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ABSTRACT The presence of missing data is problematic in most quantitative research studies. Water
distribution systems (WDSs) are not immune to this problem. In fact, missing data is an inherent feature
of a WDS. There are various techniques and methods to address missing data ranging from simply
deleting the data to using complex algorithms to impute missing data. This paper reviews the different
imputation options available from traditional methods (such as deletion and single imputation) to more
modern and advanced methods (such as multiple imputation, model-based procedures, and machine learning
techniques). The concept, application, and qualitative advantages and disadvantages of these methods are
discussed. In addition, a novel approach for selecting an applicable technique is presented. The approach is a
‘‘top-down bottom-up’’ two-prong approach for the selection of a data analysis and missing data technique.
The bottom-up approach facilitates the top-down selection of a suitable technique by analyzing the data and
narrowing down the selection options. As a use case, this paper also reviews techniques that are used to
impute missing data in WDSs.

INDEX TERMS Data imputation, deletion, machine-learning methods, missing data, model based proce-
dures, multiple imputation, single imputation, water distribution systems.

I. INTRODUCTION
Most scientific and research domains whether they be med-
ical, biological, psychological or climatic science [1]–[5]
observe missing data which can be problematic. Data impu-
tation is a key strategy that is used to reconstruct or substi-
tute missing data. Various techniques are mentioned in the
literature to impute data to find the most probable answer
for missing values in a dataset. These techniques range from
traditional methods (such as deletion and single imputation)
to more modern and advanced methods such as multiple
imputation, model-based procedures and machine learning
techniques.

García-Laencina et al. [6] analysed and compared vari-
ous pattern classification techniques to handle missing data.
They presented a top-down pattern classification flowchart,
which categorised the various missing data approaches into
four groups. They emphasized machine-based solutions
and highlighted the advantages and disadvantages thereof.
Subsequently, Nishanth and Ravi [7] proposed a machine
learning technique (probabilistic neural network) which

produced efficient results when compared to mean,
K-Nearest Neighbour (K-NN), Hot Deck (HD) and a deci-
sion tree technique. Gómez-Carracedo et al. [8] studied air
quality data and found that multiple imputation produced
more variable results when compared to single imputa-
tion methods. Galán et al. [9] used genetic algorithms to
impute missing data in the knowledge and skills domain.
Wang and Chaib-draa [10] used an online Bayesian frame-
work incorporating Gaussian Process Regression for surface
temperature analysis. The authors concluded that their pro-
posed technique outperforms other Gaussian process tech-
niques such as sparse pseudo-input Gaussian process (SPGP)
and sparse spectrum Gaussian process (SSGP). Finch [11]
compared the performance of three techniques for imput-
ing missing data for surveys and questionnaires. Multiple
Imputation for continuous data (MI), multiple imputation for
categorical data (MIC) and stochastic regression imputation
(SRI) were compared. It was found that MI or SRI produced
less bias than MIC and hence was preferred to MIC. Ear-
lier, Blend and Marwala [12] compared an auto-associative
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neural network (AANN), a neuro-fuzzy (NF) system and
a hybrid AANN/NF system in their analysis of Human
Immunodeficiency Virus (HIV) and Acquired Immunodefi-
ciency Syndrome (AIDS) data. It was found that the AANN
outperformed the NF system by an average of approxi-
mately 6%, while the hybrid method was approximately 16%
more accurate than the standalone AANN or NF systems.
However; the hybrid system was 50% less computationally
efficient. Dauwels et al. [13] presented an innovative tensor-
based imputation method based on canonical polyadic (CP)
decomposition which they compared to mean imputation,
regression imputation and K-NN. Their proposed method
was assessed with medical questionnaires and the results
showed that the imputation accuracy improved. Tensor based
imputation methods are also widely used methods in traffic
information systems and road sciences and is well docu-
mented in literature [14]–[16]. Tensor decomposition tech-
niques are also used in psychology, chemometrics, signal
processing, bioinformatics, neuroscience, web mining and
computer vision [17]

This paper presents a ‘‘top-down bottom-up’’ two-prong
approach for data analysis and missing data technique selec-
tion as shown in the flowchart in Section II. The bottom-up
approach facilitates the top-down selection of a suitable tech-
nique by analyzing the data and narrowing down the options.
In addition, this paper also reviews the various imputation
methods in both the traditional and modern categories and
qualitatively compares them against each other. Furthermore,
the underpinning concept, application, advantages and disad-
vantages are highlighted. Lastly, data imputation in a WDS is
discussed as a use case.

II. CATEGORICAL HANDLING OF MISSING DATA
Before categorically classifying data, it is essential to under-
stand the different types of missing data and their mecha-
nisms [4]. Missing data can generally be attributed to one
of three missing data mechanisms [4], [18]: Data that is
missing completely at random (MCAR), data that is missing
at random (MAR) and/or data that is missing not at random
(MNAR). Data that are MCAR and MAR are sometimes
referred to as ignorable missing data whereas MNAR data is
referred to as non-ignorable missing data [19].
• Missing Completely At Random (MCAR): For this
mechanism there is an independent relationship between
the missing value and other variables in the dataset.
Typical examples of MCAR include: customer informa-
tion (such as gender or contact numbers) missing from
the database, when a tube containing a blood sample
is accidently dropped and breaks [1] or when question-
naires are unintentionally lost. Human error due to man-
ual data entry procedures in water distribution networks,
incorrect water reading measurements, instrumentation
error, changes in experimental design etc. are some of
the possible reasons for data to be deemed MCAR. The
direct result is that the data are completely missing i.e.
the probability that an observation is not related to any

other variable [1]. Statistically, the MCAR mechanism
can be expressed as [20]:

f (M |Y , φ) = f (M |φ) for all Y , φ (1)

where Y and M denote a vector of observed data values
and a vector of missingness indicators respectively. φ is
an unknown parameter and the function f denotes the
conditional probability distribution.

• Missing At Random (MAR): For this mechanism there
is a dependent relationship between the missing value
and other variables in the dataset but the probability
that a value is missing depends on observed values of
other variables and not on the other missing values of the
target variable. An example of MAR is when the income
level of a client is missing but it can be estimated from
other variables like the client’s profession, experience
and qualification. TheMARmechanism can be formally
expressed as [19] and [21]:

f (M |Y , φ) = f (M |Yobs, φ) for all Ymis, φ (2)

where Yobs and Ymis are the observed and missing com-
ponents of target variable Y . The unknown parameter φ
can be estimated by relating Yobs with other explanatory
variables.

• MissingNotAtRandom (MNAR): For this mechanism
there is a direct dependant relationship between the
values being missing and the nature of the variable. For
instance, if citizens of a country opt not participate in
a survey, then MNAR occurs. Mathematically, MNAR
can be expressed as [20]:

f (M ,Y |θ, φ) = f (Y |θ )f (M |Y , φ) (3)

where θ is a parameter of the distribution of Y that is
estimated from the observed data and φ is a parameter
that characterises the distribution of the missingness
pattern.

In general, missing data can be classified into two groups:
traditional data analysis and modern data analysis. Fig. 1 pro-
vides a selection diagram for handling missing data.
Fig. 1 describes a two-prong angle for assisting in selecting

an appropriate technique to analyse and impute the missing
data. This two-prong angle consists of a top-down approach,
which classifies the various available techniques into the
traditional and modern types. The traditional types are further
subdivided into deletion and single imputation techniques.
The modern types are subdivided into multiple imputation,
model based techniques and machine based learning tech-
niques. Each of thesemethods is discussed in detail in the next
sections. The bottom-up approach simplifies the top-down
selection for a suitable technique by narrowing down the
options. This is achieved by numerically analyzing the data
and determining the governing mechanism pertaining to its
missingness (MCAR,MAR orMNAR) and the percentage of
missing data. The percentage missing data is case dependant
and a detailed analysis considering factors such as logical

63280 VOLUME 6, 2018



M. S. Osman et al.: Survey on Data Imputation Techniques: WDS as a Use Case

FIGURE 1. Selection diagram to assist in selecting an appropriate handling techniques (derived from [4]).

and structural interdependencies, distribution variability and
missing data patterns will be required to determine the correct
imputation technique. In some statistical software (such as
SPSS), 5% is used as the distinguishing point [22]. For exam-
ple, if less than 5% of data is missing and theMCAR orMAR
mechanisms are applicable, the missing data can potentially
be omitted or a suitable single imputation technique can be
used to fill in the missing data. On the other hand for the
same scenario (i.e. MCAR or MAR missingness) if >5%
of the data is missing, advanced techniques can be used to
fill the missing data. If the missing data is MNAR and the
missingness is due to selection bias, correction factors such
as the Heckman correction can be used [23].

III. TRADITIONAL DATA ANALYSIS TECHNIQUES
Traditional data analysis techniques comprise of a number
of techniques that can be used to handle missing data. It is
a useful tool when a small percentage of the data (<5%)
is missing [24]. The most common traditional techniques
are deletion (listwise and pairwise) and single imputation.
Single imputation is a process that involves analyzing the data
together with other variables with the intention of finding the
most likely value that can be placed in the data. Single impu-
tation does not involve rigorous computation and provides
the dataset with a specific number in place of the missing

data. There are several types of single imputation techniques
available.

A. DELETION
Deletion techniques are the easiest to execute and are
the default choice for many statistical software packages.
As the name suggests, the technique simply deletes the cases
that contain missing data. There are two common deletion
techniques: listwise deletion and pairwise deletion. Listwise
deletion, also called complete-case analysis, involves the
omission of all the data from an analysis/scenario that con-
tains missing values. Listwise deletion assumes the MCAR
mechanism to classify the data. The disadvantage of this tech-
nique is that it may introduce serious bias especially when
there are a large number of missing values and if the original
data set is too small [25]. Pairwise deletion (also referred to as
available case analysis), on the other hand, is a more selective
method, which determines the extent ofmissing data on a case
by case basis. The cases with high levels of missing data are
deleted. This deletion technique tries to minimise data loss
and is effective when the overall sample size is small or when
the number of missing data observations are large [25].

Similar to listwise deletion, pairwise deletion also assumes
the MCAR mechanism.

VOLUME 6, 2018 63281



M. S. Osman et al.: Survey on Data Imputation Techniques: WDS as a Use Case

Despite deletion techniques being a simple and easy-to-
use, this traditional method is not a popular choice amongst
researchers and has been branded ‘‘amongst the worst meth-
ods for practical use’’ as quoted by [4].

B. SINGLE IMPUTATION TECHNIQUES
1) MEAN IMPUTATION
This imputation technique involves replacing the miss-
ing value with the arithmetic mean (x̄) of all the other
cases [26]:

x̄ =
1
n

∑n

i=1
xi (4)

The advantage of this method is that it is fairly simple to
use. The disadvantage of this technique is that the results may
be distorted due to unevenness in the sample distribution. This
technique is used for small data samples and is usually used
in surveys. It is usually not used for rigorous multivariate data
systems.

Mean /median imputation is a tempting technique but is
not recommended by statisticians for the abovementioned
reasons. Gómez-Carracedo et al. [8] considered a ‘‘modified
median’’ approach to improve the disadvantages of the tradi-
tional mean method.

2) HOT-DECK AND COLD-DECK IMPUTATION
Hot-Deck (HD) imputation is a statistical method that is a
popular choice and is the most widely used data imputation
method in survey research [19]. Principally, the hot deck tech-
nique involves finding a similar or closely matched dataset
[6], [27]. Themean of this similarmatch is then computed and
the upper and lower bounds are determined. The advantage of
this technique is that it is simple but it can be computationally
inefficient. A further shortcoming of this technique is that the
missing data estimate is based on a single dataset resulting
in underestimates of the standard errors and variability is
underestimated [28].

There are numerous different HD configurations such
as the Last Observation Carried Forward (LOCF) method.
In this method, the missing value is imputed from the last
observation in the dataset. This method makes the unre-
alistic assumption that there is no change at all since the
last measured observation [29]. Other hot-deck imputation
approaches are the distance function approach and the pattern
matching approach. The distance function approach, also
called the nearest neighbour approach, imputes the missing
value with the smallest squared distance to the case with the
missing value. The matching pattern method is more com-
mon. In this technique, the sample is separated into separate
similar groups and the imputed value for the missing case is
randomly drawn from values in the same group [30].

Cold-Deck imputation is principally similar to hot-deck
imputation. However, the difference is that the data source
must be different from the current data set [6], [31].

3) REGRESSION IMPUTATION
Regression imputation is a statistical tool used to estimate
the relationship between an input and an output or between
a data point and its associated variable. It is usually presented
as a function in the form y = f (x) where y is the output
described as a function of an input x. The least-squares fit
method is a form of the commonly known linear regression.
In its simplest case it is termed simple linear regression and
has the form of y = f (x) = mx + c, where m is the gradient
and c describes the intercept. The function f (x) may also have
other forms such as multiple linear, quadratic, cubic as well
as non-polynomial.

A drawback of regression imputation is that bias is intro-
duced as the technique fails to account for data variability [4].
In other words, the problem is that the imputed data does
not have an error term included in the estimation. There is
therefore a fit perfectly along the regression line without
any residual variance. The chosen regression model predicts
the most likely value of missing data but does not supply
any information pertaining to the uncertainty related to the
imputed value.

Stochastic regression imputation is a modified version of
regression imputation, which attempts to correct the absence
of an error term. As described above in regression imputation
a regression equation is generated to predict the missing
values. However, an error term is generated and added to
introduce variance to the missing value.

IV. MODERN DATA ANALYSIS TECHNIQUES
The traditional methods work well for small amounts of
missing data. When there is a considerable (>5%) amount of
missing data, more sophisticated state of the art techniques
and models are required [24].

A. MULTIPLE IMPUTATION (MI)
Multiple imputation seeks to solve the above mentioned
problem. Multiple imputation like single imputation is a sta-
tistical technique for analyzing incomplete data sets which
have some missing values. However; multiple imputation
involves three phases [32]: imputation, analysis and pooling.
Fig. 2 [33] visually illustrates these steps.

Imputation phase: The missing data values from incom-
plete data sets are filled inm times (m= 5 in Fig. 2). This step
results ism complete different data sets. Typically 20 data sets
is a good rule of thumb [34]. For this phase single imputation
techniques can be used to impute one or more sets. Various
algorithms have also been proposed, Baraldi and Enders [4]
mentions that the data augmentation procedure is arguably the
most widely-used approach. A two-step iterative algorithm
is used in this approach. The first step is an imputation step
(I-step), which is identical to stochastic regression imputa-
tion, which is used to estimate the missing data. Thereafter,
the posterior step (P-step) is carried out. In this step Bayesian
estimation principles [35], [36] are used to generate new
estimates of the means and the covariances. Conceptually,
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FIGURE 2. A schematic illustration of multiple imputation [33] with m = 5.

the means and the covariances in the P-step differ from the
I-step. Using these updated values, the process is repeated
several times and multiple copies of the data set are obtained
each containing a unique set of estimates of the missing
values.

Analysis phase: Each of the m complete data sets are
analysed using standard imputation procedures that would
have been used in complete data sets [4]. The standard error
is also computed during this phase. This step results in m
analyses with m sets of standard errors.
Pooling: Combine or integrate them analyses and standard

errors into a final result. The estimates and standard errors of
these analyses are usually averaged into a single set of values.

The following equations can be used to calculate the stan-
dard errors as alluded to in the pooling phase:

W =

∑
(SE t)2

m
(5)

B =

∑(
θ̂t − θ̄

)2
m− 1

(6)

SE =

√
W + B+

B
m

(7)

In the above equations, SE is for standard error, t refers to
a particular imputed dataset, m the total number of imputed
datasets. W is the arithmetic average, B the variability of
the estimates across the dataset, θ̄ and θ̂t are the average
parameter estimate and the parameter estimate for a particular
dataset respectively.

The greatest disadvantage of multiple imputation is that it
is complex in nature. Its complexity not only involves running
the analyses, but also combining the results and using the data
correctly. On the other hand, multiple imputation introduces
the variability in order to find a range of possible responses.

B. MODEL–BASED PROCEDURES
1) EXPECTATION–MAXIMIZATION (EM) ALGORITHM
An EM algorithm is an iterative method used to find
maximum likelihood estimates (MLE) of variables in
statistical models. It is one of the most used and versatile
techniques because there are different EM algorithms for dif-
ferent applications [24]. The EM iteration alternates between
performing an expectation (E) step and a maximization (M)
step. In the E-step the missing data is firstly estimated from
the observed data and the current estimate model parameters.
In the M-step, the likelihood function is maximized under
the assumption that the missing data are known [6], [37].
Depending on the application, each version of the EM algo-
rithm produces a different solution for the raw data that is
entered. Themaximum likelihood estimate (MLE) function is
mostly coupled to the EM algorithm.Mathematically, the EM
algorithm can be expressed as [6]:

L (θ,X ,Z ) = p (θ,X ,Z ) =
∑J

j=1
p (θ,Z |θ) (8)

where X is the known observed data, Z the missing values,
θ the vectors for the unknown parameters, L the likelihood
function and p the probability function. The E –step in the
EM algorithm can expressed as [6]:

Q (θ |θs) = E [Lc (θ |X ,Z ) |X , θs] (9)

and the M-step is shown as [6]:

θs+1 = argmaxQ (θ | θs) (10)

where Q is the iterative procedure used in the E-step and
M-step, whereas Lc is defined as the ‘complete-data’ log
likelihood and is defined by the following mathematical
function [6]:

Lc (θ |X ,Z ) =
∑N

n=1

∑J

j=1
znjlogp

(
xn|zn, θj

)
P
(
zn, θj

)
(11)

For the E-step, data is entered individually and if a value
is present, the sums, sums of squares, and sums of cross
products are augmented. If the value is missing, the current
best guess for that value is used instead. The best guess, with
all other variables in the model used as predictors, is based
on regression-based single imputation [24]. In the M-step,
a similar approach is taken for the iteration. The parameters
(variances, covariances, and means) are calculated based on
the current values of the sums, sums of squares, and sums
of cross-products. Depending on the covariance matrix at
this iteration, new regression equations are calculated for
each variable. These regression equations are then used to re-
iterate the best guess for missing values during the E-step of
the next iteration. The process continues until the covariance
matrix stop changing or until the change is considered negli-
gible and EM is said to have converged [24].
For MLE, the parameter estimates (means, variances, and

covariances) from the EM algorithm are excellent. However,
a downside to the EM algorithm is that it does not provide
standard errors as an automatic part of the process.
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C. MACHINE LEARNING METHODS
Machine learning methods are sophisticated and modern pro-
cedures that are derived from the study of pattern recognition
and computational learning theory [38]. It involves the cre-
ation and construction of algorithms that make predictions on
data that is missing. Machine learning generally consists of
a predictive model that estimates the missing data based on
information available in the dataset [39]. Some of the most
common machine learning techniques are mentioned below.

1) GAUSSIAN PROCESS REGRESSION
As described in the subsequent section, regression analysis
is a statistical tool used to estimate the relationship between
an input and an output. Gaussian Process Regression (GPR)
on the other hand is a more refined approach than the con-
ventional regression methods described above. It is a pow-
erful technique allowing complex data to be analyzed and
described [40], [41].

The GPR mathematical regression process is expressed as
covariance matrices K and K∗ [42].

K =


k (x1, x1) k (x1, x2) · · · k (x1, xn)
k (x2, x1) k (x2, x2) · · · k (x2, xn)

...
...

. . .
...

k (xn, x1) k (xn, x2) · · · k (xn, xn)

 (12)

K∗ = [k (x∗, x1) k (x∗, x2) . . . .k (x∗, xn)] (13)

The key assumption is that the data can be expressed as a
multivariate Gaussian distribution [42]:[

y
y∗

]
∼

(
0,
[
K KT

∗

K∗ K∗∗

])
(14)

The point of interest and the variance can be calculated
from [42]:

K∗∗ = k (x∗, x∗) (15)

The co-variance function (k) can be determined from the
popular squared exponential [40]:

k = σ 2
f exp

[
− (d)2

2l2

]
(16)

where d =
∣∣x − x ′∣∣ is the absolute distance between input

samples, l is the length parameter and σf is the maximum
allowable covariance [40].

According to [41] and [42] the Matèrn function is a better
alternative and provides better flexibility:

km =
h2 (2)1−ν Kν

√
2νd

γ (ν)w

(√
2νd
w

)ν
(17)

where Kν is the modified Bessel function, h and w are the
height and width respectively, γ the Gamma function defined
by [43]. ν is the smoothing parameter and d the absolute
distance as defined above.

Depending on the complexity of the missing data, [40]
points out two sophisticated covariance functions:

k = σ 2
f 1exp

[
− (d)2

2l21

]
+ σ 2

f 2exp

[
− (d)2

2l22

]
+ σ 2

n δ (18)

k = σ 2
f 1exp

[
− (d)2

2l21

]
+ exp

{
−2sin2 [φπd]

}
+ σ 2

n δ (19)

with δ defined as the Kronecker delta function and φ is the
frequency function [40].

2) PRINCIPAL COMPONENT ANALYSIS (PCA)
Principal component analysis (PCA) is a statistical data anal-
ysis technique that aims to reduce the dimensionality of a
data set, which consists of a large number of variables that
are interrelated [44], [45]. However, the technique looks to
retain the maximum amount of variance present in the data
set. This is achieved by using an orthogonal transformation to
derive a new set of variables, which are termed the principal
components. These are uncorrelated variables from a set of
observations of possibly correlated variables. The principal
components are ordered so that the first few retain most of
the variation present in all of the original variables [45].

Ilin and Raiko [44] have extensively reviewed the use of
PCA in the presence of missing values and discussed various
approaches to it. They clearly stipulated that the simplicity
of PCA is lost the moment missing values appear. Biasness
is introduced and the covariance matrix of the data becomes
difficult and thus the solution by eigen-decomposition cannot
be derived directly [44]. Furthermore, in the PCA algorithm
convergence to a unique solution cannot always be assured
even for the simplest models. The presence of missing values
also creates the potential of overfitting and thus there is a
need for some form of regularization. Regularization can be
performed better using probabilistic models.

Ilin and Raiko [44] introduced a novel algorithm that
includes PCA and variation Bayesian learning. Their
approach attempted to address the overfitting problem but
introduced uncertainty.

PCA is mostly used as a tool in exploratory data mining
analysis and can be done by eigenvalue decomposition of a
matrix [46], [47]. It is also closely related to factor analysis.
PCA has also been used in canonical correlation analysis
(CCA). The orthogonal feature of PCA optimally describes
the variance in a single dataset while CCA defines coordinate
systems that optimally describe the cross-covariance between
two datasets [48].

3) K-NEAREST NEIGHBOUR (KNN) ALGORITHM
The KNN algorithm is amongst the simplest of all machine-
learning algorithms [39]. This technique is a popular hot deck
method, in which the missing data is substituted with similar
data from the nearest neighbour. The nearest, most similar,
neighbour ‘‘donors’’ are found and classified by minimizing
a distance function [49]. The distance function is one of the
key aspects of the KNN method. Mathematically, it can be
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accurately defined by the heterogeneous Euclidean overlap
metric (HEOM) as described by [49]:

D (xa, xb) =

√∑n

i=1
Di (xia, xib)2 (20)

where Di (xia, xib) is the distance between the input vec-
tors xia and xib on the i-th attribute. Batista and Monard [49]
compared the KNN method with two other decision tree
machine algorithms and found that KNN was suitable for
large missing data sets. They also found it to outperform the
other two algorithms. Troyanskaya et al. [2] compared KNN
with mean imputation in the genetic research domain and
found it to be a far better imputation technique. knn does have
one disadvantage in that it looks for similar cases only and this
can be associated with a high cost [6].

4) DECISION TREES (DT)
Decision tree machine learning is a technique that uses a deci-
sion tree as a predictive model to map data and observations
(represented in the branches of a tree). The aim is to arrive
at conclusions about the target value (represented in the tree
leaves) [50], [51]. The decision tree technique is one of the
most widely used supervised learning methods.

The major advantage to the use of decision trees is that the
data can be visualized and it also allows for the data structure
to be easily understood. Typically, the aim is to find the
optimal decision tree by minimizing the standard error [52].

There are three well-known decision tree methods namely
Iterative Dichotomiser (ID3), C4.5, and CN2 [6], [50], [53].
ID3 is a basic top–down decision tree algorithm that has
proved to be a popular and effective method. C4.5 is an
extension of ID3 and uses a probabilistic approach to handle
missing values. The CN2 is an algorithm that uses a simple
imputation method to treat missing data. Every missing value
is filled in with its attribute most common known value,
before computing the entropy measure. Entropy is defined as
the probabilistic measure of uncertainty that exists in a data
sample [54].

5) NEURAL NETWORKS (NN)
A neural network (NN) is a learning algorithm that mim-
ics the structure and functional aspects of biological neural
networks. It is structured in terms of interconnected groups
of ‘‘artificial neurons’’, processing information using a con-
nected computational approach [55].

Most neural networks are non-linear modern statistical
tools that are usually used to model complex relationships
between inputs and outputs and to find patterns in data. They
have various variations and derivatives as described below.
Feedforward and Feedback Neural Networks: A feedfor-

ward neutral network is a NN that is synonymous with feed-
forward control loops and systems. Feedforward systems are
not error-based, instead they are knowledge-based system
where the knowledge of the process is used to infer the
probable missing values. It consists of neurons, which are
organized in layers. Each neuron in a layer is linked with all

FIGURE 3. Schematic layout of the feedforward network. Deduced
from [56].

the other neurons in the previous layer as shown in Fig. 3 [56].
Data enters the network at the input point and passes through
layer by layer until an output is achieved. The Probabilistic
Neural Network (PNN) [57] is an example of a feed–forward
neural network configuration. PNN is an implementation of a
statistical algorithm in which the neurons are organized into a
four layer feed forward network consisting of an input layer,
a pattern layer, a summation layer and an output layer.

Another form of neural network is the feedback neural
network, an example of which is the recurrent neural network
(RNN). It is an architecture that is similar to PNN however,
unlike PNN, it operates on feedback connections [6]. The
missing values are calculated using single imputation. These
values are iteratively updated using feedback connections
similar to feedback control systems. Feedback control sys-
tems and loops are error based where the aim is to minimise
the error. In the last iteration, the sum of a set of recurrent
links from the preceding steps (hidden and missing) is iter-
ated.

A third type of NN is an auto-associative neural network
(AANN). In this NN type, the network first looks at and learns
from complete cases before replicating for the case where
missing data is present. Unlike PNN and RNN, there is no
summation step; in fact the missing values are replaced by
the network outputs [58], [59].

Themain disadvantagewith NN is that it may requiremany
neurons that can result in multiple combinations.

6) TENSOR BASED TECHNIQUES
Tensors are multi-dimensional arrays that can be used to
represent and store multi-dimensional data [60]. A tensor can
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TABLE 1. Advantages and disadvantages of some of the traditional data imputation techniques.

TABLE 2. Advantages and disadvantages of some of the modern data imputation techniques.

be first-order in which case it would be a vector. It can also be
second-order which would make it a matrix. Tensors of order
three or higher are referred to as higher-order tensors [61].
Mathematically, tensors (χ ) can be expressed as:

χεRD1xD2x···xDN (21)

with N defined as the tensor order and Di is the size of the
ith dimension [62]. Furthermore, the tensor size is defined as:

size (χ) = D1xD2x · · · xDN (22)

Canonical polyadic (CP) decomposition is commonly used
to express a tensor as a minimum length linear combination
of rank-1 tensors [61]. Using CP decomposition the tensor χ
is factorized and defined as [62]:

χ = υ1 + υ2 + · · · + υR =
∑R

r=1
υr (23)

where R is a positive integer for r = 1, . . . ,R [61].
The Tucker decomposition technique, which is a form of

PCA, is also amethod that can be used to decompose a higher-
order tensor. There are also many other tensor decomposition
techniques and methods that are available in the literature.
Some of these are: INDSCAL, PARAFAC2, CANDELINC,
DEDICOM, and PARATUCK2, as well as nonnegative vari-
ants of all of the above [13], [60], [61], [63], [64].

V. COMPARING THE VARIOUS TECHNIQUES
The traditional and modern techniques discussed in
the preceding sections are summarised in Table 1 and
Table 2 below. The Tables provide a brief description
and some high level advantages and disadvantages are
highlighted.

Based on the description in Sections III and IV and
Tables 1 and 2, deletion appears to be the simplest technique
whereasMI, GPR and EMaremore complex and challenging.
Furthermore; deletion, mean imputation and hot deck impu-
tation are mathematically easier to understand because in the
former missingness is ignored by sub-setting the data and
drawing inferences for a sub-population, while in the latter
methods missing values are simply replaced by summary
statistics. The caveat in using these methods is that they
can lead to misleading reduction in population variance and
bias. MLE, GPR and model-based MI methods are more
complex mathematically because they require specification
of the likelihood and/or the posterior distribution from which
inferences, namely the predicted values and the associated
measures of uncertainty, for the missing data, can be drawn.
This means distributional assumptions are needed and in the
multivariate data setting, specification of joint distributions
would be required.
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VI. PERFORMANCE EVALUATION OF DATA
IMPUTATION TECHNIQUES
Irrespective of the imputation technique chosen, the imputed
value should be as close as possible to the true value. Some
of the most common ways of measuring performance is to
minimize the root mean-square error (RMSE) or the nor-
malized root mean-square error (NRMSE) [26]. Another
approach can be from predictive accuracy (PAC) described
by the Pearson correlation [6]. The equations describing these
three performance-measuring techniques are given below.
The closer the PAC is to 1, the better the imputation technique.

RMSE =

√∑N
n=1

(
Yobs − Yimp

)2
N

(24)

NRMSE =

√√√√∑N
n=1

(
Yobs−µ
ϕ
−

Yimp−µ
ϕ

)2
N

(25)

PAC =

∑N
n=1

(
Yimp,n − Ȳimp

) (
Yobs,n − Ȳobs

)√∑N
n=1

(
Yimp,n − Ȳimp

)2 (Yobs,n − Ȳobs)2 (26)

where Yobs is the observed value, Yimp is the imputed value,
Yobs,n is the n-th value of Yobs, Yimp,n is the n-th value of
Yimp, Ȳimp and Ȳobs are the mean values of Yobs and Yimp
respectively.

Wang et al. [65] discussed using the Nash-Sutcliffe effi-
ciency (NSE), the mean prediction intervals (MPI) and the
prediction interval coverage probability (PICP) to evaluate
the accuracy of data imputation methods. They concluded
that the MPI and PICP are more reliable.

VII. DATA IMPUTATION IN A WDS
Water distribution systems (WDSs) are no exception and
also suffer from problems surfacing from inherent missing
data. WDS and water infrastructure are increasingly being
saturated with advanced sensing technologies [66], [67] in an
effort to collect a growing volume of data aimed at support-
ing operational and investment decisions [68]. These sensors
monitor system characteristics, i.e. flows, pressures andwater
quality, for example in pipes. The collected data can be ana-
lyzed by various techniques and systems to detect abnormal
events. These include leakage detection and localisation [69].
The data can also be used to improve the efficiency of the
WDS, such as pressure control systems [70]–[72]. For aWDS
the presence of missing sensor data arises from various cases
such as mishandling of data and samples, low signal-to-noise
ratio, measurement errors due to aging instrumentation, and
infrastructure as well as sensor non-response [73], [74].

Correct data acquisition is becoming increasingly impor-
tant in the analysis of WDSs. This data provides the distribu-
tion system’s characteristics, i.e. flow rates, pressures, veloc-
ities and sometimes water quality, as well as flow regimes
(laminar, turbulent or transition) in the piping network. The
presence of missing values in WDSs data due to various
reasons severely hampers the use of the data. Poor metering,
poor data acquisition and incorrect data storage techniques

often cause missing data. Sometimes the data becomes
faulty or corrupt and is unusable. Furthermore, missing data
poses challenges [7] because: (1) a substantial amount of bias
can be introduced into the system, (2) handling and analysis
of the data can be more strenuous, and (3) reductions in
efficiency enters the analysis.

In WDSs, the continuous flow of information pertaining
to the system’s characteristics and health is vital. Continuous
information flow needs to be maintained for the following
five reasons: 1) to ensure the effectiveness and efficiency
of the WDS, 2) so that necessary interventions can take
place upfront of a potential failure, 3) to ensure continu-
ous supply of water to the end user, 4) to minimize water
loss through leakage and pipe rupture, and 5) energy loss
reduction via optimisation of WDS functionality. Energy loss
reduction can be obtained via pressure minimization and
pump optimisation.

Similar to other scientific and technological domains,
the presence of missing values causes a setback and needs
to be adequately addressed. However, for the water andWDS
domain there appears to be limited literature available.

A. THE TWO-PHASE MODEL APPROACH
Quevedo et al. [75] employed a two-phase approach to esti-
mate replacement values for invalid and missing data. The
first phase is a time series model based on daily aggregated
flows that validates the data and the second is a 10-minute
flow model (based on a pattern derived from historical data)
that is used to replace the values of invalid or missing data.

The advantage of this approach is that it can handle large
amounts of data. However, the disadvantage is that the model
can only be validated and reconstructed using its own data,
and for these large amounts of historical data (from flow
meter readings) are required to establish consumer demand
patterns.

B. THE COMBINED MODEL APPROACH
Barrela et al. [76] presented a new method for imputing
missing values. Their method comprised of a combination
of forecast and backcast values generated by the TBATS
and ARIMA models. The TBATS model is an acronym
for trigonometric, Box–Cox transformation, ARMA errors,
trend, and seasonal components. Barrela et al. [76] carried
out extensive tests to evaluate the suitability and robustness
of their proposed method. Their results are effective and the
method is advantageous for offline data reconstruction, when
compared to a simple forecast or backcast approach.

An advantage of this method is that it can be used on both
online and offline data. However, Barrela et al. [76] noted that
the method needs to be tested on a larger data set to better
understand its adaptability.

C. THE LEAST SQUARES–KALMAN FILTER APPROACH
Bennis et al. [77] worked on improving the least squares
method for estimating missing data. They mention the advan-
tage of the standard least-squares method is that it is simple
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and offers a reasonable solution. The disadvantage is that it
can be biased and can overestimate or underestimate themiss-
ing value. They also found that peak flow in a WDS is esti-
mated with poor accuracy when the least squares technique
is used. Bennis et al. [77] used a combination of the Kalman
filtering technique and the least squares method to improve
the accuracy. Bennis et al. [77] identified the critical switch
over point between the performance of the two techniques.

D. THE LEAST SQUARES–KALMAN FILTER APPROACH
The real-time dynamic hydraulicmodel (DHM) is an example
of a non-static hydraulic model (see Fig. 4), which can be
used for potable water loss reduction. It can also be used
for planning purposes and can also be retrofitted to improve
existing water networks [78], [79]. Real-time data will be
fed to the dynamic model, which in turn will evaluate the
network’s current conditions and automatically sends control
signals to various network components. This adjusts theWDS
performance and makes it more efficient. Such adjustment
includes continuing calibration of the model, which obeys
well-established relations between its sensitivities of various
model state parameters [80]. The DHM consists of three
major components: dynamic hydraulic model, smart water
network and active network management. Data imputation
is an important yet critical in-built feature of the dynamic
hydraulic model, which addresses the need for correct real
data.

FIGURE 4. Block diagram of the DHM [79].

E. THE VIRTUAL SENSORS CONCEPT
The virtual sensors concept for monitoring water distri-
bution systems is a new approach that is proposed by
Goldsmith et al. [42] to impute missing data. In this approach,
as shown in Fig. 5, permanent and temporary wireless sensors
are deployed in the WDS. The permanent sensors provide
on-line data on a continuous basis that can be integrated into
the hydraulic model component of the DHM. The temporary
sensors act as virtual sensors and will be deployed for short
periods (7-10 days) at optimum locations in theWDS that are
strategically chosen. The virtual sensors will then be removed
and their accumulated data will be compared and correlated
against the data collected from the permanent sensors [79].

The Virtual Sensor approach utilises the Gaussian Process
Regression (described above in section 4.3.1) data imputation

FIGURE 5. The virtual sensor concept [34].

technique to correlate the two datasets i.e. the dataset col-
lected from the permanent sensors and the dataset collected
from the temporary virtual sensors. This technique collates
and combines historical data and spatial correlations between
the datasets and predicts missing data using the data provided
by the WDSs permanent sensors. In this way, the data inputs
to the model are increased without having to increase the
sensor count in the WDS.

VIII. RESEARCH GAPS AND FUTURE WORK
Most of the imputation techniques available in literature
address missing data in most scientific research areas.
However, there are some research gaps and future work that
have been identified:
• The use of Monte Carlo-Markov chain (MCMC) simu-
lations for error optimisation [12].

• Establishing a distribution pattern before considering
random missing value techniques [81].

• Further methodological research into the hot deck
method such as improved methods in sourcing donor
pools as well as improvedmethods to assess the trade-off
between the quantity and quality of the donor pool [82].

• More work is required to better understand the differ-
ences between the MI, MIC and SRI methods. These
techniques are fairly similar to each other and should be
compared to other statistical methods [11].

The traditional and modern imputation techniques men-
tioned in the preceding sections of this paper are rarely used
in WDSs. Hence, a glaring research gap in this scientific area
is evident concerning how these traditional andmodern impu-
tation techniques can be used in WDSs; as well as answering
the question on how do these techniques compare, align
and correlate to the common WDS imputation techniques
(section VII).

Goldsmith et al. [42] is a rare case where the machine
learning GPR technique is used as a data imputation tech-
nique for WDSs. Goldsmith et al. [42] points out that under-
standing and quantifying the implications of using multiple
virtual sensors in a WDS will need to be investigated in
future work. Furthermore, the techniques highlighted in this
paper suggest that the model-based EM-MLE option and the
more robust multiple imputation method could potentially
be better suited for the virtual sensor technique. It is rec-
ommended that these be analysed and explored for potential
application inWDSs. The combined model technique and the
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two-phase model approach employed in WDSs as described
in Section V needs to be tested and researched extensively to
better understand these techniques’ adaptability and to reduce
their reliance on their own data for reconstruction.

IX. CONCLUSION
This paper provides a novel approach to assist in narrowing
down and selecting an applicable technique. It also reviews
most of the data imputation techniques and methods available
and highlights their general real-world applications as well
as qualitatively compares their respective advantages and
disadvantages.

The various imputation techniques can be grouped into
two different types. The first type is the easiest way for
dealing with missing data: simply delete or impute using
single imputation. The main disadvantages of these methods
are the loss of information and statistical power. The second
type is to use some of the state of the art techniques. The
expectation-maximisation algorithm model-based approach
coupled with maximum likelihood estimation is the one
which stands out. Machine based learning is comprised of a
number of options such as neural networks, principal compo-
nent analysis, Gaussian processes, multiple imputation, etc.
Multiple imputation is rated the most robust and flexible
machine learning option but is also highly complex when it
comes to computational programming.

As a use case, this paper also looks at some of the tech-
niques used in WDSs. These imputation techniques starkly
differ from techniques used in other scientific research areas
and it appears that no correlation is evident between the two
sets of techniques.

In summary it is important to note that most imputation
solutions presented in this paper works well in many situa-
tions; but they are case specific. A detailed analysis such as
a data distribution analysis or a missing data pattern analysis
will be required to determine the correct imputation technique
to enhance the accuracy.
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