as complex contexts are consistent with primitive contexts. Thus,
in the following we assume that all contexts are in complex form unless explicitly
stated otherwise. Finally we say that φ |= ψ iff for all vV |= φ then vV |= ψ, or
alternatively φ |= ψ iff for all Bayesian worlds ω such that ω |= φ then ω |= ψ.

Given complex contexts φ = {α1, . . . , αn} and ψ = {β1, . . . , βm} we define
the operations

φ ∨ ψ := φ ∪ ψ, and

φ ∧ ψ :=
⋃

α∈φ,β∈ψ

{α ∪ β} = {α ∪ β|α ∈ φ, β ∈ ψ}.

That is we define operations that fulfill the roles of propositional disjunction
(∨) and propositional conjunction (∧), where disjunction has the property that
either one of the two contexts holds and conjunction requires that both hold.

Lemma 5. Given complex contexts φ and ψ we have

1. ω |= φ ∨ ψ iff ω |= φ or ω |= ψ, and
2. ω |= φ ∧ ψ iff ω |= φ and ω |= ψ.

Two important special complex contexts are top (>) and bottom (⊥), which are
defined such that for all valuation functions vV , vV |= > and vV 6|=⊥. If there are
n primitive contexts these can be defined as > := {α1, . . . , αn} and ⊥:= vV |= ∅.

After all these definitions, we are now ready to introduce and study the
relevant decision and computation problems for our logic.



3 Total Concept Satisfiability and Consistency

As a first decision problem, we consider concept satisfiability. Generalizing from
the classical case, we say that a concept C is totally satisfiable if it is satisfiable
in all the contexts of a knowledge base that have positive probability.

Definition 6 (Total concept satisfiability). A concept C is totally satisfiable
with respect to a BALC KB K iff there exists a probabilistic model P = (J ,PJ )
of K s.t. CV 6= ∅ for all V ∈ J .

When reasoning about a BALC KB it will be useful to refer to the specific TBox
(or ABox) associated with a specific Bayesian world ω; i.e., the TBox (or ABox)
containing only the axioms that hold in ω. We call this reduced TBox (or ABox)
a restriction to the world ω, denoted as Tω (or respectively Aω). Formally, if
K = (T ,A,B) is a BALC KB, and ω a world, the restriction of T and A to a
world ω are defined as

Tω := {(C v D) | (C v D)κ ∈ T , ω |= κ}
Aω := {α | ακ ∈ A, α ∈ {C(x), r(x, y)}, ω |= κ}.

We can think of total concept satisfiability as requiring that a concept be classi-
cally satisfiable in each restricted knowledge base (Tω, Aω) where ω corresponds
to some probabilistic world with positive probability.

Theorem 7. Given a BALC KB K, the concept C is not totally satisfiable in
K iff there exists a world ω such that P (ω) > 0 and C is unsatisfiable in the
ALC KB (Tω,Aω).

The theorem suggests a process for verifying total satisfiability. In the following,
we provide an algorithm based on this idea, but before, we must introduce some
additional terminology.

We use φCK to denote the context that describes all worlds that lead to re-
stricted BALC KB where C is not satisfiable. That is ω |= φCK iff C is unsatisfiable
in (Tω,Aω). Moreover, φB is context that describes all worlds with probability
greater than 0 in the BN; i.e., if ω |= φB then P (ω) > 0. Theorem 7 suggests
that C is not totally satisfiable if there is a world that models both φCK and φB.
This is formalized in the following theorem.

Theorem 8. The concept C is not totally satisfiable w.r.t. the KB K iff φCK∧φB
is satisfiable.

We need to provide a method for computing the formulas φCK and φB. For the
former, we present a variant of the glass-box approach for axiom pinpointing [3,
7, 9], originally based on the ideas from [2]. The idea for this approach is to
modify the standard tableaux algorithm for ALC, to keep track of the contexts
in which the derived elements in the tableau hold. The modified tableaux rules
are presented in Figure 1. Understanding these rules requires some additional
notions that we present next.



u-rule if 1. (C1 u C2)(x)φ ∈ A, and 2. either C1(x)φ or C2(x)φ is A-insertable

then A′ := (A⊕ C1(x)φ)⊕ C2(x)φ.

t-rule if 1. (C1 t C2)(x)φ ∈ A, and 2. both C1(x)φ and C2(x)φ are A-insertable

then A′ := A⊕ C1(x)φ, A′′ := A⊕ C2(x)φ.

∃1-rule if (∃R.C)(x)φ ∈ A, and there exists α ∈ φ such that (∃R.C)(x)α is A-insertable
then A′ := A⊕ (∃R.C)(x)α

∃2-rule if (∃R.C)(x)α ∈ A, there is no z such that both R(x, z)α and C(z)α are not
A-insertable, and x is not blocked

then A′ := (A ⊕ R(x, y)α) ⊕ C(y)α, where y is a new individual name and y > y′

for all individual names y′ ∈ A.

∀-rule if 1. {(∀R.C)(x)φ, R(x, y)ψ} ⊆ A, and 2. C(y)φ∧ψ is A-insertable

then A′ := A⊕ C(y)φ∧ψ

v-rule if 1. (C v D)φ ∈ T , E(x)ψ ∈ A, and 2. (¬C tD)(x)φ∧ψ is A-insertable

then A′ := A⊕ (¬C tD)(x)φ∧ψ

Fig. 1. Expansion rules for constructing φCK

An assertion C(x)φ is A-insertable in an ABox A iff whenever there is a ψ
such that C(x)ψ ∈ A, then φ 6|= ψ. In the expansion rules ⊕ is used as shorthand
for A ⊕ C(x)φ := (A \ {C(x)ψ}) ∪ {C(x)φ∨ψ} if C(x)ψ ∈ A and A ∪ {C(x)φ}
otherwise; and A⊕r(x, y)φ := (A\{r(x, y)ψ})∪{r(x, y)φ∨ψ} if r(x, y)ψ ∈ A and
A∪ {r(x, y)φ} otherwise. The individual x is an ancestor of y if there is a chain
of role assertions connecting x to y. The individual x blocks y iff x is an ancestor
of y and for every C(y)ψ ∈ A, it is the case that C(x)φ ∈ A for some φ such that
ψ |= φ. An ABox contains a clash if it contains contradictory assertions. A rule
application refers to applying one of the expansions rules to an ABox in order to
generate a new ABox, and an ABox is fully expanded if none of the expansions
rules can be applied to it.

Algorithm for finding φC
K: Given a BALC knowledge base K = (T ,A,B) and

a concept C we start by asserting that there exists an instance of C by adding
C(x)>, where x is a fresh individual name to A. We then apply the expansion
rules in Figure 1 until all ABoxes are fully expanded. If at least one clash-free
ABox is found, then return φT =⊥.

If at least one clash is found in each completely expanded ABox then we
know that there exists some valuation ω s.t. (Tω,Aω) is inconsistent. We now
construct and return a context encoding these valuations. We do this by selecting
a context representing a clash from each final ABox and then combining these
contexts. Suppose A1 . . .An are the completely expanded ABoxes then

φCAi = ∨C(x)φ,¬C(x)ψ∈Ai(φ ∧ ψ)

is the context encoding all clashes for the i-th final ABox. After constructing
such a context for each final ABox we combine them into the context

φCK = ∧ni=1φ
C
Ai .



We have shown [4] that this construction algorithm has the following char-
acteristics.

Theorem 9. The algorithm for finding φCK terminates and is sound and com-
plete.

Finally, we have the following corollary that puts together all previously pre-
sented work to determine total concept satisfiability. Once φCK has been con-
structed we can determine whether K is totally concept unsatisfiable for C by
iterating over all worlds ω and calculating P (ω).

Corollary 10. C is not totally satisfiable in K iff there is a world ω |= φCK such
that P (ω) > 0.

As is usual for DLs we say that a BALC knowledge base is consistent if,
and only if, it has a (probabilistic) model. We will often write K |= P when a
probabilistic interpretation P is a model of K.

Recall that in our definition of a V -interpretation we require that the do-
main ∆V be non-empty. This leads us to the obvious consequence that a BALC
knowledge base is only consistent if > is totally satisfiable.

Theorem 11. A BALC knowledge base K is consistent if, and only if, > is
totally satisfiable in K.

This theorem shows that the BALC consistency problem can be reduced to an
instance of the total concept satisfiability problem. Leading to the following
lemma.

Lemma 12 (Complexity of consistency). Checking the consistency of a
BALC knowledge base is in O(2||K||).

4 Subsumption

We adapt the classical definition of subsumption for BALC in order to take
contexts into account. We do this by saying that a concept C subsumes a concept
D in context κ if, and only if, in all worlds where κ is satisfied C is necessarily
subsumed by D.

Definition 13 (Contextual subsumption). Given K = (T ,A,B) a BALC
KB, C,D concepts, and κ a context. C is contextually subsumed by D in κ
w.r.t. K, denoted as K |= (C v D)κ, if every probabilistic model of K is a
probabilistic model of (C v D)κ.

In our setting, however, contexts are used as aids for expressing the uncertainty
of different consequences (e.g., subsumptions) to hold. Hence, we introduce the
notion of the probability of a subsumption.



Definition 14 (Probability of a Subsumption). Given the probabilistic model
P = (J , PJ ) of the KB K, and the concepts C,D, the probability of C v D is

PP((C v D)κ) =
∑

V∈J ,V|=(CvD)κ

PJ (V).

The probability of (C v D)κ w.r.t. K is

PK((C v D)κ) = infP|=KPP((C v D)κ).

That is the probability of a subsumption in a specific model is the sum of the
probabilities of the worlds in which C is subsumed by D in context κ; notice
that this trivially includes all worlds where κ does not hold. In the case where K
is inconsistent we define the probability of all subsumptions as 1 to ensure our
definition is consistent with general probability theory (inf(∅) =∞ in general).

Note that the relationship between the contextual subsumption problem and
the probability of a subsumption is as one would expect. Namely we have that
a KB entails a contextual subsumption iff the probability of the subsumption in
the KB is 1.

Theorem 15. Given a KB K, concepts C and D, and a context κ, it holds that:

K |= (C v D)φ iff PK((C v D)φ) = 1.

This is convenient as it provides a method of reducing the contextual subsump-
tion problem to calculating the probability of a subsumption. The following
theorem provides a means of calculating this probability.

Theorem 16. For a consistent KB K = (T ,A,B), a contextual subsumption
(C v D)φ, and the extended KB K′ = (T ,A ∪ {C(x)φ,¬D(x)φ},B) we have

PK((C v D)φ) =
∑

ω|=φK′

P (ω) + 1− P (φ).

Furthermore, this approach runs in exponential time in the size of the input KB
(given that the size of the BN is included).

Theorem 17. Given a knowledge base K we can calculate the probability of a
contextual subsumption in time O(exp(||K||+ |V |)).

5 Partial Concept Satisfiability

Partial concept satisfiability is a weaker form of satisfiability in BALC. We for-
mally define this notion next.

Definition 18 (Partial Concept Satisfiability). The concept C is partially
satisfiable with respect to the BALC KB K iff there exists a probabilistic model
P = (J , PJ ) of K and a V -interpretation V ∈ J , with PJ (V) > 0, and CV 6= ∅.



Clearly a concept cannot be even partially satisfiable if it is necessarily empty
in all worlds. This leads us to the following theorem.

Theorem 19. A concept C is partially satisfiable with respect to a BALC KB
K iff K 6|= C v⊥.

We complete this analysis by using the fact that if a KB is s.t. PK((C v⊥)>) = 1
then there exist no model which has a V -interpretation where C is not empty.

Theorem 20. C is not partially satisfiable in K iff P ((C v⊥)>) = 1.

Next, we define the probability of partial satisfiability in a similar way to the
probability of a subsumption. That is we first define the probability of partial
satisfiability for a concept C in a probabilistic interpretation and then use this
to define it in the context of a knowledge base.

Definition 21 (Probability of partial satisfiability). Given a concept C
and a KB K, the probability of C being partially satisfiable in a probabilistic
model P of K is

PP(C) :=
∑

V∈J ,V6|=(Cv⊥)>

PJ (V).

The probability of C being partially satisfiable in K is

PK(C) := sup
P|=K

(PP(C)).

We can reduce this problem to subsumption, in particular the probability of a
subsumption.

Theorem 22. C is partially satisfiable in K with probability 1−PK((C v⊥)>).

Overall, this means that we can deal with this problem, within the same com-
plexity bounds, as long as we are able to handle total concept satisfiability, and
the probability that it holds. Thus, we have already developed a method for
solving it. We now turn our attention to instance checking, and the influence of
the ABox.

6 Instance Checking

We consider a probabilistic extension to the classical instance checking problem.
In BALC we call this problem probabilistic instance checking and we define both
a decision problem problem and probability calculation for it.

Definition 23 (Instance). Given an individual name a, a concept C, a prim-
itive context φ, and a KB K, we say that a is an instance of C in φ for K,
written as K |= C(x)φ, iff for all probabilistic models P = (J , PJ ) of K we have
that aV ∈ CV for all V ∈ J with vV |= φ.



Note that if the context associated with the instance check is > this definition
is very similar to the classical case. In this case it would be required that the
named individual be a member of the concept in all cases (in all worlds with
positive probability) which is similar to the classical case. We next show how we
go about providing a procedure that solves this problem.

Theorem 24. Given an individual name a, a concept C, a context φ, and a KB
K = (T ,A,B), a is an instance of C in φ iff PK′((D v C)φ) = 1 where D is a
new concept name not in T and K′ = (T ,A ∪ {D(a)φ},B).

Since we have reduced instance checking to probabilistic subsumption we have
the result that instance checking is in the same complexity class as probabilistic
subsumption. This gives us the following lemma.

Lemma 25. Probabilistic instance checking in a knowledge base K is in the
complexity class O(2||K||+|V |).

We next formalize the probability calculation for the instance checking problem.
This is done in a very similar way to the probability of a subsumption.

Definition 26 (probability of an instance). The probability of an instance
in a probabilistic model P = (J , PJ ) of a KB K is

PP(C(x)φ) =
∑

V∈J ,V|=C(x)φ

PJ (V).

The probability instance w.r.t. a KB K is

PK(C(x)φ) = inf
K|=P

PP(C(x)φ).

The probability of all instance checks for an inconsistent KB is always 1 to keep
our definitions consistent with probability theory.

Similar to the algorithm for solving the decision problem we now show that the
probability calculation can be reduced to subsumption.

Theorem 27. Given the individual name a, concept C, primitive context φ, and
KB K = (T ,A,B), a is an instance of C in φ with probability PK′((D v C)φ)
where D is a new concept name not in T and K′ = (T ,A ∪ {D(a)φ},B).

From this result we again see that calculating the probability of an instance can
be reduced in constant time to probabilistic subsumption. Since we only add
a single statement to the ABox of the knowledge base the input size does not
change meaningfully post reduction.

Lemma 28. Calculating the probability of an instance in a knowledge base K
can be done in time O(2||K||+|V |).



7 Conclusions

We have presented a new probabilistic extension of ALC based on the ideas of
Bayesian ontology languages. In contrast to previous work that focused mainly
on light-weight DLs, in our logic it is possible to express inconsistent knowledge,
which requires the study of new reasoning problems. We developed a glass-box
tableaux-based algorithm for finding out the context in which a given conse-
quence holds. Using this information, we could also compute the probability of
the consequence itself.

We showed that all the reasoning problems studied remain ExpTime-complete,
just as the complexity of reasoning in classical ALC. Our results also hint at pos-
sible optimizations that can be exploited in an attempt to develop an efficient
reasoner for our logic. As future work, we plan to study these optimizations in
detail, and analyse their applicability in practice.

Another interesting line of work would be to implement our ideas, and com-
pare the resulting tool against other probabilistic DL reasoners. In particular, it
would be interesting to compare against the tools from [11], which are also based
on an extension of the tableaux algorithm, and use probabilistic semantics that
are very similar to ours.
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