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ABSTRACT: As part of Modelling and Simulation-based Acquisition Decision Support to a Ground-Based Air 
Defence acquisition programme, dedicated simulations have been used to evaluate and develop tactical doctrine, define 
measures of performance and effectiveness and to answer techno-military questions. The simulations are loosely 
matched to the different phases of the procurement programme for efficient and effective support. This paper presents 
the lessons learned and issues identified during the development of the series of simulations, focusing on real-time, 
distributed execution and behavioural modelling and how budget and time constraints affected these. 
 
1. Introduction 
 

“If you think good architecture is expensive, try bad 
architecture” – Brian Foote and Joseph Yoder. 

 
In order to provide acquisition decision support to the 
South African Armaments Corporation (ARMSCOR) for 
the procurement of Ground-based Air Defence System 
(GBADS) equipment, constructive, aggregated 
simulations are used. Different versions of the simulation 
system were developed to match the GBADS acquisition 
phases for efficient and effective support.   
 
Figure 1 maps all developed versions of the simulation 
system, referred to as the Virtual GBADS Demonstrator 
(VGD), to the first GBADS acquisition phase. The 
GBADS procurement programme follows a phased 
approach of which acquisition of the SABLE2 Air 
Defence System forms the first phase [1].  
 

                                                           
1 The Council for Scientific and Industrial Research 
(CSIR) has been constituted by an Act of the South 
African Parliament in 1945. It is one of the leading 
scientific and technology research, development and 
implementation organisations in Africa. The organisation 
undertakes and applies directed research and innovation 
in science and technology to improve the quality of life of 
the country's people.  
2 The SABLE Air Defence System is an offering of the 
the Denel Aerospace Group. 
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Figure 1: Simulation Versions, Acquisition Phases and 
GBADS Phases 

 
The increasing capability and acceptance of Modelling 
and Simulation (M&S) as an effective tool to support the 
acquisition and utilisation of complex systems have in 
recent times made it an important area in which Research 
Institutes world-wide are developing and applying their 
technology bases. The need for decision support on the 
GBADS acquisition programme of the South African Air 
Defence Artillery (SAADA) offered an opportunity to 



apply M&S and in so doing to establish an indigenous 
M&S Acquisition Decision Support (MSADS) capability. 
The “window of opportunity” presented by the GBADS 
programme was used as a vehicle to establish a credible 
MSADS capability to act as a pilot Simulation-based 
Acquisition (SBA) project within the South African 
Defence Acquisition environment and which in time can 
be expanded to more applications [2]. 
 
This paper presents the lessons learned during the 
implementation of distributed simulations in an 
environment with resource and budget constraints, and 
identifies issues to be considered when developing low 
cost simulation architecture frameworks. After a brief 
discussion of the pre-VGD simulation that led to the 
conceptualisation of the first VGD, each version of VGD 
is discussed with its associated Modelling and Simulation 
issues. 
 
2. Pre-VGD 
 
An M&S prototype had to be developed with limited 
resources and budget within tight time scales. The 
prototype was developed in a Linux environment using 
Objective C as it provided built-in mechanisms for 
simplistic Two-dimensional (2D) visualisation and an 
object orientated abstraction layer with added features 
such as managing objects in a hierarchy.  
 
The most important lesson learned with this prototype 
was to use the correct terminology. The same terminology 
as used by the end-user or client, in this case the SAADA, 
should be used. If and when simulations have to be 
discussed in any more detail than the input and output of 
it, the internal structures used should, as far as possible, 
match that of the real system being modelled. However, it 
can become a very time consuming and tedious task to 
keep up with the latest user terminology as in some cases 
it might evolve as the end-user or client becomes more 
familiar with the simulation. 
 
The changing requirements of a simulation can take 
several paths – The end-user can insist on higher fidelity 
models or models from different vendors to conduct wider 
what-if type analyses with. Hardware- or human in the 
loop simulations can become priority if the end-user 
realises that training support with the system is a 
possibility.  
 
Another aspect to take into account when developing 
simulations is at what system level is a simulation 
pitched? Figure 2, adapted from [3], shows a system level 
hierarchy applied to the M&S and military domains. For 
high fidelity, engineering-type models one-on-one or one-
on-many simulations are preferred otherwise execution 
times become too long. However, if a higher order 

system’s performance has to be evaluated, many-on-many 
type interactions are typically required to be able to 
quantify and qualify behaviour in more complex 
scenarios. 
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Figure 2: The Systems Hierarchy Applied to M&S 
 
In the case of VGD, behavioural models are used to limit 
processing requirements and to allow the use of many-on-
many interactions. This in turn enables the evaluation of 
system performance and not only that of individual sub-
systems (e.g. specific radars). 

 
3. VGD Version 1.0 
 
The prototype GBADS simulation and VGD Version 1.0 
(VGD1) was mainly used to explore simulation-based 
decision support possibilities and were implemented 
using a Rapid Application Development (RAD) 
philosophy as development resources were limited and 
impact had to be demonstrated quickly. VGD1 was 
implemented using a proprietary object-orientated visual 
programming environment, G23, which has expert system 
capabilities. 
 
Both the prototype simulation and VGD1 were non-
distributed stand-alone applications and were typically 
used in faster than real-time mode to generate reports for 
statistical analysis. Low fidelity, behavioural models were 
used. The architecture and models were also tightly 
integrated. Aspects that were identified as important 
philosophical or design choices are: 
 
1. Should rapid prototyping be used? 
2. What is the impact of model fidelity? 
3. Confirm a common understanding of behavioural 

modelling. 
4. Whether discrete event, time-based or a combination 

of discrete event and time-based simulations should 
be used. 

 
                                                           
3 G2, a product and registered trademark of Gensym, is a 
real-time business rules engine for mission critical 
applications. 



3.1 Should Rapid Prototyping be Used? 
 
In a situation where it is not clear what can be achieved 
through M&S support, rapid prototyping offers some 
value. However, the client should be made aware of the 
fact that rapid prototypes have limitations in terms of 
flexibility, modularity and extendibility. It is often 
necessary to discard a prototype during subsequent 
phases. 
 
Boundaries between models tend to be vague as most 
models will be of low fidelity. This drives more simplistic 
interfaces between models and the simulation architecture 
itself.  
 
During rapid prototyping some aspects may not be 
modelled such as ignoring line-of-sight (LOS) 
calculations due to terrain obscuration and when a flat 
earth model is assumed.  
 
It is advisable to use a RAD tool for prototyping as lower 
level computer languages requires infrastructure (also 
referred to as frameworks) to be laid down before actual 
development can commence. A disadvantage of most 
RAD tools is that they generally use interpreted or 
intermediate interpreted languages limiting the processing 
power available for intensive mathematical or logistical 
implementations due to run-time code interpretation. On 
the other hand integration via gateways or bridges or 
execution of binary routines are well supported allowing a 
simulation developer to model parts of a simulation in a 
RAD tool and other processing intensive parts in a more 
appropriate environment.  
 
It is precisely this approach that led to a distributed 
simulation requirement for VGD. A RAD tool was used 
to prototype some models, but the more stable models that 
did not require further development were implemented in 
a lower level language. This required models to be 
executed over different machines as the RAD tool 
required a dedicated machine. 
 
3.2 Impact of Model Fidelity 
 
In general the higher the fidelity of a model, the higher 
the processing requirements and inter-model information 
load. Higher fidelity models tend to run at faster update 
rates which require more processing power as calculations 
have to be made in shorter time slots, if real-time 
execution is required. To reduce the processing burden, 
distributed simulations are used to share the processing 
load of models amongst processing nodes. This in turn 
requires distributed Inter-Process Communication (IPC) 
frameworks to allow for the efficient development and 
integration of models capable of taking part in such 
distributed simulations. Coupled to these requirements, 

model and simulation interfaces need to be standardised 
for interoperability and extendibility. All these issues 
have to be addressed in a unified architecturally sound 
framework to minimise rework, debugging and 
maintenance effort. Fidelity can be addressed at different 
levels of which some are: 
 
1. Comprehensiveness (completeness) – Are the sun 

and moon positions accurate for the time of day and 
time of year in the flight simulator? Are wind gusts 
taken into account for the projectile trajectory? 

2. Externally observable behaviour – Does the missile 
model have the same phases (power on, arming, lock-
on, launch and detonation) as the real system? Will it 
be inactive of the power is switched off? Does it have 
a power button? 

3. Internal implementation – Is the control law of the 
missile model based on the same mathematical 
principles and operation as the real missile? Are the 
internal electronics that manipulate the control 
surfaces of the missile modelled? 

4. External environment interaction – Will the missile 
model fly a different path if there are wind gusts 
present? 

5. Visualisation – How realistic is the representation of 
a simulation scenario? Is a participant immersed such 
that it will not affect his/her responses? 

 
This leads to the concept of behavioural modelling where 
a piece of equipment is modelled for inclusion in a 
simulation.  
 
3.3 Common Understanding of Behavioural Modelling 
 
Behavioural modelling can span over one or more of the 
classes of fidelity listed above, but primarily resorts under 
externally observable behaviour. A behavioural model 
can also be complete (see fidelity levels in Subsection 
3.2) or provide visual output that is very realistic, but in 
general, behavioural models do not have high fidelity 
internal implementations. A model of equipment should 
have the same aggregated behaviour and interfaces as the 
real system. However, this can be filtered with the 
application of the simulation in mind. An example 
illustrates this best: a search radar is modelled and the 
simulation span only covers actual battles (when targets 
are engaged) as opposed to including the times before and 
after a battle (preparation and maintenance of the radar, 
respectively). Assumptions can then be made, such as that 
the modelled radar can be considered to be in optimal 
condition to perform its given tasks during a simulated 
battle (unless break-downs have to be modelled). The 
model interfaces required to configure the radar during 
simulated battle can then be omitted, as it will not be 
used. If it is required to model the times before and after 
battle, hence radar preparation and maintenance as well, 



the radar model should support these activities, both with 
its internal states and its external interfaces.  
 
To illustrate how behavioural models can be used 
effectively, a radar model is again used. Target signatures 
or radar cross sections (RCS) are generally highly 
dependent on a target’s orientation relative to the radar 
detecting it. Figure 3 shows the probability of detection 
for a specific target as a function of the target distance 
and height for a single RCS value. In a simulation where 
the flight profiles of targets are not predictable, the radar 
model should allow for arbitrary target positions and 
orientations. This coupled with effects such as multipath 
reflections, complex aircraft geometry (leads to complex 
RCS signature variations) and tracking filter performance, 
radar detection and tracking performance quickly lead to 
complex and processing intensive calculations.  
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Figure 3: 2D Radar Probability of Detection Coverage 

Diagram – High Fidelity. 
 

However, when a radar model is included in an 
aggregated simulation such as VGD, using a high fidelity 
coverage diagram-based models (as shown in Figure 3) is 
not practical as processing requirements cannot be met for 
real-time execution. Instead all factors influencing radar 
performance are combined into a behaviourally sound 
model that can be verified and validated against field tests 
or subject matter expert (SME) opinion. A possible 
solution for the radar case might be to use target position 
with Gaussian measurement errors and a simple distance 
and elevation angle threshold (see Figure 4). 
 
It is not advisable to have a mix of fidelities within the 
same model, although using models with varying fidelity 
levels in a simulation might still be feasible. Higher 
fidelity models might require more information than 
available from lower fidelity models interacted with.  
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Figure 4: 2D Radar Probability of Detection Coverage 

Diagram – Low Fidelity. 
 

If lower fidelity modules cannot match the required 
information fidelity that they are dependent on, 
assumptions have to be made that neutralises the 
advantage of using the higher fidelity. Continuing with 
the radar model example: if the model uses 
electromagnetic wave propagation formulas that are 
dependent on the ambient temperature, but the 
environmental model cannot provide a temperature to the 
model, the temperature value has to be fixed at an 
acceptable value. This in effect neutralises the 
parameter’s value to the simulation. It may be acceptable 
in low fidelity simulations to use high fidelity models, but 
with parameter constraints and at the cost of processing 
power. Care should be taken in such cases that false 
impressions are not created that all of the functionalities 
of a high fidelity model is used or influencing the 
outcomes generated with a low fidelity simulation. 
 
3.4 Discrete Event versus Time-Based Simulation 
 
A technique to increase the execution speed of 
simulations is to use a discrete event timing scheme [4]. 
In principle it requires the calculation of the time events 
occur and the identification of inter-event dependencies. 
The event times are then sorted first to last. The 
simulation time is advanced from event time to event time 
until all events have occurred and been handled. This 
method assumes that dependencies can be identified prior 
to the time calculation and that it is possible to calculate 
the time an events occurs using a mathematical formula. It 
also assumes that events occur at a single time instant and 
not over a period. If this assumption cannot be made, the 
start and end times of the event can be used as two 
separate sub-events which can be calculated. It is very 
difficult or sometimes not possible to define all event 
dependencies or to accurately calculate event occurrence 
times. A solution to this type of problem is to predict 
event occurrences just prior to the time of actual 
occurrence. The simulation is then switched to a time-



based scheme for a short while at the predicted time until 
the event occurs or a new event time can be predicted. 
Discrete event time schemes are typically used with 
statistical models to simulate the occurrence of events [4]. 
The VGD series of simulations are all time-based as it 
precludes operator-in-the-loop (OIL) simulation. Human 
operator reaction cannot be accurately predicted. 
 
4. VGD Version 2.0 
 
VGD Version 2.0 (VGD2.0) was mainly used in support 
of GBADS Phase 1 towards the end of project study and 
during the acquisition study phases [5]: 
 
1. To conduct hit probability analyses for GBADS 

system performance quantification.  
2. Comparison and evaluation of GBADS system 

architectures. 
3. Timeline and sensitivity analyses to determine 

critical performance areas. 
 
The two main requirements identified for VGD2.0 were 
to include Human Behaviour Modelling (HBM) through 
G2® in VGD and to use higher fidelity C++ models, 
supplied by external model vendors. HBM became a 
requirement as statistical analyses of simulated GBADS 
performance required between 30 and 100 iterations per 
configuration, which is not practical with OIL 
simulations. Higher fidelity models were required as the 
models used in VGD1.0 were of very low fidelity with 
questionable timeline characteristics.  
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Figure 5: VGD2.0 Architecture. 

 

Figure 5 shows the VGD2.0 architecture using the High 
Level Architecture (HLA4) as IPC framework. Note that 
G2® is connected to the IPC via an HLA bridge (also 
referred to as an HLA gateway). Peripheral services 
include support functions such as line-of-sight and terrain 
collision detection. Viewers can be immersive, three-
dimensional (3D) scenario viewers or 2D plan-view 
scenario viewers. Models have all been grouped by type 
(class) and bundled in model servers (federates) such that 
a single federate maintains all instances of a model class 
(objects). This approach was preferred over using a model 
instance per federate or all model instances bundled into 
one federate. Too many federates slows a simulation 
down and using one federate only restricts ownership 
possibilities.  Typically each block connected to the IPC 
executes on a dedicated computer, as well as the IPC 
server. The computers are connected via a standard 100 
Megabit per second (Mbps) Ethernet Local Area Network 
(LAN). Computer platforms are Intel-based (Pentium III 
and IV) standard desktops with Microsoft Windows-based 
Operating Systems. This is the case for all simulations 
described in this paper. VGD2.0 was developed in 
approximately two person-years. Important lessons 
learned while developing VGD2.0 are highlighted in the 
following Subsections. 
 
Aspects that were identified during the design and 
implementation of VGD2.0, and discussed in the 
following Subsections, are: 
 
1. The use of HLA as simulation infrastructure.  
2. Selecting the correct software language level for 

model implementation. 
3. Human behaviour modelling. 
4. Using models supplied by external model vendors. 
5. Batch-mode execution. 
 
4.1 The High Level Architecture 
 
As G2® was used for HBM and is a processor intensive 
application the C++ models had to be executed on a 
separate machine. This led to a secondary requirement for 
distributed simulation. As a distributed IPC was required 
and external parties had to be involved in VGD2.0’s 
implementation, HLA were selected. HLA is a standard 
that governs the entire simulation development effort. It is 
in essence a simulation engineering specification 
attempting to create interoperable simulations that can be 
combined into larger simulations [6]. 
 
 
 

                                                           
4 The High Level Architecture was developed by the 
Defense Modeling and Simulation Office in the 
Department of Defense of the United States of America. 



4.1.1 HLA-based Software Development 
 
As the South African industry had not yet adopted HLA 
or had any experience with it at the time, a framework or 
Software Development Kit (SDK) was developed to assist 
model development. The SDK provided an Application 
Programmer’s Interface (API) in C++ that shielded the 
model developer completely from the HLA APIs. The 
federate development process was not shared between all 
the parties but entirely handled by CSIR. The HLA SDK 
allowed seamless use of models in the on-line simulation 
as well as in test environments at the supplier’s site. 
Figure 6 shows the relation of the HLA SDK to the HLA 
Run-Time Infrastructure (RTI) API. Although the HLA 
SDK provides a more traditional C++ interface to the 
model developer, the developer can still access the HLA 
RTI API directly. 
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Figure 6: Relation Between the HLA RTI and HLA SDK 
APIs. 

 
Some advantages of using a single team for simulation 
development are: 
 
1. A single team at CSIR is responsible for the overall 

architecture and has control over it – This reduces the 
logistical effort compared to multiple teams being 
responsible for developing a framework. 

2. The philosophy of the simulation architecture can be 
kept uniform and focused. It is difficult to contain a 
larger group and to keep design ideas and options 
focused especially if most are only affected by a 
subset of the architecture. Design choices are made 
according to the subset only, which might not be 
useful or practical in the bigger scheme of things. 

 
Some disadvantages are:  
 
 

1. When model vendors are not experienced with many-
on-many simulations, assumptions made during the 
development of models can lead to integration errors, 
such as assuming that a supplied model will always 
be placed at (0, 0, 0). Such errors are not always 
visible in complex scenarios and can lead to totally 
incorrect results. Revising models to remove such 
errors might also not be trivial, as underlying 
assumptions can complicate matters. 

2. All possible interface requirements have to be 
predicted by the team responsible for implementing 
the simulation architecture. This becomes even more 
complex if future models (or types) to be integrated 
are not known at the start. This specifically occurs in 
cases where concept support is rendered and system 
knowledge is low or non-existent. In the case of 
concept modelling it is better to use a larger and more 
diverse design team as it will then identify more 
interesting options. 

 
4.1.2 Simulation Granularity 
 
The HLA RTI provides the IPC for a simulation and 
supports the execution of a simulation on one or more 
processing nodes without reconfiguration. The granularity 
of a simulation is left to the developer, as well as the 
design and composition of federates, objects, attributes 
and interactions. A set of rules is enforced by the RTI 
(directly and indirectly) and services are provided and 
have to be used or adhered to if a simulation is to remain 
HLA compliant. The HLA SDK supports the most used 
services and those not supported can still be accessed via 
the HLA RTI API itself.  
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Figure 7: Object Granularity versus Systems Hierarchy. 
 
Figure 7 relates object granularity against the systems 
hierarchy of Figure 2. Higher systems levels generally 
require more aggregated objects to be used in a federate, 
such as battalions instead of single soldiers. On the other 
hand, lower systems levels require more detailed or 
individual objects. Granularity is also dictated by 
processing power (more detailed objects at higher systems 



levels) and data availability (individual soldier data 
limited at battalion level). 
 
VGD was implemented in such a way that each type of 
model (e.g. a 2D search radar or missile) is maintained by 
a dedicated federate. The federate can maintain multiple 
instances of the same type of model at the same time. 
Integration with other simulations, visualisation packages 
or external models are done by using a dedicated federate. 
As sensor and effector models typically require accurate 
position and time information, a conservative timing 
scheme was adopted – This means that whenever a 
federate wants to increment its time, all other federates 
must do the same. Federates that do not influence the flow 
of a simulation cannot hold other federates back, but 
cannot advance further than the others would allow. The 
conservative time scheme imposes high overheads as all 
federates have to be time synchronised.  
 
4.1.3 HLA Compatibility and Compliance 
 
As HLA was used more, it was suspected that in some 
cases organisations claiming HLA compliance do not 
necessarily use it internally in their simulations, but rather 
implement HLA gateways or bridges to simulations. 
Using HLA in this way rather results in HLA 
compatibility than compliance. This approach allows for 
the use of more efficient IPC schemes internally, but can 
cause slow down if a simulation is governed (in terms of 
time) by a gateway. To illustrate: a simulation runs in 
optimistic time management mode, close to real-time. If a 
gateway is connected that requires conservative time 
management, the simulation will be slowed down, as 
additional overheads will be incurred for synchronisation. 
It also seems that many HLA-based implementations do 
not use the RTI services or do not adhere to the HLA 
rules. This reduces the level of interoperability between 
simulations.  
 
4.1.4 Interoperability 
 
Another aspect that was discovered was that an HLA-
compliant simulation implementation is governed by the 
Simulation Object Model (SOM). It implies if the SOMs 
of two HLA-based simulations do not match, the 
simulations are not interoperable. The SOM defines the 
hierarchy of objects, interaction and their defining 
attributes and parameters. SOM compatibility between 
two simulations can be at different levels: 
 
1. The two SOMs can match at conceptual as well as 

syntax (naming) levels – The two simulations 
(federations) can be joined by either using a 
dedicated federate on each side that connects via a 
third party (can also be a federate in a third 

federation). Another option is to move all federates 
from both simulations to a new common federation. 

2. The SOMs can match at conceptual level but not at 
the syntax level. This will require either renaming 
items in the SOM of one of the federations and then 
to integrate as discussed in (1) or translate on-line by 
means of the mechanism used to integrate.  

3. The SOMs do not match at conceptual or syntax 
levels – This will require more complicated 
translation mechanisms and might not even be 
possible in some cases. 

4. The SOMs do not match at conceptual level but at 
syntax level – This is a dangerous situation as it can 
lead to grave errors. Complicated translations are 
required, but a practical problem will be to keep the 
names apart in the integration mechanisms. 
 

Apart from SOM compatibility, HLA rules and RTI 
services compatibility can affect the successful integration 
of two simulations. If a simulation uses an optimistic 
timing scheme – And in most cases an HLA rule is 
broken as synchronisation is typically not achieved 
through the RTI but through an external mechanism – and 
another a conservative scheme, it will be more complex to 
synchronise the two simulations. A simulation might also 
rely on Data Distribution Management (DDM) to be able 
to be real-time compatible, and another not.  
 
It is suggested to simulation developers that when various 
parties are involved in development of a simulation, it is 
definitely worthwhile to follow the complete HLA 
process. On the other hand, if only one party is 
responsible for implementing an HLA compatible (note 
not compliant as HLA should then be used internally as 
well) simulation, other processes may be followed and 
only a gateway provided that is HLA compliant and 
compatible. 
 
4.2 Software Language Levels 
 
Each type of simulation development environment has its 
pros and cons – a RAD environment supports quick 
investigations but might lack scope. A lower level 
language environment has huge scope but requires 
infrastructure before actual simulation development can 
begin. It is for this reason that a visual-based object 
orientated programming environment has been selected 
for implementing models of tasks performed by humans. 
However, this environment is not suitable for processing 
intensive tasks, such as radar models that require 
mathematical formulas to be evaluated repeatedly. The 
C++ language has been selected for this purpose as it is 
object orientated but with higher execution efficiency. 
Using Gensym G2® (RAD tool) from VGD1, human 
behaviour was to be included in VGD2.0 with higher 
fidelity equipment C++ models.  



4.3 Human Behaviour Modelling 
 
In addition to higher fidelity models, an important part of 
systems level modelling of military systems is the 
element of human performance. HBM is specifically 
important where many-on-many simulations are used, as 
the timeline effect of a human operator cannot be easily 
isolated. Several approximations and models of human 
behaviour can be defined, but the crux is that the model 
should be supported by the architecture.  
 
The HBM effort with VGD2.0 resulted in concurrent 
doctrine activities, as it became possible to experiment 
with doctrinal concepts using equipment that was not yet 
available to the end-user. Furthermore it empowered the 
end-user to identify areas requiring more exploration and 
analysis. 
 
4.4 External Model Vendors 
 
The decision was made to use models supplied by 
equipment vendors to ensure that the models were 
impartially validated and maintained. This proved to be 
viable for customer furnished equipment. It is necessary 
with vendor-supplied models to ensure correct use in a 
simulation environment, as the operational performance 
of the models can easily be affected. This will then lead to 
incorrect results and conclusions. 
 
4.5 Batch-mode Execution 
 
Batch-mode execution was found to be complex to 
implement with the combination of HLA, G2® and 
STAGE5. The federation design did not cater for batch-
mode execution from the start, and controlling simulation 
runs via the G2® and STAGE gateways are not trivial. 
Although G2® had a commercially available gateway, 
STAGE did not have one. With limited resources it was 
more cost effective to manually repeat simulation runs 
than to implement batch-mode execution support and an 
extended gateway for STAGE. 
 
5. VGD Version 2.1 
 
It became apparent towards the end of the acquisition 
study support that more realistic target flight profiles are 
required for accurate timeline analyses. This was also 
anticipated to be a requirement for future acquisition 
phases. In order to support human pilots flying against 
simulated batteries, the simulation should at least be soft 
real-time compliant, hence the requirement to upgrade 
VGD2.0. 
 

                                                           
5 STAGE is a product of Engenuity Technologies, Inc. 

VGD Version 2.1 (VGD2.1) used a similar architecture as 
VGD2.0. The SOM has been optimised for execution 
performance (speed) to be able to achieve soft real-time, 
distributed simulation. An HLA gateway to a commercial 
flight simulator (Virtual Prototypes FLSim) that is flown 
by a human operator is supported in addition. Two aspects 
are therefore highlighted in this section, OIL and soft real-
time simulation.   
 
5.1 Operator-in-the-loop Simulation 
 
In cases where HBM is not practical or it is too complex 
to achieve an acceptable degree of realism, human OIL 
simulation is an alternative. Advantages of OIL 
simulations include: 
 
1. More realistic operator behaviour – Note it is still not 

perfect as the situational awareness fidelity in which 
the human operator finds itself may not be adequate 
for realistic decisions. Stress conditions are typically 
not the same as in real life situations because 
operators are aware the fact that it is only a 
simulation. Only a subset of information may also be 
available to the operator to base its decisions on. 
Stress conditions can be artificially raised by using a 
faster paced simulation or by introducing competitive 
elements between operators.  

2. OIL simulations can be converted to training 
simulations, although the factor of situational fidelity 
comes into play again. 

3. Human behaviour, typically action or response times, 
can be recorded on-line and analysed for input to 
higher fidelity models.  

4. By running a simulation in OIL mode, internal 
software errors or interface errors can be uncovered if 
inexplicable simulation behaviour is observed. It is 
then used as a software debugging tool. 

 
Some disadvantages are:  
 
1. Batch-mode simulation executions are limited if large 

samples are required to calculate accurate statistics. 
The element of predictability and simulation “quirks” 
are easily learned within a few iterations by a human 
subject and then abused to gain an unfair advantage 
during a simulation execution. 

2. For simulations that lack graphical interfaces, 
dedicated OIL interfaces have to be developed – This 
might be complex as visualisation of concepts is not 
always straightforward. 

3. Human boredom can play a role, specifically if there 
are long times when no operator interaction is 
required – As example: The operator has to wait until 
the targets enter the launch envelope of a missile 
system. 



4. Simulations have to be at least soft real-time 
compatible. If the simulation executes too fast, the 
operator can be subjected to unrealistic stress when 
making decisions. In some cases this approach can 
actually be used to analyse human performance or to 
make scenarios more complex. On the other hand, if 
the simulation runs too slow, the operator will have 
an unrealistic advantage to make decisions in time. 

5. If too many human operators are required to execute 
a simulation it can become expensive and impractical 
to coordinate, schedule and “choreograph” the run.  

6. When using humans, simulation execution outcomes 
may vary significantly enough such that it is difficult 
to draw proper conclusions from a few runs. 

 
To get more accurate results with OIL simulations 
operators have to be briefed with the relevant contextual 
information, specifically when an operator has control 
over elements in the simulation. This has not been done 
with VGD-based experiments and is an aspect that will be 
expanded in future. More sophisticated briefing, 
debriefing and after-action reviewing tools are required 
which also drives data logging requirements. 
 
5.2 Real-time and Distributed Simulations 
 
As mentioned in the previous Subsection, OIL 
simulations require soft real-time execution. Human 
operators are tolerant (or oblivious) towards intermittent 
time lapses (where the simulation fails to maintain real-
time execution), except if noticeable events are omitted. 
Hardware-in-the-loop simulations on the other hand 
generally require hard real-time execution to maintain 
synchronisation.  
 
In a real-time simulation, limited processing power, 
memory and bandwidth all dictate available time slices 
for entity models to be processed in. The more models 
included in the simulation execution, the shorter the 
processing time slice becomes (given the number of 
processing nodes is constant). A popular solution to this 
problem is to add more processing nodes, but then the 
IPC efficiency coupled with the bandwidth will dictate the 
practical maximum number of nodes. Data transfer 
between models also has to be optimised to gain even 
more efficiency.  
 
Distributed simulations are generally more difficult to 
implement and debug as the execution of a simulation 
occurs over more than one node. IPC schemes exist that 
allows seamless changes between executing an entire 
simulation on one or more nodes. If an IPC scheme 
supports the execution on one node only, albeit not in 
real-time, development and debugging become easier. 
 
 

6. VGD Version 3.0 
 
VGD Version 3.0 (VGD3.0) was mostly used during the 
industrialisation and production acquisition phases for 
statistical analyses of GBADS performance evaluations. 
The decision was made to discontinue the use of 
proprietary software products, due to expensive licensing 
fees, product lock-in and easier batch-mode execution 
support. Peripheral services in VGD2.0 and VGD2.1 (See 
Figure 5) were implemented with STAGE and included 
LOS, terrain, threat and scenario management services. In 
addition, operator modelling of multiple target handling 
had to be supported, as VGD2.0/2.1 had limited 
capabilities in this regard. 
 
VGD3.0 uses the same entity models as VGD2.1, except 
for the HBM part that is replaced with a populated C++ 
framework. A target-centric approach was adopted to 
define operator tasks and parameters. All equipment 
models were re-used by means of intermediate interfaces 
(wrappers). In addition to this, batch mode execution of 
the simulation was a more prominent requirement to 
support statistical analysis of results. As neither VGD2.0 
nor VGD2.1 was implemented to support batch runs, and 
developer resources were low, a less complex and more 
maintainable system was required. Two options were 
investigated for an IPC framework. These are highlighted 
in the next two Subsections.  
 
6.1 Common Object Request Broker Architecture 
 
A quick investigation was conducted in using the 
Common Object Request Broker Architecture 
(CORBA®6) for the purpose of an IPC framework. The 
HLA RTI used in VGD uses CORBA® as an underlying 
framework. The investigation was done, as at the time 
none of the local model vendors used HLA or CORBA® 
and it was decided to move to a more simplistic IPC (less 
distributed in a sense) as resources were limited. 
However, CORBA® will still be considered in future as it 
is a language independent, distributed architecture with an 
established user community. 
 
6.2 Transfer Control Protocol 
 
Between the Transfer Control Protocol (TCP), HLA and 
CORBA®, TCP is the most widely used IPC framework. 
Most programmers also have experience with it. As the 
real-time requirement for VGD became less of a priority – 
the focus was more on batch-mode execution for 
statistical analyses – it was not pursued anymore. The 
decision was made to lump all models into a single 
executable, and to only distribute the visualisation aspects 
                                                           
6 CORBA is a registered trademark of the Object 
Management Group. 



of the simulation and the operator modelling modules. All 
models were reused from the distributed simulation and 
reintegrated using the HLA SDK API wrappers as is. The 
models were stripped of the HLA SDK eventually as it 
caused execution overheads and nothing was gained. 
More focus was also placed on developing an 
environment in which operator tasks, processes and 
decisions could be modelled more efficiently and flexible. 
 
At the point where VGD was almost completed and ready 
for experiments to be defined, implemented, conducted 
and analysed, the requirement for OIL simulations were 
raised again. This was due to the fact that human 
behaviour modelling became very complex as certain 
tasks that were originally thought to be very well-defined 
and rule-driven, were in fact not as well defined. In 
addition to this it was realised that a big driver of overall 
system performance, given the set of rules, actions and 
procedures (doctrine, weapon drills and standard 
operating procedures) was still human performance. 
Specific aspects are target acquisition (with and without 
assistance), visual identification and weapon drills. 
Although these aspects could eventually be modelled, the 
end-user felt strongly that more flexibility is required to 
experiment with tactical doctrine by means of OIL 
simulations. Soft real-time execution is a requirement for 
OIL simulation. However, at this point it was decided that 
a simpler and more cost efficient approach should be 
adopted for a new IPC framework. Although VGD3.0 was 
used for experiments (batch-mode executions), it was 
never completed fully. 
 
7. VGD Version 3.1 
 
The lessons learned with the development and application 
of the preceding versions of VGD culminated in the 
design and implementation of VGD Version 3.1 
(VGD3.1). It is the current operational version, and is 
applied in GBABS acquisition phases I and II. For phase I 
it is used up to the commissioning phase support and for 
phase II up to the production phase. VGD3.1 has been 
extended to demonstrate concepts in other domains, such 
as Joint Air Defence (navy) and persistent, real-time 
maritime surveillance. 
 
VGD3.1 was required to support OIL simulations thus 
soft real-time execution support was necessary. As the 
number of models added to VGD increased considerably, 
and the scope of support of VGD expanded to include 
Operational Test and Evaluation (OT&E) and subsequent 
phases of the acquisition programme, the architecture of 
VGD3.0 had to be updated. 
 
 
 
 

7.1 A Simplified, Distributed IPC Architecture 
 
The use of a central global memory (implemented in 
hardware) connected to processing nodes via high 
bandwidth connections such as FireWire800™ (Apple 
Computer Incorporated – IEEE 1394b), Universal Serial 
Bus Version 2.0 (USB2.0) or Gigabit (Gb) Local Area 
Networks (LAN), was investigated. To evaluate the 
concept a software-based central global memory was 
developed based on TCP for communications over 100 
Mbps or Gigabit per second (Gbps) LANs. A standard 
client-server configuration was used. It was soon apparent 
that the client-server architecture had severe drawbacks: 
in essence if a message is sent from one client to another 
it has two legs to pass over – the first from the 
transmitting client to the manager and then from the 
manager to the receiving client. The number of 
connections at the manager also becomes a bottleneck as 
it will have as many connections as there are clients. A 
peer-to-peer solution was proposed, in which all nodes are 
considered peers and are connected to all other nodes 
(fully connected). It results in the same number of 
connections at each node, but communications between 
peers are now direct (a single leg only). A further 
improvement is that parallel communications can occur 
over independent connections but is still limited by the 
underlying hardware architecture (network switch 
backplane fabric). Figure 8 shows a client-manager versus 
peer-to-peer architecture. 
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Figure 8: Client-Manager vs. Peer-to-Peer Architectures. 
 
To control the flow of information between peers, a 
mechanism similar to the publication and subscription 
object management service of the HLA RTI is used. 
Models within peers have to indicate which information is 
available to other models by publishing a title. Other 
models can subscribe to published titles and will receive 
issues (data updates) at the rate specified in the 
subscription. If a model subscribes faster than what 
another can offer issues at, the last valid issue will be 
provided until a new update is available (which will then 
be provided). 
 
Time management is an integral part of the framework 
and is a conservative scheme allowing models to operate 
at an integer multiple of the internal framework clock. 
The internal clock is configured at a 100Hz update rate 



but can be changed which will then affect the execution 
performance. Models can be configured to run slower 
than the internal clock, but not faster. 
 
An additional advantage of the framework is that start-up 
and shut-down sequences are well defined, as well as the 
fact that a single executable is used for all peers 
(processing nodes). A peer therefore only loads the 
models that are required to be executed by it, allowing 
future extensions such as automatic load balancing. 
Debugging is easier, as the entire simulation can be run as 
a single executable with all models configured to be 
executed from a single peer – This is controlled with the 
configuration of a single switch in the model start-up 
configuration.  
 
7.2 Architecture-integrated SOM 
 
The SOM is also a built-in feature of the architecture and 
provides generic interfaces for: 
 
1. Models – All entity models such as missiles and 

radars are derived from this interface. 
2. Services – Provide for shared services such as terrain 

collision detection, ground-height information, LOS 
and time of day. Data logging can also be 
implemented as a service. 

3. Consoles – Provide the means for gateways, stealth 
viewers and interactive visualisation consoles (OIL). 

4. Titles – A base template is provided for all title 
definitions. 

5. Spatial Reference Model (SRM) – Built-in support 
for a spherical earth model with a mean sea level 
(MSL) radius as an average of the equatorial and 
polar radii of the World Geodetic System 1984 
(WGS1984). Constructs for North-East-Down (NED) 
Cartesian coordinates and orientations (heading, pitch 
and roll) are provided, as well as Earth Centred, Earth 
Fixed (ECEF) Cartesian and Meridian coordinates. 
Local Level, Local North (LLLN) coordinates can 
also be used.  

6. Peers – Each peer has a standard interface to support 
models, services and consoles and to connect to the 
simulation backbone (TCP network). Each peer is in 
essence a single application (executable) that 
connects to other peers. 

 
Each peer can be configured to support any number of 
models, services and consoles. However, the loading of a 
peer should be balanced with the rest as a single 
overloaded peer can limit the execution performance of 
the entire simulation. Load balancing is still a manual 
process at this point in time. 
 
Figure 9 shows the VGD3.1 architecture as collections of 
models, services and consoles (not all instances are 

indicated). The figure does not indicate which peer 
executes which model, service or console, but only that 
they connect to the IPC via the peer’s API. 
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Figure 9: VGD3.1 Architecture. 
 
7.3 Architecture Implementation 
 
The architecture has primarily been designed and 
implemented by a single software developer over a 6 
month period, but is used by a group of developers. It is a 
flexible environment and is suitable for different types of 
simulations, but with customised features for air defence 
simulations. 
 
7.4 VGD3.1’s Size 
 
Simulation executions involve a number of models, 
consoles and services. A typical configuration is shown in 
Table 1.  
 

Simulation Object Count 
Type Quantity 
Models 125 
Consoles 9 
Services 6 
Objects (Total) 140 

 
Table 1: Typical SOM Object Count for VGD3.1. 

 
The simulation can be executed on any number of 
processing nodes, but to maintain soft real-time 
compliance, approximately four to seven nodes are 
required. The number of nodes is determined empirically. 
 
The complete simulation code base, including models, 
viewers and the architecture itself is 466420 lines (386400 
excluding empty lines) in 1307 files. Other statistics are 
shown in Table 2.  
 
Several extensions have already been made to the 
architecture to allow amongst others, dynamic (late) 
publication of titles, third party brokering of publication-



subscription between models and integrated data logging 
for models. 
 

File and Line Count Statistics 
Line Count Type File 

Count Total Excl. Empty 
All Code 1307 466420 386400 
All C/C++  1160 391375 316888 
All C# 147 75045 69512 
IPC Only 25 12021 9347 
SOM Only 8 1263 977 
SRM Only 18 3821 2858 

 
Table 2: Line and File Count Statistics. 

 
8. Beyond VGD3.1 
 
The natural growth path for VGD would be to cover more 
GBADS phases and then to move into the Joint Air 
Defence (JAD) domain where other Services and 
Divisions of defence are involved such as the South 
African Navy (SAN) or South African Air Force (SAAF). 
Beyond JAD lies Joint Operations, which implies that 
even more models will be developed and integrated with 
VGD. External developers for models, consoles and 
services may then be used. This will require a more 
process-driven approach (such as HLA) as a single team 
will not be responsible for all development anymore.  
 
9. General Simulation Development Issues 
 
This section addresses some general software 
development issues in context of simulation development. 
 
9.1 Development Costs 
 
An important factor to consider when developing 
simulations is the cost of ownership. If commercial 
frameworks or architectures are used as the foundation of 
a simulation, training, maintenance and flexibility should 
all be kept in mind. As most commercial packages do not 
provide source code, flexibility is not possible or 
expensive if the vendor is requested to make alterations. 
On the other hand, in-house development can be just as 
expensive, as debugging is time consuming and changes 
to a large code base are complex and difficult. However, 
having full control over the architecture is also an 
advantage, as internal mechanisms can be accessed to 
adapt, extend or modify functionality or performance. 
Still, compared to the cost of military acquisitions, the 
development costs of a simulation such as VGD3.1 is 
minimal. 
 
9.2 Modularity 
 
Modularity is implied in two ways. One is the way in 
which models, services and other peripheral aspects are 

handled in a simulation. Is it easy to add a new type of 
service or a new model? The second is at the level of the 
simulation itself. Can the SOM be extended without 
serious repercussions, such as adding additional attributes 
to the base model? Can additional mechanisms be 
introduced such as DDM? Another question is whether 
the underlying communications layer can be exchanged 
for another such as the User Datagram Protocol (UDP), 
CORBA® or the HLA RTI. Provision for such actions 
can be designed into an architecture but will be at a 
performance overhead cost. 
 
9.3 Re-use 
 
Models developed with a particular API always tend to 
have embedded traces of it in addition to the standard way 
of implementing the model (e.g. inheritance). It should be 
limited as far as possible as it often limits the level of re-
use. A preferred method is to use an intermediate 
(integration) class and implement the model as a pure 
C++ (or other applicable language) class. A slight 
performance overhead will be paid, but maintenance and 
upgrading of the model will be much more isolated and 
efficient. Of course if upgrades require interface updates, 
the intermediate class has to be updated as well, but 
experience has shown that the intermediate class 
maintenance is not necessarily a complex task. This 
method also allows isolated testing of a model and the 
interface.  
 
9.4 Incremental Development 
 
In order to provide APIs for model development and other 
peripheral services for a simulation, a minimum 
infrastructure is required. Up to the point where the 
interfaces are stable, development of software that 
depends on the architecture is difficult and may require 
rework or restructuring should the interfaces change. It is 
thus important to first design and implement interfaces 
and underlying data structures, such as coordinate 
frameworks. Once a basic infrastructure has been 
established, an incremental (also known as iterative or 
spiral development) process can be followed to add 
functionality to the architecture. Typically additions are 
made as dependent software requirements arise. This 
approach reduces development costs, as a large scale 
design effort up front is expensive and the lead time until 
the first lines of code are written long. It is also difficult 
to preconceive all required functionalities right at the start 
as knowledge is captured and encoded in a software 
system as the developers, systems engineers and end-
users of the system mature in their proficiency with the 
domain. Another danger of doing a grand design up front 
is functionality that is anticipated to be very useful ends 
up not being used due to complexity, obsoleteness or cost. 
 



9.5 Update Rates 
 
During the development of the distributed TCP-based 
architecture, it was proposed to set the update rates of 
types of models to appropriate values, and to spread the 
update times of models throughout the available time 
slices for real-time execution (0.01s for 100Hz real-time 
update rate). Although this scheme seems to be a good 
solution to the problem, it will still result in a worst-case 
scenario that will cause a cyclical slip in real-time 
compliance. Every so many cycles, the updates rates of 
different models will result in a clock cycle that has a 
maximum number of models to be updated at any given 
time. At this time the available time slice might not be 
adequate to perform all processing, causing a slip in the 
real-time compliance. If this cycle repeats too often, the 
simulation will slip further and further from real-time. 
Other clock cycles might be under-utilised, which can be 
used to process models in advance but only if a model is 
independent of the state or output of other models which 
is rarely the case. 
 
9.6 Architecture Abuse 
 
The HLA RTI API enforces the rule that a simulation 
federate is not allowed to change its state during a 
publication update, whether it was pushed or pulled from 
the RTI. This principle prevents possible simulation state 
inconsistencies as the subscribing federate can request 
publications at a faster rate than the federate can supply. 
If it is allowed to change its state during the supply of 
data to the requesting federate, its state will become 
inconsistent with its own internal update cycles. This is 
one example of architecture abuse by end-user 
programmers and has to be prevented by using well-
designed architectures. The current distributed TCP-based 
architecture does not enforce this policy strictly. 
 
9.7 Software Error Prevention 
 
Software errors, First Incidence Reports (FIR), or bugs as 
more commonly known, can be prevented in several 
ways, although not completely: 
 
1. Use an applicable design methodology such as the 

Unified Modelling Language (UML). 
2. Draft complete software specifications before 

implementation. 
3. Use software development standards for actual 

coding (variable naming, class names, etc.). 
4. Use the strictest possible specification for access to 

variables, classes, attributes, etc. If a class method is 
not allowed to change the attributes of its owning 
object, prevent it from specifying the correct control 
measures. 

5. Paired coding from the Extreme Programming 
methodology is a very effective way of identifying 
problems on the go [7]. 

6. Subject newly developed software to as many as 
possible end-users and other developers. 

 
10. Future Work  
 
Dynamic load balancing can be easily added to the 
distributed TCP-based architecture (VGD3.1) because the 
required information is already available at all peers. As a 
conservative timing scheme is used, each peer will detect 
when other peers have finished processing the current 
time slice, and which peer was the first to be completed 
with its processing tasks. The assumption is then that the 
peer that completed first will be the one with available 
processing capacity. Models can be transferred to it one 
by one until another peer becomes the first to complete its 
processing cycle. Control mechanisms have to put in 
place to prevent passing models too often instead of 
processing them. A good measure would be to stop 
transferring models once real-time is achieved within a 
comfortable margin. The only aspect that has to be 
implemented is to transfer models from one peer to 
another and to control the process. The transfer of 
modules requires each model to be able to serialise itself. 
 
It will also be an interesting exercise to evaluate the use 
of more HLA rules and RTI services in the distributed 
TCP-based architecture. This will result in a peer-to-peer 
instead of client-server architecture as used in the HLA 
RTI. The pros and cons for the two architectures can then 
be compared with experiments. 
 
11. Conclusion 
 
Some lessons learned while implementing several 
versions of a GBADS simulation have been presented. 
The different versions ranged from single applications to 
fully distributed simulations employing the latest IPC 
frameworks. The most important lesson learned is that a 
good architecture does not need to be expensive. Well 
designed mechanisms provide adequate integration scope 
and a light-weight API reduces complexity and limits the 
breeding ground for software bugs. 
 
It should also be kept in mind that simulation systems 
tend to capture knowledge of subject experts (of the 
models) and systems engineers (of the “glue” that 
connects the models – not to be confused with the IPC). 
This implies that a simulation system that is delivered to 
an end-user is not the only impact made. It is the entire 
process of building the simulation that adds the most 
value. The simulation developers have to ask apparently 
trivial questions, and if models of real systems are used, 
they have to figure out how to interface the models with 



each other. As this process unfolds, both the developers 
and domain experts are educated in a structured way 
about the modelled system and a “body of knowledge” 
build up and maintained. Table 3 summarises the lessons 
learned with the development and application of the VGD 
series of simulations. 
 

Simulation Important Lessons Learned 
Pre-VGD Use the correct terminology (same as end-user) 

from the start. 
 Match real system as far as possible with 

simulated – interfaces, structure, etc. 
 Decide which systems levels are addressed with 

the simulation to determine fidelity level of 
models 

VGD1.0 Use behavioural modelling for higher systems 
levels to reduce processing requirements and 
data requirements 

 Use RAD when M&S goals are not clear 
VGD2.0 OIL simulation requires time-stepped mode 
 HLA compliance is not the same as HLA 

compatible (interoperability) 
 HLA interoperability only achieved when 

SOMs match 
VGD2.1 OIL simulation provides more flexibility than 

HBM 
 OIL simulation requires soft real-time 

execution 
 Batch-mode execution not trivial in HLA and 

gateway environment 
VGD3.0 Proprietary software: product lock-in, and 

expensive to extend 
VGD3.1 Lightweight IPC possible if architecture is not 

too generic 
 Peer-to-peer architectures offer performance 

advantages over client-server approaches. 

 
Table 3: Summary of Lessons Learned with VGD. 
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