
Implementing a Low Cost Distributed Architecture for Real-Time Behavioural
Modelling and Simulation

Willem H. le Roux

Council for Scientific and Industrial Research1
Meiring Naude Road

Pretoria, 0001
+27 12 841 4867

whleroux@csir.co.za

Keywords:

Distributed Simulation, Simulation Architectures, Modelling & Simulation

ABSTRACT: As part of Modelling and Simulation-based Acquisition Decision Support to a Ground-Based Air
Defence acquisition programme, dedicated simulations have been used to evaluate and develop tactical doctrine, define
measures of performance and effectiveness and to answer techno-military questions. The simulations are loosely
matched to the different phases of the procurement programme for efficient and effective support. This paper presents
the lessons learned and issues identified during the development of the series of simulations, focusing on real-time,
distributed execution and behavioural modelling and how budget and time constraints affected these.

1. Introduction

“If you think good architecture is expensive, try bad
architecture” – Brian Foote and Joseph Yoder.

In order to provide acquisition decision support to the
South African Armaments Corporation (ARMSCOR) for
the procurement of Ground-based Air Defence System
(GBADS) equipment, constructive, aggregated
simulations are used. Different versions of the simulation
system were developed to match the GBADS acquisition
phases for efficient and effective support.

Figure 1 maps all developed versions of the simulation
system, referred to as the Virtual GBADS Demonstrator
(VGD), to the first GBADS acquisition phase. The
GBADS procurement programme follows a phased
approach of which acquisition of the SABLE2 Air
Defence System forms the first phase [1].

1 The Council for Scientific and Industrial Research
(CSIR) has been constituted by an Act of the South
African Parliament in 1945. It is one of the leading
scientific and technology research, development and
implementation organisations in Africa. The organisation
undertakes and applies directed research and innovation
in science and technology to improve the quality of life of
the country's people.
2 The SABLE Air Defence System is an offering of the
the Denel Aerospace Group.

Acquisition
Phases

Project Study

Acquisition Study

Industrialisation
Production

Commissioning

In Service * Future
Versions

Pre-VGD
Capability Demonstrator

VGD 2.0

VGD 1.0

VGD 2.1

VGD 3.1

VGD 4.0 *

VGD 3.0

G
B

A
D

S
 P

ha
se

 1

Phase 1

Phase 2

Phase 5

GBADS
Acquisition….

Acquisition
Phases

Project Study

Acquisition Study

Industrialisation
Production

Commissioning

In Service * Future
Versions

Pre-VGD
Capability Demonstrator

VGD 2.0

VGD 1.0

VGD 2.1

VGD 3.1

VGD 4.0 *

VGD 3.0

G
B

A
D

S
 P

ha
se

 1

Phase 1

Phase 2

Phase 5

GBADS
Acquisition….

Figure 1: Simulation Versions, Acquisition Phases and
GBADS Phases

The increasing capability and acceptance of Modelling
and Simulation (M&S) as an effective tool to support the
acquisition and utilisation of complex systems have in
recent times made it an important area in which Research
Institutes world-wide are developing and applying their
technology bases. The need for decision support on the
GBADS acquisition programme of the South African Air
Defence Artillery (SAADA) offered an opportunity to

apply M&S and in so doing to establish an indigenous
M&S Acquisition Decision Support (MSADS) capability.
The “window of opportunity” presented by the GBADS
programme was used as a vehicle to establish a credible
MSADS capability to act as a pilot Simulation-based
Acquisition (SBA) project within the South African
Defence Acquisition environment and which in time can
be expanded to more applications [2].

This paper presents the lessons learned during the
implementation of distributed simulations in an
environment with resource and budget constraints, and
identifies issues to be considered when developing low
cost simulation architecture frameworks. After a brief
discussion of the pre-VGD simulation that led to the
conceptualisation of the first VGD, each version of VGD
is discussed with its associated Modelling and Simulation
issues.

2. Pre-VGD

An M&S prototype had to be developed with limited
resources and budget within tight time scales. The
prototype was developed in a Linux environment using
Objective C as it provided built-in mechanisms for
simplistic Two-dimensional (2D) visualisation and an
object orientated abstraction layer with added features
such as managing objects in a hierarchy.

The most important lesson learned with this prototype
was to use the correct terminology. The same terminology
as used by the end-user or client, in this case the SAADA,
should be used. If and when simulations have to be
discussed in any more detail than the input and output of
it, the internal structures used should, as far as possible,
match that of the real system being modelled. However, it
can become a very time consuming and tedious task to
keep up with the latest user terminology as in some cases
it might evolve as the end-user or client becomes more
familiar with the simulation.

The changing requirements of a simulation can take
several paths – The end-user can insist on higher fidelity
models or models from different vendors to conduct wider
what-if type analyses with. Hardware- or human in the
loop simulations can become priority if the end-user
realises that training support with the system is a
possibility.

Another aspect to take into account when developing
simulations is at what system level is a simulation
pitched? Figure 2, adapted from [3], shows a system level
hierarchy applied to the M&S and military domains. For
high fidelity, engineering-type models one-on-one or one-
on-many simulations are preferred otherwise execution
times become too long. However, if a higher order

system’s performance has to be evaluated, many-on-many
type interactions are typically required to be able to
quantify and qualify behaviour in more complex
scenarios.

Theatre

Tactical

Engagement Level
Platform / System

Mission

Material / Component
QuantumSingle

Many-on-many

One-on-many
One-on-one

Detailed

Aggregated Behaviour

Function

Theatre

Tactical

Engagement Level
Platform / System

Mission

Material / Component
QuantumSingle

Many-on-many

One-on-many
One-on-one

Detailed

Aggregated Behaviour

Function

Figure 2: The Systems Hierarchy Applied to M&S

In the case of VGD, behavioural models are used to limit
processing requirements and to allow the use of many-on-
many interactions. This in turn enables the evaluation of
system performance and not only that of individual sub-
systems (e.g. specific radars).

3. VGD Version 1.0

The prototype GBADS simulation and VGD Version 1.0
(VGD1) was mainly used to explore simulation-based
decision support possibilities and were implemented
using a Rapid Application Development (RAD)
philosophy as development resources were limited and
impact had to be demonstrated quickly. VGD1 was
implemented using a proprietary object-orientated visual
programming environment, G23, which has expert system
capabilities.

Both the prototype simulation and VGD1 were non-
distributed stand-alone applications and were typically
used in faster than real-time mode to generate reports for
statistical analysis. Low fidelity, behavioural models were
used. The architecture and models were also tightly
integrated. Aspects that were identified as important
philosophical or design choices are:

1. Should rapid prototyping be used?
2. What is the impact of model fidelity?
3. Confirm a common understanding of behavioural

modelling.
4. Whether discrete event, time-based or a combination

of discrete event and time-based simulations should
be used.

3 G2, a product and registered trademark of Gensym, is a
real-time business rules engine for mission critical
applications.

3.1 Should Rapid Prototyping be Used?

In a situation where it is not clear what can be achieved
through M&S support, rapid prototyping offers some
value. However, the client should be made aware of the
fact that rapid prototypes have limitations in terms of
flexibility, modularity and extendibility. It is often
necessary to discard a prototype during subsequent
phases.

Boundaries between models tend to be vague as most
models will be of low fidelity. This drives more simplistic
interfaces between models and the simulation architecture
itself.

During rapid prototyping some aspects may not be
modelled such as ignoring line-of-sight (LOS)
calculations due to terrain obscuration and when a flat
earth model is assumed.

It is advisable to use a RAD tool for prototyping as lower
level computer languages requires infrastructure (also
referred to as frameworks) to be laid down before actual
development can commence. A disadvantage of most
RAD tools is that they generally use interpreted or
intermediate interpreted languages limiting the processing
power available for intensive mathematical or logistical
implementations due to run-time code interpretation. On
the other hand integration via gateways or bridges or
execution of binary routines are well supported allowing a
simulation developer to model parts of a simulation in a
RAD tool and other processing intensive parts in a more
appropriate environment.

It is precisely this approach that led to a distributed
simulation requirement for VGD. A RAD tool was used
to prototype some models, but the more stable models that
did not require further development were implemented in
a lower level language. This required models to be
executed over different machines as the RAD tool
required a dedicated machine.

3.2 Impact of Model Fidelity

In general the higher the fidelity of a model, the higher
the processing requirements and inter-model information
load. Higher fidelity models tend to run at faster update
rates which require more processing power as calculations
have to be made in shorter time slots, if real-time
execution is required. To reduce the processing burden,
distributed simulations are used to share the processing
load of models amongst processing nodes. This in turn
requires distributed Inter-Process Communication (IPC)
frameworks to allow for the efficient development and
integration of models capable of taking part in such
distributed simulations. Coupled to these requirements,

model and simulation interfaces need to be standardised
for interoperability and extendibility. All these issues
have to be addressed in a unified architecturally sound
framework to minimise rework, debugging and
maintenance effort. Fidelity can be addressed at different
levels of which some are:

1. Comprehensiveness (completeness) – Are the sun

and moon positions accurate for the time of day and
time of year in the flight simulator? Are wind gusts
taken into account for the projectile trajectory?

2. Externally observable behaviour – Does the missile
model have the same phases (power on, arming, lock-
on, launch and detonation) as the real system? Will it
be inactive of the power is switched off? Does it have
a power button?

3. Internal implementation – Is the control law of the
missile model based on the same mathematical
principles and operation as the real missile? Are the
internal electronics that manipulate the control
surfaces of the missile modelled?

4. External environment interaction – Will the missile
model fly a different path if there are wind gusts
present?

5. Visualisation – How realistic is the representation of
a simulation scenario? Is a participant immersed such
that it will not affect his/her responses?

This leads to the concept of behavioural modelling where
a piece of equipment is modelled for inclusion in a
simulation.

3.3 Common Understanding of Behavioural Modelling

Behavioural modelling can span over one or more of the
classes of fidelity listed above, but primarily resorts under
externally observable behaviour. A behavioural model
can also be complete (see fidelity levels in Subsection
3.2) or provide visual output that is very realistic, but in
general, behavioural models do not have high fidelity
internal implementations. A model of equipment should
have the same aggregated behaviour and interfaces as the
real system. However, this can be filtered with the
application of the simulation in mind. An example
illustrates this best: a search radar is modelled and the
simulation span only covers actual battles (when targets
are engaged) as opposed to including the times before and
after a battle (preparation and maintenance of the radar,
respectively). Assumptions can then be made, such as that
the modelled radar can be considered to be in optimal
condition to perform its given tasks during a simulated
battle (unless break-downs have to be modelled). The
model interfaces required to configure the radar during
simulated battle can then be omitted, as it will not be
used. If it is required to model the times before and after
battle, hence radar preparation and maintenance as well,

the radar model should support these activities, both with
its internal states and its external interfaces.

To illustrate how behavioural models can be used
effectively, a radar model is again used. Target signatures
or radar cross sections (RCS) are generally highly
dependent on a target’s orientation relative to the radar
detecting it. Figure 3 shows the probability of detection
for a specific target as a function of the target distance
and height for a single RCS value. In a simulation where
the flight profiles of targets are not predictable, the radar
model should allow for arbitrary target positions and
orientations. This coupled with effects such as multipath
reflections, complex aircraft geometry (leads to complex
RCS signature variations) and tracking filter performance,
radar detection and tracking performance quickly lead to
complex and processing intensive calculations.

Distance

H
ei

gh
t

Distance

H
ei

gh
t

Figure 3: 2D Radar Probability of Detection Coverage

Diagram – High Fidelity.

However, when a radar model is included in an
aggregated simulation such as VGD, using a high fidelity
coverage diagram-based models (as shown in Figure 3) is
not practical as processing requirements cannot be met for
real-time execution. Instead all factors influencing radar
performance are combined into a behaviourally sound
model that can be verified and validated against field tests
or subject matter expert (SME) opinion. A possible
solution for the radar case might be to use target position
with Gaussian measurement errors and a simple distance
and elevation angle threshold (see Figure 4).

It is not advisable to have a mix of fidelities within the
same model, although using models with varying fidelity
levels in a simulation might still be feasible. Higher
fidelity models might require more information than
available from lower fidelity models interacted with.

Detection Envelope

Distance

H
ei

gh
t

Actual Position

Measured
PositionElevation Error

Range
Error

Detection Envelope

Distance

H
ei

gh
t

Actual Position

Measured
PositionElevation Error

Range
Error

Figure 4: 2D Radar Probability of Detection Coverage

Diagram – Low Fidelity.

If lower fidelity modules cannot match the required
information fidelity that they are dependent on,
assumptions have to be made that neutralises the
advantage of using the higher fidelity. Continuing with
the radar model example: if the model uses
electromagnetic wave propagation formulas that are
dependent on the ambient temperature, but the
environmental model cannot provide a temperature to the
model, the temperature value has to be fixed at an
acceptable value. This in effect neutralises the
parameter’s value to the simulation. It may be acceptable
in low fidelity simulations to use high fidelity models, but
with parameter constraints and at the cost of processing
power. Care should be taken in such cases that false
impressions are not created that all of the functionalities
of a high fidelity model is used or influencing the
outcomes generated with a low fidelity simulation.

3.4 Discrete Event versus Time-Based Simulation

A technique to increase the execution speed of
simulations is to use a discrete event timing scheme [4].
In principle it requires the calculation of the time events
occur and the identification of inter-event dependencies.
The event times are then sorted first to last. The
simulation time is advanced from event time to event time
until all events have occurred and been handled. This
method assumes that dependencies can be identified prior
to the time calculation and that it is possible to calculate
the time an events occurs using a mathematical formula. It
also assumes that events occur at a single time instant and
not over a period. If this assumption cannot be made, the
start and end times of the event can be used as two
separate sub-events which can be calculated. It is very
difficult or sometimes not possible to define all event
dependencies or to accurately calculate event occurrence
times. A solution to this type of problem is to predict
event occurrences just prior to the time of actual
occurrence. The simulation is then switched to a time-

based scheme for a short while at the predicted time until
the event occurs or a new event time can be predicted.
Discrete event time schemes are typically used with
statistical models to simulate the occurrence of events [4].
The VGD series of simulations are all time-based as it
precludes operator-in-the-loop (OIL) simulation. Human
operator reaction cannot be accurately predicted.

4. VGD Version 2.0

VGD Version 2.0 (VGD2.0) was mainly used in support
of GBADS Phase 1 towards the end of project study and
during the acquisition study phases [5]:

1. To conduct hit probability analyses for GBADS

system performance quantification.
2. Comparison and evaluation of GBADS system

architectures.
3. Timeline and sensitivity analyses to determine

critical performance areas.

The two main requirements identified for VGD2.0 were
to include Human Behaviour Modelling (HBM) through
G2® in VGD and to use higher fidelity C++ models,
supplied by external model vendors. HBM became a
requirement as statistical analyses of simulated GBADS
performance required between 30 and 100 iterations per
configuration, which is not practical with OIL
simulations. Higher fidelity models were required as the
models used in VGD1.0 were of very low fidelity with
questionable timeline characteristics.

Equipment Models Servers

Gensym G2 – Human
Behaviour Modelling

IPC (HLA RTI)

HLA Bridge

Peripheral
Services

Viewers

Equipment Models Servers

Equipment Models Servers

Equipment Models Servers

Gensym G2 – Human
Behaviour Modelling

IPC (HLA RTI)

HLA Bridge

Peripheral
Services

Viewers

Equipment Models Servers

Equipment Models Servers

Figure 5: VGD2.0 Architecture.

Figure 5 shows the VGD2.0 architecture using the High
Level Architecture (HLA4) as IPC framework. Note that
G2® is connected to the IPC via an HLA bridge (also
referred to as an HLA gateway). Peripheral services
include support functions such as line-of-sight and terrain
collision detection. Viewers can be immersive, three-
dimensional (3D) scenario viewers or 2D plan-view
scenario viewers. Models have all been grouped by type
(class) and bundled in model servers (federates) such that
a single federate maintains all instances of a model class
(objects). This approach was preferred over using a model
instance per federate or all model instances bundled into
one federate. Too many federates slows a simulation
down and using one federate only restricts ownership
possibilities. Typically each block connected to the IPC
executes on a dedicated computer, as well as the IPC
server. The computers are connected via a standard 100
Megabit per second (Mbps) Ethernet Local Area Network
(LAN). Computer platforms are Intel-based (Pentium III
and IV) standard desktops with Microsoft Windows-based
Operating Systems. This is the case for all simulations
described in this paper. VGD2.0 was developed in
approximately two person-years. Important lessons
learned while developing VGD2.0 are highlighted in the
following Subsections.

Aspects that were identified during the design and
implementation of VGD2.0, and discussed in the
following Subsections, are:

1. The use of HLA as simulation infrastructure.
2. Selecting the correct software language level for

model implementation.
3. Human behaviour modelling.
4. Using models supplied by external model vendors.
5. Batch-mode execution.

4.1 The High Level Architecture

As G2® was used for HBM and is a processor intensive
application the C++ models had to be executed on a
separate machine. This led to a secondary requirement for
distributed simulation. As a distributed IPC was required
and external parties had to be involved in VGD2.0’s
implementation, HLA were selected. HLA is a standard
that governs the entire simulation development effort. It is
in essence a simulation engineering specification
attempting to create interoperable simulations that can be
combined into larger simulations [6].

4 The High Level Architecture was developed by the
Defense Modeling and Simulation Office in the
Department of Defense of the United States of America.

4.1.1 HLA-based Software Development

As the South African industry had not yet adopted HLA
or had any experience with it at the time, a framework or
Software Development Kit (SDK) was developed to assist
model development. The SDK provided an Application
Programmer’s Interface (API) in C++ that shielded the
model developer completely from the HLA APIs. The
federate development process was not shared between all
the parties but entirely handled by CSIR. The HLA SDK
allowed seamless use of models in the on-line simulation
as well as in test environments at the supplier’s site.
Figure 6 shows the relation of the HLA SDK to the HLA
Run-Time Infrastructure (RTI) API. Although the HLA
SDK provides a more traditional C++ interface to the
model developer, the developer can still access the HLA
RTI API directly.

HLA RTI API

Model Implementation

HLA SDK API

HLA RTI API

Model Implementation

HLA SDK API

Figure 6: Relation Between the HLA RTI and HLA SDK
APIs.

Some advantages of using a single team for simulation
development are:

1. A single team at CSIR is responsible for the overall

architecture and has control over it – This reduces the
logistical effort compared to multiple teams being
responsible for developing a framework.

2. The philosophy of the simulation architecture can be
kept uniform and focused. It is difficult to contain a
larger group and to keep design ideas and options
focused especially if most are only affected by a
subset of the architecture. Design choices are made
according to the subset only, which might not be
useful or practical in the bigger scheme of things.

Some disadvantages are:

1. When model vendors are not experienced with many-
on-many simulations, assumptions made during the
development of models can lead to integration errors,
such as assuming that a supplied model will always
be placed at (0, 0, 0). Such errors are not always
visible in complex scenarios and can lead to totally
incorrect results. Revising models to remove such
errors might also not be trivial, as underlying
assumptions can complicate matters.

2. All possible interface requirements have to be
predicted by the team responsible for implementing
the simulation architecture. This becomes even more
complex if future models (or types) to be integrated
are not known at the start. This specifically occurs in
cases where concept support is rendered and system
knowledge is low or non-existent. In the case of
concept modelling it is better to use a larger and more
diverse design team as it will then identify more
interesting options.

4.1.2 Simulation Granularity

The HLA RTI provides the IPC for a simulation and
supports the execution of a simulation on one or more
processing nodes without reconfiguration. The granularity
of a simulation is left to the developer, as well as the
design and composition of federates, objects, attributes
and interactions. A set of rules is enforced by the RTI
(directly and indirectly) and services are provided and
have to be used or adhered to if a simulation is to remain
HLA compliant. The HLA SDK supports the most used
services and those not supported can still be accessed via
the HLA RTI API itself.

Theatre

Quantum

Battalion

Soldier

Battery

Fe
de

ra
te

 G
ra

nu
lar

ity

Equipment

Individual objects

Aggregated
Objects

System
 Hierarchy

Theatre

Quantum

Battalion

Soldier

Battery

Fe
de

ra
te

 G
ra

nu
lar

ity

Equipment

Individual objects

Aggregated
Objects

System
 Hierarchy

Figure 7: Object Granularity versus Systems Hierarchy.

Figure 7 relates object granularity against the systems
hierarchy of Figure 2. Higher systems levels generally
require more aggregated objects to be used in a federate,
such as battalions instead of single soldiers. On the other
hand, lower systems levels require more detailed or
individual objects. Granularity is also dictated by
processing power (more detailed objects at higher systems

levels) and data availability (individual soldier data
limited at battalion level).

VGD was implemented in such a way that each type of
model (e.g. a 2D search radar or missile) is maintained by
a dedicated federate. The federate can maintain multiple
instances of the same type of model at the same time.
Integration with other simulations, visualisation packages
or external models are done by using a dedicated federate.
As sensor and effector models typically require accurate
position and time information, a conservative timing
scheme was adopted – This means that whenever a
federate wants to increment its time, all other federates
must do the same. Federates that do not influence the flow
of a simulation cannot hold other federates back, but
cannot advance further than the others would allow. The
conservative time scheme imposes high overheads as all
federates have to be time synchronised.

4.1.3 HLA Compatibility and Compliance

As HLA was used more, it was suspected that in some
cases organisations claiming HLA compliance do not
necessarily use it internally in their simulations, but rather
implement HLA gateways or bridges to simulations.
Using HLA in this way rather results in HLA
compatibility than compliance. This approach allows for
the use of more efficient IPC schemes internally, but can
cause slow down if a simulation is governed (in terms of
time) by a gateway. To illustrate: a simulation runs in
optimistic time management mode, close to real-time. If a
gateway is connected that requires conservative time
management, the simulation will be slowed down, as
additional overheads will be incurred for synchronisation.
It also seems that many HLA-based implementations do
not use the RTI services or do not adhere to the HLA
rules. This reduces the level of interoperability between
simulations.

4.1.4 Interoperability

Another aspect that was discovered was that an HLA-
compliant simulation implementation is governed by the
Simulation Object Model (SOM). It implies if the SOMs
of two HLA-based simulations do not match, the
simulations are not interoperable. The SOM defines the
hierarchy of objects, interaction and their defining
attributes and parameters. SOM compatibility between
two simulations can be at different levels:

1. The two SOMs can match at conceptual as well as

syntax (naming) levels – The two simulations
(federations) can be joined by either using a
dedicated federate on each side that connects via a
third party (can also be a federate in a third

federation). Another option is to move all federates
from both simulations to a new common federation.

2. The SOMs can match at conceptual level but not at
the syntax level. This will require either renaming
items in the SOM of one of the federations and then
to integrate as discussed in (1) or translate on-line by
means of the mechanism used to integrate.

3. The SOMs do not match at conceptual or syntax
levels – This will require more complicated
translation mechanisms and might not even be
possible in some cases.

4. The SOMs do not match at conceptual level but at
syntax level – This is a dangerous situation as it can
lead to grave errors. Complicated translations are
required, but a practical problem will be to keep the
names apart in the integration mechanisms.

Apart from SOM compatibility, HLA rules and RTI
services compatibility can affect the successful integration
of two simulations. If a simulation uses an optimistic
timing scheme – And in most cases an HLA rule is
broken as synchronisation is typically not achieved
through the RTI but through an external mechanism – and
another a conservative scheme, it will be more complex to
synchronise the two simulations. A simulation might also
rely on Data Distribution Management (DDM) to be able
to be real-time compatible, and another not.

It is suggested to simulation developers that when various
parties are involved in development of a simulation, it is
definitely worthwhile to follow the complete HLA
process. On the other hand, if only one party is
responsible for implementing an HLA compatible (note
not compliant as HLA should then be used internally as
well) simulation, other processes may be followed and
only a gateway provided that is HLA compliant and
compatible.

4.2 Software Language Levels

Each type of simulation development environment has its
pros and cons – a RAD environment supports quick
investigations but might lack scope. A lower level
language environment has huge scope but requires
infrastructure before actual simulation development can
begin. It is for this reason that a visual-based object
orientated programming environment has been selected
for implementing models of tasks performed by humans.
However, this environment is not suitable for processing
intensive tasks, such as radar models that require
mathematical formulas to be evaluated repeatedly. The
C++ language has been selected for this purpose as it is
object orientated but with higher execution efficiency.
Using Gensym G2® (RAD tool) from VGD1, human
behaviour was to be included in VGD2.0 with higher
fidelity equipment C++ models.

4.3 Human Behaviour Modelling

In addition to higher fidelity models, an important part of
systems level modelling of military systems is the
element of human performance. HBM is specifically
important where many-on-many simulations are used, as
the timeline effect of a human operator cannot be easily
isolated. Several approximations and models of human
behaviour can be defined, but the crux is that the model
should be supported by the architecture.

The HBM effort with VGD2.0 resulted in concurrent
doctrine activities, as it became possible to experiment
with doctrinal concepts using equipment that was not yet
available to the end-user. Furthermore it empowered the
end-user to identify areas requiring more exploration and
analysis.

4.4 External Model Vendors

The decision was made to use models supplied by
equipment vendors to ensure that the models were
impartially validated and maintained. This proved to be
viable for customer furnished equipment. It is necessary
with vendor-supplied models to ensure correct use in a
simulation environment, as the operational performance
of the models can easily be affected. This will then lead to
incorrect results and conclusions.

4.5 Batch-mode Execution

Batch-mode execution was found to be complex to
implement with the combination of HLA, G2® and
STAGE5. The federation design did not cater for batch-
mode execution from the start, and controlling simulation
runs via the G2® and STAGE gateways are not trivial.
Although G2® had a commercially available gateway,
STAGE did not have one. With limited resources it was
more cost effective to manually repeat simulation runs
than to implement batch-mode execution support and an
extended gateway for STAGE.

5. VGD Version 2.1

It became apparent towards the end of the acquisition
study support that more realistic target flight profiles are
required for accurate timeline analyses. This was also
anticipated to be a requirement for future acquisition
phases. In order to support human pilots flying against
simulated batteries, the simulation should at least be soft
real-time compliant, hence the requirement to upgrade
VGD2.0.

5 STAGE is a product of Engenuity Technologies, Inc.

VGD Version 2.1 (VGD2.1) used a similar architecture as
VGD2.0. The SOM has been optimised for execution
performance (speed) to be able to achieve soft real-time,
distributed simulation. An HLA gateway to a commercial
flight simulator (Virtual Prototypes FLSim) that is flown
by a human operator is supported in addition. Two aspects
are therefore highlighted in this section, OIL and soft real-
time simulation.

5.1 Operator-in-the-loop Simulation

In cases where HBM is not practical or it is too complex
to achieve an acceptable degree of realism, human OIL
simulation is an alternative. Advantages of OIL
simulations include:

1. More realistic operator behaviour – Note it is still not

perfect as the situational awareness fidelity in which
the human operator finds itself may not be adequate
for realistic decisions. Stress conditions are typically
not the same as in real life situations because
operators are aware the fact that it is only a
simulation. Only a subset of information may also be
available to the operator to base its decisions on.
Stress conditions can be artificially raised by using a
faster paced simulation or by introducing competitive
elements between operators.

2. OIL simulations can be converted to training
simulations, although the factor of situational fidelity
comes into play again.

3. Human behaviour, typically action or response times,
can be recorded on-line and analysed for input to
higher fidelity models.

4. By running a simulation in OIL mode, internal
software errors or interface errors can be uncovered if
inexplicable simulation behaviour is observed. It is
then used as a software debugging tool.

Some disadvantages are:

1. Batch-mode simulation executions are limited if large

samples are required to calculate accurate statistics.
The element of predictability and simulation “quirks”
are easily learned within a few iterations by a human
subject and then abused to gain an unfair advantage
during a simulation execution.

2. For simulations that lack graphical interfaces,
dedicated OIL interfaces have to be developed – This
might be complex as visualisation of concepts is not
always straightforward.

3. Human boredom can play a role, specifically if there
are long times when no operator interaction is
required – As example: The operator has to wait until
the targets enter the launch envelope of a missile
system.

4. Simulations have to be at least soft real-time
compatible. If the simulation executes too fast, the
operator can be subjected to unrealistic stress when
making decisions. In some cases this approach can
actually be used to analyse human performance or to
make scenarios more complex. On the other hand, if
the simulation runs too slow, the operator will have
an unrealistic advantage to make decisions in time.

5. If too many human operators are required to execute
a simulation it can become expensive and impractical
to coordinate, schedule and “choreograph” the run.

6. When using humans, simulation execution outcomes
may vary significantly enough such that it is difficult
to draw proper conclusions from a few runs.

To get more accurate results with OIL simulations
operators have to be briefed with the relevant contextual
information, specifically when an operator has control
over elements in the simulation. This has not been done
with VGD-based experiments and is an aspect that will be
expanded in future. More sophisticated briefing,
debriefing and after-action reviewing tools are required
which also drives data logging requirements.

5.2 Real-time and Distributed Simulations

As mentioned in the previous Subsection, OIL
simulations require soft real-time execution. Human
operators are tolerant (or oblivious) towards intermittent
time lapses (where the simulation fails to maintain real-
time execution), except if noticeable events are omitted.
Hardware-in-the-loop simulations on the other hand
generally require hard real-time execution to maintain
synchronisation.

In a real-time simulation, limited processing power,
memory and bandwidth all dictate available time slices
for entity models to be processed in. The more models
included in the simulation execution, the shorter the
processing time slice becomes (given the number of
processing nodes is constant). A popular solution to this
problem is to add more processing nodes, but then the
IPC efficiency coupled with the bandwidth will dictate the
practical maximum number of nodes. Data transfer
between models also has to be optimised to gain even
more efficiency.

Distributed simulations are generally more difficult to
implement and debug as the execution of a simulation
occurs over more than one node. IPC schemes exist that
allows seamless changes between executing an entire
simulation on one or more nodes. If an IPC scheme
supports the execution on one node only, albeit not in
real-time, development and debugging become easier.

6. VGD Version 3.0

VGD Version 3.0 (VGD3.0) was mostly used during the
industrialisation and production acquisition phases for
statistical analyses of GBADS performance evaluations.
The decision was made to discontinue the use of
proprietary software products, due to expensive licensing
fees, product lock-in and easier batch-mode execution
support. Peripheral services in VGD2.0 and VGD2.1 (See
Figure 5) were implemented with STAGE and included
LOS, terrain, threat and scenario management services. In
addition, operator modelling of multiple target handling
had to be supported, as VGD2.0/2.1 had limited
capabilities in this regard.

VGD3.0 uses the same entity models as VGD2.1, except
for the HBM part that is replaced with a populated C++
framework. A target-centric approach was adopted to
define operator tasks and parameters. All equipment
models were re-used by means of intermediate interfaces
(wrappers). In addition to this, batch mode execution of
the simulation was a more prominent requirement to
support statistical analysis of results. As neither VGD2.0
nor VGD2.1 was implemented to support batch runs, and
developer resources were low, a less complex and more
maintainable system was required. Two options were
investigated for an IPC framework. These are highlighted
in the next two Subsections.

6.1 Common Object Request Broker Architecture

A quick investigation was conducted in using the
Common Object Request Broker Architecture
(CORBA®6) for the purpose of an IPC framework. The
HLA RTI used in VGD uses CORBA® as an underlying
framework. The investigation was done, as at the time
none of the local model vendors used HLA or CORBA®
and it was decided to move to a more simplistic IPC (less
distributed in a sense) as resources were limited.
However, CORBA® will still be considered in future as it
is a language independent, distributed architecture with an
established user community.

6.2 Transfer Control Protocol

Between the Transfer Control Protocol (TCP), HLA and
CORBA®, TCP is the most widely used IPC framework.
Most programmers also have experience with it. As the
real-time requirement for VGD became less of a priority –
the focus was more on batch-mode execution for
statistical analyses – it was not pursued anymore. The
decision was made to lump all models into a single
executable, and to only distribute the visualisation aspects

6 CORBA is a registered trademark of the Object
Management Group.

of the simulation and the operator modelling modules. All
models were reused from the distributed simulation and
reintegrated using the HLA SDK API wrappers as is. The
models were stripped of the HLA SDK eventually as it
caused execution overheads and nothing was gained.
More focus was also placed on developing an
environment in which operator tasks, processes and
decisions could be modelled more efficiently and flexible.

At the point where VGD was almost completed and ready
for experiments to be defined, implemented, conducted
and analysed, the requirement for OIL simulations were
raised again. This was due to the fact that human
behaviour modelling became very complex as certain
tasks that were originally thought to be very well-defined
and rule-driven, were in fact not as well defined. In
addition to this it was realised that a big driver of overall
system performance, given the set of rules, actions and
procedures (doctrine, weapon drills and standard
operating procedures) was still human performance.
Specific aspects are target acquisition (with and without
assistance), visual identification and weapon drills.
Although these aspects could eventually be modelled, the
end-user felt strongly that more flexibility is required to
experiment with tactical doctrine by means of OIL
simulations. Soft real-time execution is a requirement for
OIL simulation. However, at this point it was decided that
a simpler and more cost efficient approach should be
adopted for a new IPC framework. Although VGD3.0 was
used for experiments (batch-mode executions), it was
never completed fully.

7. VGD Version 3.1

The lessons learned with the development and application
of the preceding versions of VGD culminated in the
design and implementation of VGD Version 3.1
(VGD3.1). It is the current operational version, and is
applied in GBABS acquisition phases I and II. For phase I
it is used up to the commissioning phase support and for
phase II up to the production phase. VGD3.1 has been
extended to demonstrate concepts in other domains, such
as Joint Air Defence (navy) and persistent, real-time
maritime surveillance.

VGD3.1 was required to support OIL simulations thus
soft real-time execution support was necessary. As the
number of models added to VGD increased considerably,
and the scope of support of VGD expanded to include
Operational Test and Evaluation (OT&E) and subsequent
phases of the acquisition programme, the architecture of
VGD3.0 had to be updated.

7.1 A Simplified, Distributed IPC Architecture

The use of a central global memory (implemented in
hardware) connected to processing nodes via high
bandwidth connections such as FireWire800™ (Apple
Computer Incorporated – IEEE 1394b), Universal Serial
Bus Version 2.0 (USB2.0) or Gigabit (Gb) Local Area
Networks (LAN), was investigated. To evaluate the
concept a software-based central global memory was
developed based on TCP for communications over 100
Mbps or Gigabit per second (Gbps) LANs. A standard
client-server configuration was used. It was soon apparent
that the client-server architecture had severe drawbacks:
in essence if a message is sent from one client to another
it has two legs to pass over – the first from the
transmitting client to the manager and then from the
manager to the receiving client. The number of
connections at the manager also becomes a bottleneck as
it will have as many connections as there are clients. A
peer-to-peer solution was proposed, in which all nodes are
considered peers and are connected to all other nodes
(fully connected). It results in the same number of
connections at each node, but communications between
peers are now direct (a single leg only). A further
improvement is that parallel communications can occur
over independent connections but is still limited by the
underlying hardware architecture (network switch
backplane fabric). Figure 8 shows a client-manager versus
peer-to-peer architecture.

Server

Client 1
Client 2

Client N Peer 2

Peer 1 Peer 3

Peer N

Server

Client 1
Client 2

Client N Peer 2

Peer 1 Peer 3

Peer N

Figure 8: Client-Manager vs. Peer-to-Peer Architectures.

To control the flow of information between peers, a
mechanism similar to the publication and subscription
object management service of the HLA RTI is used.
Models within peers have to indicate which information is
available to other models by publishing a title. Other
models can subscribe to published titles and will receive
issues (data updates) at the rate specified in the
subscription. If a model subscribes faster than what
another can offer issues at, the last valid issue will be
provided until a new update is available (which will then
be provided).

Time management is an integral part of the framework
and is a conservative scheme allowing models to operate
at an integer multiple of the internal framework clock.
The internal clock is configured at a 100Hz update rate

but can be changed which will then affect the execution
performance. Models can be configured to run slower
than the internal clock, but not faster.

An additional advantage of the framework is that start-up
and shut-down sequences are well defined, as well as the
fact that a single executable is used for all peers
(processing nodes). A peer therefore only loads the
models that are required to be executed by it, allowing
future extensions such as automatic load balancing.
Debugging is easier, as the entire simulation can be run as
a single executable with all models configured to be
executed from a single peer – This is controlled with the
configuration of a single switch in the model start-up
configuration.

7.2 Architecture-integrated SOM

The SOM is also a built-in feature of the architecture and
provides generic interfaces for:

1. Models – All entity models such as missiles and

radars are derived from this interface.
2. Services – Provide for shared services such as terrain

collision detection, ground-height information, LOS
and time of day. Data logging can also be
implemented as a service.

3. Consoles – Provide the means for gateways, stealth
viewers and interactive visualisation consoles (OIL).

4. Titles – A base template is provided for all title
definitions.

5. Spatial Reference Model (SRM) – Built-in support
for a spherical earth model with a mean sea level
(MSL) radius as an average of the equatorial and
polar radii of the World Geodetic System 1984
(WGS1984). Constructs for North-East-Down (NED)
Cartesian coordinates and orientations (heading, pitch
and roll) are provided, as well as Earth Centred, Earth
Fixed (ECEF) Cartesian and Meridian coordinates.
Local Level, Local North (LLLN) coordinates can
also be used.

6. Peers – Each peer has a standard interface to support
models, services and consoles and to connect to the
simulation backbone (TCP network). Each peer is in
essence a single application (executable) that
connects to other peers.

Each peer can be configured to support any number of
models, services and consoles. However, the loading of a
peer should be balanced with the rest as a single
overloaded peer can limit the execution performance of
the entire simulation. Load balancing is still a manual
process at this point in time.

Figure 9 shows the VGD3.1 architecture as collections of
models, services and consoles (not all instances are

indicated). The figure does not indicate which peer
executes which model, service or console, but only that
they connect to the IPC via the peer’s API.

Models

HLA Gateway *

Services

Consoles

* Future
Support

IPC (TCP-
based Peer-to-

Peer)

OIL Consoles

2D & 3D Viewers

Sensor
Effector

Operator
Behaviour

LOS

Terrain Height

Data Logging

Each link to the IPC
is via the Peer Interface

Models

HLA Gateway *

Services

Consoles

* Future
Support

IPC (TCP-
based Peer-to-

Peer)

OIL Consoles

2D & 3D Viewers

Sensor
Effector

Operator
Behaviour

LOS

Terrain Height

Data Logging

Each link to the IPC
is via the Peer Interface

Figure 9: VGD3.1 Architecture.

7.3 Architecture Implementation

The architecture has primarily been designed and
implemented by a single software developer over a 6
month period, but is used by a group of developers. It is a
flexible environment and is suitable for different types of
simulations, but with customised features for air defence
simulations.

7.4 VGD3.1’s Size

Simulation executions involve a number of models,
consoles and services. A typical configuration is shown in
Table 1.

Simulation Object Count
Type Quantity
Models 125
Consoles 9
Services 6
Objects (Total) 140

Table 1: Typical SOM Object Count for VGD3.1.

The simulation can be executed on any number of
processing nodes, but to maintain soft real-time
compliance, approximately four to seven nodes are
required. The number of nodes is determined empirically.

The complete simulation code base, including models,
viewers and the architecture itself is 466420 lines (386400
excluding empty lines) in 1307 files. Other statistics are
shown in Table 2.

Several extensions have already been made to the
architecture to allow amongst others, dynamic (late)
publication of titles, third party brokering of publication-

subscription between models and integrated data logging
for models.

File and Line Count Statistics
Line Count Type File

Count Total Excl. Empty
All Code 1307 466420 386400
All C/C++ 1160 391375 316888
All C# 147 75045 69512
IPC Only 25 12021 9347
SOM Only 8 1263 977
SRM Only 18 3821 2858

Table 2: Line and File Count Statistics.

8. Beyond VGD3.1

The natural growth path for VGD would be to cover more
GBADS phases and then to move into the Joint Air
Defence (JAD) domain where other Services and
Divisions of defence are involved such as the South
African Navy (SAN) or South African Air Force (SAAF).
Beyond JAD lies Joint Operations, which implies that
even more models will be developed and integrated with
VGD. External developers for models, consoles and
services may then be used. This will require a more
process-driven approach (such as HLA) as a single team
will not be responsible for all development anymore.

9. General Simulation Development Issues

This section addresses some general software
development issues in context of simulation development.

9.1 Development Costs

An important factor to consider when developing
simulations is the cost of ownership. If commercial
frameworks or architectures are used as the foundation of
a simulation, training, maintenance and flexibility should
all be kept in mind. As most commercial packages do not
provide source code, flexibility is not possible or
expensive if the vendor is requested to make alterations.
On the other hand, in-house development can be just as
expensive, as debugging is time consuming and changes
to a large code base are complex and difficult. However,
having full control over the architecture is also an
advantage, as internal mechanisms can be accessed to
adapt, extend or modify functionality or performance.
Still, compared to the cost of military acquisitions, the
development costs of a simulation such as VGD3.1 is
minimal.

9.2 Modularity

Modularity is implied in two ways. One is the way in
which models, services and other peripheral aspects are

handled in a simulation. Is it easy to add a new type of
service or a new model? The second is at the level of the
simulation itself. Can the SOM be extended without
serious repercussions, such as adding additional attributes
to the base model? Can additional mechanisms be
introduced such as DDM? Another question is whether
the underlying communications layer can be exchanged
for another such as the User Datagram Protocol (UDP),
CORBA® or the HLA RTI. Provision for such actions
can be designed into an architecture but will be at a
performance overhead cost.

9.3 Re-use

Models developed with a particular API always tend to
have embedded traces of it in addition to the standard way
of implementing the model (e.g. inheritance). It should be
limited as far as possible as it often limits the level of re-
use. A preferred method is to use an intermediate
(integration) class and implement the model as a pure
C++ (or other applicable language) class. A slight
performance overhead will be paid, but maintenance and
upgrading of the model will be much more isolated and
efficient. Of course if upgrades require interface updates,
the intermediate class has to be updated as well, but
experience has shown that the intermediate class
maintenance is not necessarily a complex task. This
method also allows isolated testing of a model and the
interface.

9.4 Incremental Development

In order to provide APIs for model development and other
peripheral services for a simulation, a minimum
infrastructure is required. Up to the point where the
interfaces are stable, development of software that
depends on the architecture is difficult and may require
rework or restructuring should the interfaces change. It is
thus important to first design and implement interfaces
and underlying data structures, such as coordinate
frameworks. Once a basic infrastructure has been
established, an incremental (also known as iterative or
spiral development) process can be followed to add
functionality to the architecture. Typically additions are
made as dependent software requirements arise. This
approach reduces development costs, as a large scale
design effort up front is expensive and the lead time until
the first lines of code are written long. It is also difficult
to preconceive all required functionalities right at the start
as knowledge is captured and encoded in a software
system as the developers, systems engineers and end-
users of the system mature in their proficiency with the
domain. Another danger of doing a grand design up front
is functionality that is anticipated to be very useful ends
up not being used due to complexity, obsoleteness or cost.

9.5 Update Rates

During the development of the distributed TCP-based
architecture, it was proposed to set the update rates of
types of models to appropriate values, and to spread the
update times of models throughout the available time
slices for real-time execution (0.01s for 100Hz real-time
update rate). Although this scheme seems to be a good
solution to the problem, it will still result in a worst-case
scenario that will cause a cyclical slip in real-time
compliance. Every so many cycles, the updates rates of
different models will result in a clock cycle that has a
maximum number of models to be updated at any given
time. At this time the available time slice might not be
adequate to perform all processing, causing a slip in the
real-time compliance. If this cycle repeats too often, the
simulation will slip further and further from real-time.
Other clock cycles might be under-utilised, which can be
used to process models in advance but only if a model is
independent of the state or output of other models which
is rarely the case.

9.6 Architecture Abuse

The HLA RTI API enforces the rule that a simulation
federate is not allowed to change its state during a
publication update, whether it was pushed or pulled from
the RTI. This principle prevents possible simulation state
inconsistencies as the subscribing federate can request
publications at a faster rate than the federate can supply.
If it is allowed to change its state during the supply of
data to the requesting federate, its state will become
inconsistent with its own internal update cycles. This is
one example of architecture abuse by end-user
programmers and has to be prevented by using well-
designed architectures. The current distributed TCP-based
architecture does not enforce this policy strictly.

9.7 Software Error Prevention

Software errors, First Incidence Reports (FIR), or bugs as
more commonly known, can be prevented in several
ways, although not completely:

1. Use an applicable design methodology such as the

Unified Modelling Language (UML).
2. Draft complete software specifications before

implementation.
3. Use software development standards for actual

coding (variable naming, class names, etc.).
4. Use the strictest possible specification for access to

variables, classes, attributes, etc. If a class method is
not allowed to change the attributes of its owning
object, prevent it from specifying the correct control
measures.

5. Paired coding from the Extreme Programming
methodology is a very effective way of identifying
problems on the go [7].

6. Subject newly developed software to as many as
possible end-users and other developers.

10. Future Work

Dynamic load balancing can be easily added to the
distributed TCP-based architecture (VGD3.1) because the
required information is already available at all peers. As a
conservative timing scheme is used, each peer will detect
when other peers have finished processing the current
time slice, and which peer was the first to be completed
with its processing tasks. The assumption is then that the
peer that completed first will be the one with available
processing capacity. Models can be transferred to it one
by one until another peer becomes the first to complete its
processing cycle. Control mechanisms have to put in
place to prevent passing models too often instead of
processing them. A good measure would be to stop
transferring models once real-time is achieved within a
comfortable margin. The only aspect that has to be
implemented is to transfer models from one peer to
another and to control the process. The transfer of
modules requires each model to be able to serialise itself.

It will also be an interesting exercise to evaluate the use
of more HLA rules and RTI services in the distributed
TCP-based architecture. This will result in a peer-to-peer
instead of client-server architecture as used in the HLA
RTI. The pros and cons for the two architectures can then
be compared with experiments.

11. Conclusion

Some lessons learned while implementing several
versions of a GBADS simulation have been presented.
The different versions ranged from single applications to
fully distributed simulations employing the latest IPC
frameworks. The most important lesson learned is that a
good architecture does not need to be expensive. Well
designed mechanisms provide adequate integration scope
and a light-weight API reduces complexity and limits the
breeding ground for software bugs.

It should also be kept in mind that simulation systems
tend to capture knowledge of subject experts (of the
models) and systems engineers (of the “glue” that
connects the models – not to be confused with the IPC).
This implies that a simulation system that is delivered to
an end-user is not the only impact made. It is the entire
process of building the simulation that adds the most
value. The simulation developers have to ask apparently
trivial questions, and if models of real systems are used,
they have to figure out how to interface the models with

each other. As this process unfolds, both the developers
and domain experts are educated in a structured way
about the modelled system and a “body of knowledge”
build up and maintained. Table 3 summarises the lessons
learned with the development and application of the VGD
series of simulations.

Simulation Important Lessons Learned
Pre-VGD Use the correct terminology (same as end-user)

from the start.
 Match real system as far as possible with

simulated – interfaces, structure, etc.
 Decide which systems levels are addressed with

the simulation to determine fidelity level of
models

VGD1.0 Use behavioural modelling for higher systems
levels to reduce processing requirements and
data requirements

 Use RAD when M&S goals are not clear
VGD2.0 OIL simulation requires time-stepped mode
 HLA compliance is not the same as HLA

compatible (interoperability)
 HLA interoperability only achieved when

SOMs match
VGD2.1 OIL simulation provides more flexibility than

HBM
 OIL simulation requires soft real-time

execution
 Batch-mode execution not trivial in HLA and

gateway environment
VGD3.0 Proprietary software: product lock-in, and

expensive to extend
VGD3.1 Lightweight IPC possible if architecture is not

too generic
 Peer-to-peer architectures offer performance

advantages over client-server approaches.

Table 3: Summary of Lessons Learned with VGD.

12. References

[1] H.J. Baird and J.J. Nel: “The Evolution of M&S as

part of Smart Acquisition using the SANDF GBADS
Programme as Example” Twelfth European Air
Defence Symposium, Shrivenham, June 2005.

[2] J.L. Pretorius: “Feasibility Considerations for a
Tailored Simulation Based Acquisition (SBA)
Approach” M. Eng. Project Report, University of
Pretoria, 2003.

[3] J.S. Roodt: “Modelling and Simulation Verification,
Validation and Accreditation Process” Technical
Report DEFT-MSADS-00049 Rev 2, CSIR DPSS,
Pretoria, March 2002.

[4] C. Tonkinson: “A Basic Course in G2 Version 5.0.
Course Notes” Knowledge Base Engineering,
Sandton, 1998.

[5] R. Oosthuizen, “VGD-2 Requirement Definition,”
Technical Report DEFT-MSADS-00052 Rev 1,
CSIR DPSS, Pretoria, July 2001.

[6] F. Kuhl, R. Weatherly and J. Dahman: Creating
Computer Simulation Systems: An Introduction to
the High Level Architecture, Prentice-Hall, Upper
Saddle River, 1999.

[7] J. Highsmith: “Extreme Programming: Agile Project
Management Advisory Service” White paper, Cutter
Consortium, Arlington, 2000.

13. Acknowledgements

The author thanks his colleagues at the CSIR for taking
the time to review this paper and provide valuable
suggestions. The development of the Virtual GBADS
Demonstrators was supported by the South African
Armaments Corporation.

HERMAN LE ROUX has been with the South African
Council for Scientific and Industrial Research since April
1998 and is at present a Senior Researcher in the
Mathematical and Computational Research Group. He is
involved in Modelling & Simulation-based Decision
Support, specifically for the South African National
Defence Force. Interests include data fusion, biometrics,
artificial intelligence and software engineering. Le Roux
completed a Masters Degree in Computer Engineering at
the University of Pretoria in 1999 and is currently
pursuing a PhD in Multisensor Data Fusion.

