lonics, vol. 24(11): 3673-3684

Facile synthesis of a-Fe2O3/WO3 composite with an enhanced photocatalytic and photo-electrochemical performance

https://doi.org/10.1007/s11581-018-2473-y

free fulltext non-print link: https://rdcu.be/bpUL8

Senthil RA Priya A Theerthagiri J Selvi A Palaniyandy, Nithyadharseni Madhavan J

ABSTRACT:

The influence of hematite iron oxide (α -Fe₂O₃) nanoparticles in tungsten oxide (WO₃) nanorods photocatalyst on photodegradation of organic pollutant was investigated in the present work. The spherical-shaped α -Fe₂O₃ nanoparticles and WO₃ nanorods were synthesized from citrate precursor and hydrothermal routes respectively. The different weight percentage (wt%) ratios (1, 2, and 3 wt%) α -Fe₂O₃ added heterostructured α -Fe₂O₃/WO₃composite of photocatalysts by a simple physical mixing process. The photocatalytic activities of as-synthesized photocatalysts were evaluated by photodegradation of methylene blue (MB) under visible-light irradiation. It showed that the 2% α -Fe₂O₃/WO₃ composite exhibited excellent photocatalytic activity than the others. This enhancement could be attributed to its strong absorption in the visible region and the low recombination rate of electron-hole pairs. In addition, the photo-electrochemical measurements of the 2% α -Fe₂O₃/WO₃ composite revealed the faster migration of the photoexcited charge-carriers. Hence, this study demonstrates the heterostructured α -Fe₂O₃/WO₃ composite as a promising candidate for environmental remediation.