
Manuscript Details

Manuscript number FINEL_2017_791

Title Numerical verification of an efficient coupled SAFE-3D FE analysis for guided
wave ultrasound excitation

Article type Research Paper

Abstract

Numerical verification of a method to simulate piezoelectric transducers exciting infinite elastic waveguides is
presented. The method, referred to as SAFE-3D, combines a 3D finite element (FE) model of a transducer with a 2D
semi-analytical finite element (SAFE) model of the waveguide. An interpolation procedure is employed to transfer
forces and displacements between the SAFE and 3D FE models, and therefore nodes at the interface between the two
models are not required to be coincident. An Abaqus/Explicit analysis, employing a thermal equivalent piezoelectric
model and absorbing boundary conditions to prevent end reflections, is used to verify the accuracy of the SAFE-3D
model. A piezoelectric transducer attached to the web of a rail and driven with frequency content which excites a mode
cut-off is considered. A driving signal which does not contain cut-off frequencies is used for comparison. Time domain
displacement results computed using Abaqus/Explicit and SAFE-3D are compared directly. Several methods to
alleviate the numerical difficulties encountered by the SAFE-3D method, when transforming frequency domain
displacements to the time domain, close to cut-off frequencies are evaluated. It is shown that post-processing methods
have a similar effect to adding damping, but are less numerically expensive if iterative tuning of parameters is required.
A SAFE-based method to extract modal amplitudes from Abaqus/Explicit time domain results is used to evaluate the
accuracy of SAFE-3D in the frequency domain. Good agreement between the SAFE-3D method and results computed
using Abaqus/Explicit is achieved, despite the Abaqus/Explicit and SAFE-3D models predicting slightly different cut-off
frequencies.

Keywords Semi-analytical finite element (SAFE); Piezoelectric transducer model; Cut-off
frequency; Modal amplitude; Abaqus/Explicit; Rail

Corresponding Author Craig Long

Order of Authors Craig Long, Philip Loveday, Dineo Ramatlo, Eshwar Andhavarapu

Suggested reviewers Fabien Treyssede, Ray Kirby, ivan bartoli, Prabhu Rajagopal

Submission Files Included in this PDF

File Name [File Type]

Long_etal_2008_FINEL_highlights.pdf [Highlights]

Long_etal_2008_FINEL_abstract.pdf [Abstract]

Long_etal_2008_FINEL.pdf [Manuscript File]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.



Highlights

• Proposed SAFE-3D method, combining a 3D FE model of a piezoelec-
tric transducer with a 2D SAFE model of a waveguide, without requiring
coincident interface nodes.

• Numerical verification of the method by comparison with an Abaqus/Explicit
analysis of a transducer attached to a rail web

• Time domain comparison including evaluation of methods to deal with
resonant-like behaviour at cut-off frequencies

• Frequency domain comparison with modal amplitudes extracted from Abaqus/Explicit
displacement results
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Abstract

Numerical verification of a method to simulate piezoelectric transducers exciting
infinite elastic waveguides is presented. The method, referred to as SAFE-3D,
combines a 3D finite element (FE) model of a transducer with a 2D semi-
analytical finite element (SAFE) model of the waveguide. An interpolation
procedure is employed to transfer forces and displacements between the SAFE
and 3D FE models, and therefore nodes at the interface between the two models
are not required to be coincident. An Abaqus/Explicit analysis, employing a
thermal equivalent piezoelectric model and absorbing boundary conditions to
prevent end reflections, is used to verify the accuracy of the SAFE-3D model.
A piezoelectric transducer attached to the web of a rail and driven with fre-
quency content which excites a mode cut-off is considered. A driving signal
which does not contain cut-off frequencies is used for comparison. Time do-
main displacement results computed using Abaqus/Explicit and SAFE-3D are
compared directly. Several methods to alleviate the numerical difficulties en-
countered by the SAFE-3D method, when transforming frequency domain dis-
placements to the time domain, close to cut-off frequencies are evaluated. It is
shown that post-processing methods have a similar effect to adding damping,
but are less numerically expensive if iterative tuning of parameters is required.
A SAFE-based method to extract modal amplitudes from Abaqus/Explicit time
domain results is used to evaluate the accuracy of SAFE-3D in the frequency
domain. Good agreement between the SAFE-3D method and results computed
using Abaqus/Explicit is achieved, despite the Abaqus/Explicit and SAFE-3D
models predicting slightly different cut-off frequencies.
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Numerical verification of a method to simulate piezoelectric transducers ex-
citing infinite elastic waveguides is presented. The method, referred to as
SAFE-3D, combines a 3D finite element (FE) model of a transducer with
a 2D semi-analytical finite element (SAFE) model of the waveguide. An
interpolation procedure is employed to transfer forces and displacements be-
tween the SAFE and 3D FE models, and therefore nodes at the interface be-
tween the two models are not required to be coincident. An Abaqus/Explicit
analysis, employing a thermal equivalent piezoelectric model and absorbing
boundary conditions to prevent end reflections, is used to verify the accu-
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of a rail and driven with frequency content which excites a mode cut-off
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1. Introduction1

Guided wave ultrasound (GWU) is well suited for inspection and monitor-2

ing applications of elongated structures such as plates, rods, pipes and rails3

[1]. By controlling which propagating modes are excited, and with knowledge4

of the propagation characteristics, systems can be design so that propagating5

energy can be distributed across the entire cross-section of the waveguide or6

concentrated in specific locations, or in geometrical features, depending on7

what damage is being sought. Guided waves can propagate long distance,8

especially when compared to conventional ultrasonic inspection (up to kilo-9

meters in some cases [2]). Furthermore, GWU is known to propagate in10

structures that are covered, submerged or buried reducing preparation ef-11

forts and cost. These properties make GWU very attractive for monitoring12

and inspection applications since long distance inspections can be carried out13

from a single stationary source.14

In order to design a GWU-based non-destructive evaluation (NDE) sys-15

tem, it is necessary to understand how guided waves are excited, how they16

propagate (dispersion, attenuation, etc.), how they interact with discontinu-17

ities and damage (scattering) and finally how they are sensed (transduction).18

A conventional time-domain finite element analysis can be carried out to19

analyse the excitation, propagation, scattering and sensing. However, this20

type of analysis is generally very numerically expensive (if it is possible at21

all) especially at higher frequencies and over significant propagation distance,22

due to the fine spacial and temporal discretisation required. Furthermore,23

since the analysis is carried out in the time domain, modal information is24

not obtained directly and has to be extracted in some way. Due to these25

drawbacks, the semi-analytical finite element (SAFE) method [3, 4, 5] has26

become a popular analysis and design tool in the GWU community. The27

SAFE method naturally computes results based on their modal contribu-28

tions and responses at significant distances can be estimated efficiently since29

the propagation direction (in which the structure is elongated) is treated30

analytically.31

The focus of this paper is on the analysis of guided wave excitation.32

An efficient implementation of a method previously proposed by one of the33
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authors [6, 7] is presented, which allows several design iterations to be com-34

puted without having to solve the SAFE eigenvalue problem multiple times,35

and does not require transducer nodes to be coincident with the waveguide36

nodes. We also consider the performance of this method when exciting the37

waveguide at frequencies where modes cut-off on the frequency axis. These38

frequencies have previously been avoided [8].39

Previous authors have considered the analysis of guided wave excitation.40

Willberg et al. [1] present an overview of relevant work, including a brief41

discussion of adhesive material, which we neglect in this study (but which42

could be included as a thin soft layer of elements between the transducer and43

the waveguide).44

Lowe et al. [9] and Fateri et al. [10] consider an aluminium rod with a45

large (relative to the waveguide) transducer attached. They demonstrate the46

importance of including the transducer in the numerical model (as opposed47

to simply modelling the transducer as a distributed force). Reflections and48

mode conversion from a coupled piezoelectric transducer are considered. A49

full 3D Abaqus model of the waveguide and transducer is used for comparison50

with a single point excitation. At the excitation frequency considered in their51

work, there are only three possible propagating modes, L(0,1), T(0,1) and52

F(1,1), and the torsional mode is neglected. The comparison was performed53

in the time domain with modes separated based on Time of Arrival (ToA).54

Kalkowski et al. [11] propose a technique based on the SAFE method55

for modelling waveguides with piezoelectric transducers attached. A piezo-56

electric SAFE element is presented and discrete piezoelectric elements are57

incorporated by computing scattering matrices at locations where geome-58

try changes discretely. The proposed method is well suited to prismatic59

transducers (with regular shape in the propagation direction) such as sim-60

ple rectangular patch and sandwich transducers, but may present difficulties61

when transducers have complex shape. Their proposed method is verified62

numerically using a simple beam model and validated experimentally with a63

short beam with anechoic terminations. The paper also presents a summary64

of some other relevant works.65

Jezzine et al. [12] consider the case of a transducer fixed to a free end of66

a waveguide (i.e. on the arbitrary cross-section) using techniques similar to67

those employed for scattering from free ends and discontinuities [13]. They68

present comparison with analytical and previously published experimental69

results.70

One of the authors of the current work previously proposed a method to71
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couple a SAFE model of the waveguide with a full 3D model of a piezoelectric72

transducer [6, 7]. The method involves computing the effective stiffness of the73

infinite waveguide, and then solving the transducer dynamics with the ap-74

propriate boundary condition, and then finally using the reaction forces from75

this analysis to compute the forced response of the waveguide. This method76

is generalised in this current work, so that the interface nodes between the77

SAFE and 3D meshes are not required to be coincident. This is accomplished78

by using a simple interpolation strategy. Furthermore, the resonance-like be-79

haviour encountered when exciting a mode of propagation close to its cut-off80

frequency is studied and addressed. The procedure is compared with results81

from a time domain solution computed using the commercial finite element82

package Abaqus/Explicit.83

2. Problem Formulation and Implementation84

The presentation in this section will focus on the coupling of the 3D trans-85

ducer FE model and the 2D waveguide SAFE model. More detail regarding86

the conventional SAFE formulation can be found in for example [3, 4, 5].87

For the presentation, we will explicitly differentiate between displace-88

ments computed in the physical 3D domain and transformed displacements89

in the SAFE domain which are introduced in Section 2.2. Displacements in90

the 3D FE domain (which are assumed to be harmonic) are written as:91

ux(x, y, z, t) = ux(x, y, z)ejωt (1)

uy(x, y, z, t) = uy(x, y, z)ejωt (2)

uz(x, y, z, t) = uz(x, y, z)ejωt (3)

where x, y and z are the global Cartesian coordinates, ux, uy and uz are92

displacements in the x, y and z directions, respectively and ω is the angular93

frequency in time t, and j is the imaginary unit.94

2.1. Piezoelectric finite element formulation95

Piezoelectric transducers are often used to excite guided waves due to96

their ability to drive high frequencies. The formulation of conventional 3D97

finite elements is well know and will therefore not be presented here. Instead,98

only salient aspects of the piezoelectric implementation are presented. The99
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standard piezoelectric finite element implementation is employed, as origi-100

nally proposed by Allik et al. [14].101

The coupled constitutive piezoelectric relations can be written as:

σu = cEεu − eTεφ,
σφ = eεu + pSεφ,

(4)

where σu represents the mechanical stress tensor while σφ is the electric102

flux density, which is the electrical equivalent of stress. The strain is given103

by εu while the electrical equivalent of strain is the electrical field εφ which104

is computed as the negative of the potential spacial gradient. The third105

order piezoelectric coupling tensor relating displacements u and potentials φ106

is denoted e. The mechanical elasticity and dielectric constitutive matrices107

are represented by cE and pS respectively.108

The harmonic response is computed by solving the linear system of equa-
tions which results from the finite element formulation, written as:[

Dt Kuφ

KT
uφ Kφφ

]{
U
Φ

}
=

{
F
Q

}
(5)

where U and Φ are the assembled nodal displacements and electrical po-
tentials respectively and F and Q represent assembled forces and charges
respectively. The stiffness matrix is made up of terms relating only to elec-
trical properties Kφφ, those coupling electrical and mechanical properties
Kuφ and the frequency dependant dynamic stiffness of the transducer relat-
ing only to mechanical properties:

Dt = Kuu − ω2M . (6)

These equations are partitioned into known and unknown degrees of freedom109

in order to solve unknown displacements and potentials as well as reaction110

forces and charges. If the model is of a transducer consisting of elastic and111

piezoelectric parts, electric potentials of elastic parts are simply prescribed112

to be zero.113

2.2. SAFE formulation114

The semi-analytical finite element (SAFE) formulation employed in this
paper is based on that proposed by Gavrić [3]. This formulation is conve-
nient since it results in symmetric stiffness matrices, eliminating the need for
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solving both left and right eigenvalue problems [4, 15]. However, since only
free vibrations were considered in [3], some detail needs to be added for the
forced response problem. A one-dimensional waveguide with arbitrary cross-
section in the x− y plane and with wave propagation in the z−direction, is
considered. The displacements are assumed to take the form:

ux(x, y, z, t) = ux(x, y)e−j(κz−ωt) =
a
ux (x, y)e−j(κz−ωt) (7)

uy(x, y, z, t) = uy(x, y)e−j(κz−ωt) =
a
uy (x, y)e−j(κz−ωt) (8)

uz(x, y, z, t) = uz(x, y)e−j(κz−ωt) = j
a
uz (x, y)e−j(κz−ωt), (9)

where je−j(κz−ωt) = e−j(κz−ωt−π/2). These displacement equations can be
written in vector form as

u(x, y)e−j(κz−ωt) = T
a
u (x, y)e−j(κz−ωt) (10)

where displacements in the physical coordinate system (i.e. the coordinate
system of the conventional 3D finite elements) are denoted u. The trans-
formed (SAFE) displacements, which presuppose a 90◦ phase shift between

in-plane and out of plane displacements are denoted
a
u. A transformation

matrix T which converts the SAFE displacements to physical displacements
has been introduced, similar to that introduced by Damljanović et al. [5],
and is defined as

T =

 1 0 0
0 1 0
0 0 j

 . (11)

The transformation matrix has the following properties

TT ∗T = T ∗TT = I, (12)

where (·)∗T denotes the complex conjugate transpose, and the reverse of the
transformation in (10) can be shown to be

a
u= T ∗Tu. (13)

The same transformation can be employed to convert generalised forces from115

physical forces in the global coordinate system, to the transformed SAFE116

forces. Although similar, the transformation matrix in (11) is the complex117

conjugate of that defined by Damljanović et al. [5, 16].118
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The variational formulation for the linear-elastic, small strain elastody-
namics problem in the frequency domain is presented by Treyssède et al. [15]
as: ∫

Ω

δεTσdΩ− ω2

∫
Ω

ρδuTudΩ =

∫
Ω

δuTfdΩ +

∫
∂Ω

δuT td∂Ω (14)

where, similar to Treysséde [17] (but with displacements defined here being
conjugate to the implementation presented by [17]):

u = u(x, y)e−j(κz−ωt), and δu = δu(x, y)ej(κz−ωt). (15)

After substitution of the interpolated displacement fields into (14), and119

employing the definition of linear strain and the constitutive relations be-120

tween stress and strain, the following system of equations result [6, 7]121

[
−ω2M + κ2K2 + κK1 +K0

] a

U=
a

F . (16)

The vectors
a

U (ω, κ) and
a

F (ω, κ) represent the transformed nodal displace-

ments and forces respectively, so for example
a

F= T ∗TF , where F are the
nodal forces in the physical coordinates, and in this case the transformation
matrix is a diagonal matrix similar to that introduced in (11) with ones on
the diagonal except every third term which has a j, but is of size 3N × 3N
where N is the number of SAFE nodes. Written explicitly:

a

F=


1 0 0 . . .
0 1 0 . . .
0 0 −j . . .
...

...
...

. . .




f1x

f1y

f1z
...
fNz


=



f1x

f1y

−jf1z
...

−jfNz


(17)

Individual mass and stiffness matrices in (16), which are all symmetrical in

7



this case, are defined as

K0 =

∫
Ω

[
B∗T0 CB0

]
dΩ (18)

K1 =

∫
Ω

[
B∗T0 CB1 +B∗T1 CB0

]
dΩ (19)

K2 =

∫
Ω

[
B∗T1 CB1

]
dΩ (20)

M =

∫
Ω

[
NTρN

]
dΩ (21)

where B0 and B1 are strain-displacement operators which have been sep-122

arated into terms containing and those not containing the wavenumber κ,123

respectively. C is the constitutive matrix relating stress and strain σ = Cε,124

N is a matrix containing shape functions and ρ is the material mass density.125

The mass and stiffness matrices are not explicitly shown as being formu-126

lated in the SAFE space as, for example
a

K0. This is implied since both the127

displacements and forces are in the SAFE space.128

2.3. Solution of the Free and Forced Vibration Problems129

The forced response will be used to estimate the frequency dependant
stiffness of the waveguide for each degree of freedom of the 3D transducer
model that is in contact with the waveguide. The forced response problem
was considered by [4, 5, 15]. Equation (16) is cast in linear form as

[A− κB]
a

U=
a

F (22)

where:

A =

[
K0 − ω2M 0

0 −K2

]
, B =

[
−K1 −K2

−K2 0

]
(23)

and

a

U (ω, κ) =


a

U

κ
a

U

 ,
a

F (ω, κ) =

{
a

F
0

}
(24)

The homogeneous form of (22) can be used to compute a set of wavenum-

bers κi and associated mode shapes
a

ψi at a fixed frequency ω from the eigen-
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vectors

a

Ψi=


a

ψi

κ
a

ψi

 . (25)

Treysséde et al. [15] then show how the solution of the forced response130

problem can be written as an expansion of the modes, and also how the131

inverse Fourier transform of the displacement solution can be computed using132

the Cauchy residue theorem to yield a response
a

U in the transformed SAFE133

space-time domain, which in our case is given by:134

a

U (ω, z) = j
3N∑
r=1

a

ψr

a

Ψ
T

r

a

F
a

Ψ
T

r B
a

Ψr

e−jκrz, (26)

where the summation is performed only over the positive real poles, negative135

imaginary poles, and complex poles with negative imaginary parts. During136

the calculations leading to (26) it is important to keep in mind the displace-137

ment definitions which were defined in (10), noting that our definition is the138

complex conjugate of that used by Hayashi et al. [4] and Treysséde et al.139

[15]. Furthermore, since our eigenvalue problem is symmetrical, it is not nec-140

essary to compute left and right eigenvalues, simplifying the orthogonality141

conditions used to arrive at (26).142

The displacement response is a superposition of the response of each
mode, and can be written in terms of the modal amplitudes αr as:

a

U (z, ω) =
3N∑
r=1

αre
−jκrz

a

ψr, where αr = j

a

Ψ
T

r

a

F
a

Ψ
T

r B
a

Ψr

. (27)

Storing the modal amplitudes has the advantage that it is not necessary143

to re-calculate their values should the displacement be required at various144

distances z along the waveguide.145

To convert these SAFE displacements back to physical displacements in
the global coordinate system, the transformation

U(z, ω) = T
a

U (z, ω) (28)

is again employed, where T is as previously defined.146
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Forces and displacements at 3D FE nodes Forces and displacements interpolated to SAFE nodes

[F t]j

[U t]k

Force applied to waveguide at transducer node j

Transformed and interpolated
a
Uw displacements[U t]k -

[F t]j -

a
Uw

a
Fw

a
Uw -

a
Fw - Transformed and interpolated force [F t]j

Displacements due to
a
Fw

zp

Plane in
contact with
SAFE mesh

SAFE mesh
at force plane

SAFE mesh at
displacement plane

Piezoelectric transducer
(see Figure 2)

Figure 1: Mapping between 3D FE dofs and SAFE dofs.

Tresséde et al. [15] point out that the summation of modes should be147

carried out over forward propagating modes as determined from the sign of148

the energy velocity (or group velocity where applicable). They also briefly149

discuss the calculation of backward propagating modes. They further note150

that the modes can be truncated based on the size of the imaginary part of151

(κ · z). Finally, the response in space-time can be computed by taking the152

inverse temporal Fourier transform of U(z, ω).153

2.4. Coupling the SAFE and 3D models154

The forced response solution presented in the previous section can be
used to estimate the frequency-dependant dynamic stiffness that a transducer
attached to a waveguide would experience. The dynamic stiffness matrix of
the waveguide Dw relates a force applied at a specific transducer location F t

to a displacement at a different transducer location U t as:

DwU t = F t (29)

The receptance of the waveguide Rw = D−1
w can be computed row-by-row155

by applying a unit forces at each transducer degree of freedom, and com-156

puting the displacements at each of the transducer degrees of freedom in157

contact with the waveguide. We will not require here that the transducer158
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and the SAFE model nodes are coincident as in [6, 7]. Instead, appropri-159

ate element interpolation functions are used to interpolate between the two160

domains (SAFE and FE).161

In order to treat the coupling between the SAFE and the 3D FE trans-162

ducer model meshes, first the following sets (and associated number of dofs)163

are defined:164

• Nw - Total number of waveguide (SAFE) dofs.165

• N ′w - Limited number of waveguide dofs in contact with the 3D trans-166

ducer.167

• Nt - Total number of transducer (3D FE) dofs.168

• N ′t - Limited number of transducer dofs in contact with the waveguide.169

2.4.1. Step 1. Unit-force modal amplitudes170

The first step in this process is to compute the unit-force modal ampli-
tudes. In (27), α is a vector corresponding to the modal amplitude of each
mode as a result of the single applied force considered. To begin, we now
compute an array ᾱk, where

ᾱr,k = j

a

Ψ
T

r

a

Fk

a

Ψ
T

r B
a

Ψr

(30)

where
a

Fk is the force term due to applying a unit force F̄ k in the global171

coordinate system to each of the N ′w degrees of freedom. The unit force172

is assembled into the Fk vector and transformed using
a

Fk= T ∗TFk. This173

full ᾱk array will be used later to reconstruct a modal amplitude vector174

which is the cumulative sum of all the forces from the transducer using the175

superposition principle. The array of unit-force modal amplitudes and the176

associated array size is denoted [ᾱ]Nw,N ′
w

where the subscript indicates the177

array size.178

2.4.2. Step 2. Interpolation between meshes179

Next, the array [N ]N ′
t,N

′
w

which maps the transducer degrees of freedom180

to the corresponding waveguide degrees of freedom is defined, making use181
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of the SAFE interpolation functions N , evaluated at the transducer nodal182

locations for each of the N ′t transducer degrees of freedom.183

Transducer forces can therefore be converted to waveguide forces using

F w = ([N ]N ′
t,N

′
w
)TF t, (31)

whereas the waveguide displacements can be converted from the SAFE mesh
to the 3D transducer mesh using

U t = [N ]N ′
t,N

′
w
Uw. (32)

Note that in both instances, the quantities are in physical coordinates,184

and it is therefore assumed that the waveguide displacements are computed185

using
a

F w= T ∗TF w, and physical waveguide displacements are given by U t =186

T
a

Uw. This mapping is illustrated in Figure 1.187

2.4.3. Step 3. Assembly of the receptance and dynamic stiffness matrix188

The third step in the process is to construct the receptance matrix Rw of189

size (N ′t × N ′t) making use of the already computed ᾱk values. The waveg-190

uide displacements are computed using the distance along the propagation191

direction between the point where the transducer force is applied, and the192

point where the transducer displacement dof is computed. This distance is193

denoted zp, see Figure 1.194

The modal amplitudes ᾱk can be used to compute the response of all
SAFE displacements due to the unit forces at each N ′w dofs using

a

U r,k=
3N∑
r=1

ᾱr,ke
−jκrzp

a

ψr, (33)

where
a

U k is the same size as ᾱk, i.e. Nw ×N ′w. From this array, the limited195

array of responses at waveguide displacements in contact with the transducer196

can be extracted, so that the size of
a

U k is reduced to [
a

U k]N ′
w,N

′
w

197

These displacements due to unit forces at each waveguide dof are then198

summed to give the actual waveguide forces due to a unit transducer force199

as follows:200

a

Uw= [
a

U k]N ′
w,N

′
w
(N

a

F t). (34)
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The waveguide displacements can be converted to transducer displace-
ments in the physical coordinate system using the transformation matrix
T :

U t = T ([Nw]N ′
t,N

′
w

a

Uw). (35)

This displacement is used to assemble the receptance matrix of the waveg-
uide Rw. Rw[i,j] is the displacement (Ut[j]) at transducer dof j as a result of
unit force applied at transducer dof i (Ft[i]). The dynamic stiffness matrix is
then simply the inverse of Rw:

[Dw]N ′
t,N

′
t

= (Rw)−1. (36)

2.4.4. Step 4. Computation of transducer response and waveguide forces201

The fourth step in the process is to use the computed dynamic stiffness202

matrix to compute transducer response. The waveguide dynamic stiffness203

matrix Dw can be added to the appropriate degrees of freedom of the trans-204

ducer dynamic stiffness matrix (6) and then the forced response of the trans-205

ducer as a result of prescribed voltage can be solved using (5). Using these206

computed transducer displacements U t, the forces that the waveguide ex-207

periences as a result of the interaction can be computed at the transducer208

nodal locations as209

F t = DwU t. (37)

2.4.5. Step 5. Waveguide response due to transducer dynamics210

Finally, the previously computed modal amplitudes due to applied unit211

forces (30), can be scaled using the actual forces (37) at the transducer212

locations and propagated to a common waveguide z−plane (the z−plane213

at the contact point with the largest z is selected for this purpose) so that214

further propagation can be computed from a common location.215

The modal amplitude at the front plane of the transducer, due to each of
the transducer forces Ft[i], is computed as:

αNw,1 =

N ′
t∑

j=1

([ᾱe−jκzf ]Nw,N ′
w
)({N

a

F t j}N ′
w,1), (38)

where in this case zf is the distance from the force z−plane to the plane216

at the front of the transducer. It should also be noted that the transducer217

forces once again need to be transformed to SAFE forces.218
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The response of an elastic waveguide at a distance from the front of the219

transducer can be computed using (27) and (28).220

2.4.6. Implementation notes221

In order to improve the numerical efficiency of the solution, especially if222

different attachment locations for the same transducer are going to be eval-223

uated, or if different transducers are to be evaluated on the same waveguide224

[8], the following observations can be made:225

• The symmetry properties of the receptance matrixRw can be exploited226

in order to only consider forward propagation (i.e. only computing227

responses at nodes in the z−plane of each transducer node and those228

in forward z−planes). Rw is symmetric, except for the coupling terms229

between the x− and y−directions and the z−direction, which is skew-230

symmetric.231

• The wavenumbers and modes shapes of a particular waveguide as well232

as the modal amplitudes (38) associated with a transducer and trans-233

ducer location can be stored at each frequency. Storing the SAFE234

data reduces solution times for different transducers (or transducer lo-235

cations) on the same waveguide, while storing the modal amplitudes236

reduces solution times when computing time domain responses at dif-237

ferent propagation distances for a specific transducer at a specific loca-238

tion.239

3. Treatment of modes excited close to cut-off frequency240

Exciting a guided wave mode at, or close to its cut-off frequency is known241

to result in resonant-like behaviour, analogous to exciting a mode of vibration242

in a finite structure at its resonant frequency. In the absence of damping the243

steady-state response at the cut-off frequency becomes unbounded. This244

behaviour causes numerical difficulties when converting frequency domain245

results to the time domain, as may be required when using the SAFE-3D246

analysis described here. The time domain result at cut-off is dominated247

by this resonant-like response at the cut-off frequency which manifests as a248

ringing which wraps-around in the time domain.249

These difficulties are effectively controlled by introducing damping into250

the system [18, 19]. However, realistic values for damping are usually difficult251
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to estimate a priori and are usually iteratively determined through experi-252

mental comparison. This can be numerically quite expensive since for each253

damping value evaluated the SAFE eigenvalue problem needs to be re-solved.254

Post-processing or filtering methods, which can be applied without having255

to resolve the SAFE eigenvalue problem, have also been proposed. Stoyko256

[20] proposed eliminating the wrap-around effect by adding a homogeneous257

solution consisting of the response of each mode at cut-off, and using this to258

enforce the initial displacement and velocity conditions, which are not neces-259

sarily satisfied using the inverse Fourier transform. This process is referred260

to in [20] as enforcing causality. An alternative post-processing method is261

to simply eliminate the large responses at cut-off by effectively filtering the262

contribution of the modes in the proximity of the cut-off frequency [21]. High263

phase velocities or low wavenumber thresholds can be used to identify modes264

at cut-off. Another method, which is not evaluated here, but which may265

be considered is to add a small imaginary part to the input frequency as266

proposed in Mukdadi et al. [22].267

Post-processing methods and the inclusion of damping are evaluated in268

this study. Details of the methods evaluated are as follows:269

• Causality was enforced as proposed by Stoyko [20]. Only modes which270

cut-off in the frequency range of interest were used to compute the271

homogeneous solution. The amplitude and phase of the cut-off modes272

were computed so as to best enforce the initial conditions (zero initial273

displacement and velocity at each dof) in a least-squares sense.274

• The filtering method was implemented by simply setting modal am-275

plitudes (38) to zero if the phase velocity associated with the modal276

amplitude was greater than twice the maximum group velocity in the277

frequency range of interest. This limit is depicted in Figure 4b, and278

although it may appear very aggressive it was found to be appropriate279

if relatively few frequency points are used.280

• In order to damp the large response at cut-off, hysteretic damping is281

employed with complex bulk velocities as defined in [18, 19]. Bartoli et282

al. [19] showed that in the frequency range of interest here, longitudi-283

nal and shear bulk wave attenuation of κL=0.003 Np/wavelength and284

κT=0.043 Np/wavelength respectively are appropriate. Since these val-285

ues are not always well know, the effects of over- and under-estimating286
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0.5m

0.5m

Absorbing region
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ξ = 1

ξ = 0

ξ = 1

E = 210 GPa

ν = 0.3

ρ = 7800 kg/m3

Steel material properties

[cE ]1,1 = 127 GPa

[cE ]1,2 = 80 GPa

[cE ]1,3 = 85 GPa

[cE ]3,3 = 117 GPa

[cE ]4,4 = 23 GPa

[cE ]6,6 = 24 GPa

[e]3,1 = -6.62 C/m2

[e]3,3 = 23.2 C/m2

[e]1,5 = 17 C/m2

[pS ]1,1 = 15 nF/m

[ps]3,3 = 13 nF/m

PZT-5H material properties

ρ = 7500 kg/m3

Figure 2: Abaqus/Explicit model of rail with piezoelectric transducer attached.

the damping are simulated by using damping constants 10 times greater287

and 10 times smaller than those proposed in [19].288

4. Abaqus model and mode extraction289

In this section, some details regarding the Abaqus/Explicit model used to290

verify the accuracy of the SAFE-3D results, are presented. Three topics are291

briefly treated, namely absorbing boundary conditions to prevent reflections292

from free ends of the 3D FE models, the thermal equivalent piezoelectric293

model employed in Abaqus/Explicit and finally the method used to perform294

mode extraction from the 3D FE time domain results.295

Figure 2 illustrates the problem under consideration. A rectangular piezo-296

electric transducer is modelled, with common nodes on the interface plane297

between the transducer and the rail web, so as to avoid having to use contact298

models in the Abaqus/Explicit simulation. Coincident nodes are not required299

for the SAFE-3D method presented herein, as demonstrated in Figure 8b and300

by Ramatlo et al. [8].301
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4.1. Absorbing boundary conditions302

In order to extract modes excited by the transducer in the time domain,303

relatively long displacement time traces are required. This is especially true304

when different modes travel at significantly different speeds or when excit-305

ing modes close to their cut-off frequency, due to the ringing-like behaviour306

observed. When considering relatively long simulation times in the time307

domain, complex mode coupling due to end reflections adds unwanted com-308

plexity. It is therefore advantageous to be able remove these end reflections309

in order to simulate an infinitely long rail.310

The problem of eliminating end reflections has been studied by various311

authors. Two methods which can relatively easily be implmented using com-312

mercial codes were proposed by Rajagopal et al. [23] (Absorbing Layers313

using Increasing Damping (ALID)) and Pettit et al. [24] (stiffness reduc-314

tion method). A hybrid method, combing stiffness reduction and increased315

damping, was found to work well in this instance for one-dimensional wave316

propagation.317

In the absorbing region, a local coordinate, 0 < ξ ≤ 1 is introduced, with
ξ = 0 at the start of the absorbing region and ξ = 1 at the free end of the
waveguide as depicted in Figure 2. A damping factor (0 ≤ d ≤ 1) and a
stiffness factor (0 < s ≤ 1) are then defined as:

d(ξ) = ξp (39)

s(ξ) = e−d(ξ)·p − ξ · (e−p − ε) (40)

where p is a penalty parameter and the second term in (40) ensures that the318

stiffness parameter ends with a small value ε. These functions are depicted319

graphically in Figure 3 for a penalty parameter of p = 3 which was used to320

generate the result in Section 5.321

For each element in the absorbing region, the local coordinate of the
element centroid is determined and the modified elastic modulus E∗ and
Rayleigh mass proportional damping constant α∗ for the element is computed
as

E∗ = s · E0, and α∗ = d · αmax, (41)

where E0 is the elastic modulus of the waveguide material and αmax is the322

maximum value of Rayleigh mass proportional damping, which is set to the323

centre circular frequency of the driving signal as suggested in [24].324
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Figure 3: Stiffness factor s and damping factor d for local coordinate 0 ≤ ξ ≤ 1 and
penalty parameter p = 3.

4.2. Thermal equivalent piezoelectric model325

Since Abaqus/Explicit does not include piezoelectric effects, a thermal
equivalent piezoelectric model is used to simulate piezoelectric excitation.
This is simply achieved by defining an orthotropic thermal coefficient of ex-
pansion for the piezoelectric materials in the model (with orthotropic elastic
coefficients cE as defined in (4)). The orthotropic thermal coefficients of ex-
pansion are extracted from the matrix d when the piezoelectric constitutive
laws are written with stress and electric field as independent variables as in
(42) instead of strain and electric field as in (4).

εu = sEσu + dTεφ

σφ = dσu + pTεφ,
(42)

where sE = c−1
E , d = e · sE and pT = pS + d · cE · dT . The electric field326

due to the time-varying prescribed voltages is then simply simulated as a327

temperature, with all non-piezoelectric materials having zero coefficient of328

thermal expansion.329

4.3. Mode extraction from time domain results330

In order to compare numerical time-domain results with mode-based re-331

sults in the frequency domain computed using the SAFE-3D analysis, a332

method to identify and quantify which modes are excited is required. This333

is not a trivial task due to the multi-modal and dispersive nature of guided334

wave propagation [25].335
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Zhao et al. [26] reviews some methods for mode identification and extrac-336

tion. If modes are separated in time, a simple time gating approach could337

be employed. Otherwise, for mode extraction or identification a Short Time338

Fourier Transform (STFT) can be used as in [27, 28]. Alternatively, a 2D339

Fast Fourier Transform (FFT) can be used, as for example in Pavlakovic et340

al. [28], who present a method to excite a pure mode in the time domain341

and then employ a 2D FFT to analyse purity of the excited mode.342

The method employed in this work decomposes extracted displacements
into modal contributions using SAFE information, and has been successfully
used to extract modes (and modal amplitudes) from experimental measure-
ments [29, 30]. The displacement response at a specific degree of freedom
in the SAFE mesh i at distance z can be written in the physical coordinate
system as (see (27)):

Ui(z, ω) =
3N∑
r=1

ψir(ω)αr(ω)e−jκr(ω)z, (43)

where ψir(ω) is the displacement of degree of freedom i of mode shape r and343

κr(ω)is the wavenumber of mode r. The mode shape and wavenumber are344

computed using a SAFE analysis. We wish to extract the magnitude of each345

propagating mode αr(ω) from numerical time responses Ui(z, ω).346

For p time traces of Abaqus/Explicit nodes corresponding to SAFE nodes,
this can be written in matrix form as

Ψ̄(ω)α(ω) = U(ω), (44)

where, if the frequency dependence of ψ, α and U are implied, ψ11e
−jκ1z1 ψ12e

−jκ2z1 · · · ψ1me
−jκmz1

...
...

...
ψp1e

−jκ1zp ψp2e
−jκ2zp · · · ψpme

−jκmzp




α1
...
αm

 =


U1
...
Up

 . (45)

The mode shape matrix Ψ̄ is assembled from information from the SAFE347

model while vector U is assembled by performing a FFT on each of the ex-348

tracted time domain Abaqus/Explicit displacement signals at various propa-349

gation distances z. In order to perform the FFT, the Abaqus/Explicit results350

need to be interpolated so that the time increment is the same for every time351

step. Matrix Ψ̄ has dimension [p×m], while α is [m× 1] and U is [p× 1].352

19



15
m
m

18 mm

19.
3 m

m

4.3
mm

y

Node 1

Node 2

x

z

(a) SAFE mesh with transducer at-
tached.

0 5 10 15 20

Frequency [kHz]

0

10

20

30

40

50

60

W
av

en
um

be
r 

[r
ad

/m
]

v
p
 limit

Symmetric
Antisymmetric

(b) Wavenumber-Frequency curves.

0 5 10 15 20

Frequency [kHz]

0

2000

4000

6000

8000

10000

12000

P
ha

se
 v

el
oc

ity
 [m

/s
]

v
p
 limit

Symmetric
Antisymmetric

(c) Phase velocity-Frequency curves.
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Figure 4: SAFE mesh with piezoelectric transducer attached and associated dispersion
curves for UIC60 rail.

If p > m, the over-defined system of equations is solved in a least-squares353

sense using the Moore-Penrose generalised inverse (also called the pseudo354

inverse). The matrix Ψ̄ should have rank m if there are at least m different355

propagating modes at the frequency of interest.356

The results in Section 5 are generated using displacement signals ex-357

tracted from 200 randomly distributed nodes between 0.5m and 1m from the358

centre of the transducer as illustrated in Figure 2.359
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(a) Mode a1 (b) Mode a2 (c) Mode a3 (d) Mode a4 (e) Mode a5

(f) Mode s1 (g) Mode s2 (h) Mode s3 (i) Mode s4 (j) Mode s5

Figure 5: Antisymmetric modes a1 to a5 and symmetric modes s1 to s5 computed at 10
kHz.

5. Results360

This section presents the results of the numerical comparison between361

Abaqus/Explicit and SAFE-3D. The problem under consideration is illus-362

trated in Figure 2, and is depicted for the SAFE-3D case in Figure 4a. Fig-363

ures 4b to 4d depict the dispersion curves for the UIC60 rail with material364

properties as given in Figure 2. Modes are separated exploiting the fact that365

for a symmetric waveguide, families of symmetric and antisymmetric modes366

can cross, but the dispersion curves within a symmetric or antisymmetic367

family approach and then repel each other and do not cross [31].368

Figure 5 shows the mode shapes of all the propagating modes at 10kHz.369

The mode numbering scheme proposed in [31] is used to number the modes370

with an ‘a’ or ‘s’ to represent antisymmetric and symmetric modes, respec-371

tively followed by a number representing the order in which cut-off occurs372

on the frequency axis. So, for example the 3rd symmetric mode to cut-off is373

numbered s3.374

In order to study the effects of cut-off, a frequency range with an isolated375

cut-off frequency is required. To this end a convenient frequency range was376

found to be around 10kHz. The two modes which cut-off close to 10kHz are377

antisymmetric mode a5 and symmetric mode s5. Given the mode shapes378

however, it was noted that a transducer attached to the web of the rail379

preferentially excites the antisymmetric modes, and generally the symmetric380

modes have a small influence on the overall response. Frequencies around381

7kHz do not have any cut-offs, and this frequency was therefore chosen to382

compare results with, so that the effects at cut-off can be isolated.383
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5.1. Compliance comparison384

In order to verify the receptance computed using the procedure described385

in Section 2.4.3, a comparison with Abaqus/Explicit is performed. A force386

is applied at the location corresponding to the centre of the transducer front387

mass, denoted Node 1 in Figure 4a, and the displacement computed at two388

different locations, namely Node 1 and Node 2 highlighted in the same figure.389

A 10.5 cycle Hanning windowed toneburst (with 7kHz and 10kHz centre390

frequency, respectively) point force is applied in the x−direction. Both the391

displacement response and the force are converted to the frequency domain392

and frequency response in terms of both amplitude and angle determined.393

The same information is extracted from the SAFE-3D interaction as com-394

puted in the receptance matrix Rw in (36). The results are plotted for395

displacements in the x−, y− and z−directions in Figure 6. The plots reflect396

only frequencies where the amplitude of the Fourier Transform of the forcing397

function is above 1% of the maximum amplitude. As a result, the accuracy398

at the upper and lower frequency limits are not expected to be as good as399

those at the centre of the frequency range.400

Figures 6a and 6b depict the amplitude and angle of the receptance for a401

7kHz centre frequency toneburst applied at Node 1 and measured at the same402

node. There is a slight amplitude difference between the SAFE-3D results403

and the Abaqus/Explicit results. This is possibly attributed to discretisation404

of the Abaqus/Explicit model in the z−direction, effectively distributing the405

force over two element lengths in the z−direction, whereas the SAFE-3D406

model treats the z−direction analytically. Furthermore, responses close or407

at the point of excitation consist of contributions from many evanescent408

modes which quickly decay in the propagation direction. The displacement409

in the x−direction naturally dominate the response, since the force is applied410

in that direction. The z−component of displacement is very small (or zero)411

due to symmetry, which is the reason the the random angle of the frequency412

response. On the whole, excellent agreement is achieved between the two413

models.414

Figures 6c and 6d show the response, again for the 7kHz excitation but415

with the response computed in this case at Node 2, where the z−displacements416

have developed. The response is relatively regular again, due to the fact that417

there are no modes with cut-offs excited in the frequency range considered.418

Once again, good agreement between the Abaqus/Explicit and the SAFE-3D419

results are achieved, although in this case the Abaqus/Explicit amplitudes420

are generally slightly smaller than the SAFE-3D results. It is remarkable421
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that, although Node 2 is only 7.5 mm away from the source, displacements422

are four times smaller at Node 2 than at the source.423

Figures 6e and 6f present the frequency response with the 10kHz cen-424

tre frequency toneburst applied. In this case, the a5 mode cuts off in the425

frequency range considered, and is strongly excited by the force applied to426

the web. Although the s5 mode also cuts on in this frequency range, it was427

found that the response of symmetric modes due to the chosen excitation428

is small. The peak in the frequency response function corresponds to the429

resonance-like behaviour that is expected when driving a mode close the its430

cut-off frequency. The two models predict slightly different cut-off frequen-431

cies, with the Abaqus/Explicit results being at a slightly lower frequency432

than the SAFE-3D prediction. Apart from the slight frequency shift, the433

two models have very similar behaviour at frequencies with relatively high434

energy content (9-11 kHz). It should be noted that, without a SAFE analysis435

it would not have been obvious that this behaviour is as a result of a mode436

cut-off.437

5.2. Time domain comparison438

In this section, the time domain results will be compared for the problem439

illustrated in Figure 2. Since the response is dominated by the displacement440

in the x−direction, only ux displacements are presented at a distance of 1441

m from the transducer centroid, at the same point on the cross-section as442

the transducer centroid. The piezoelectric transducer is driven using a 1443

V 10.5 cycle Hanning windowed toneburst across the 4.3mm height of the444

piezoelectric material. Centre frequencies of 7kHz and 10kHz are considered445

with various strategies used to eliminate numerical issues at cut-off when446

using the SAFE-3D method.447

Figures 8a and 8b depict the ux response for the 7kHz case, which is used448

to demonstrate that nodes are not required to be coincident for the proposed449

method. The case where the SAFE and transducer nodes are not coincident450

is depicted in Figure 7, and will be denoted SAFE-3D* in the results. Good451

agreement between the Abaqus/Explicit and SAFE-3D results is achieved452

without any need to alleviate the effects of ringing since no cut-off is excited453

in this case. The two sets of SAFE results are almost identical. It is not454

clear if the small difference between the two SAFE results is as a result of455

the transducer mesh distortion or the interpolation scheme to transfer forces456

and displacements. The fact that nodes are not required to be coincident is457
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Figure 6: Compliance comparison - Abaqus/Explicit and SAFE-3D.
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Figure 7: Illustration of distorted mesh for the case where nodes are not coincident.

further demonstrated in [8], where the SAFE-3D method was used to design458

an optimal transducer without presenting the analysis method itself.459

Figure 8c and 8d show the response due to the 10 kHz excitation. In460

Figure 8c, the Abaqus/Explicit response is presented together with the post-461

processing based methods to eliminate the ringing associated with exciting462

a mode close to a cut-off frequency. The results without any scheme to treat463

the effects of cut-off are denoted SAFE-3D in the figure, and in this case it464

is difficult to determine the first arrival due to the wrap-around effect. The465

results with causality enforced as detailed in Section 3 are denoted SAFE-466

3D-C and show a vast improvement over the response with no intervention.467

Results produced by filtering responses with high phase velocity as explained468

in Section 3 are labelled SAFE-3D-V and produced similar results to the case469

where causality is enforced, except that a slight wrap-around effect is still470

present making it difficult to determine the first arrival. A combination471

of limiting the response based on phase velocity and causality could also472

be implemented, but these results are not shown for brevity. The phase473

difference between the Abaqus/Explicit results and the SAFE-3D results474

after approximately 1.5 ms is thought to be due to the difference in cut-off475

frequency for mode a5 (and associated ringing behaviour) noted in Figures476

6e and 6f.477

Figure 8d depicts the results with damping added, instead of using post-478

processing techniques. Three different damping levels are evaluated as ex-479

plained in Section 3, i.e. the values proposed by Bartoli et al. [19] denoted480

‘1.0× (κL, κT )’ as well as values 10 times higher ‘10× (κL, κT )’ and ten times481

smaller ‘0.1 × (κL, κT )’. The results confirm that the material properties482

suggested in [19] effectively damp the unrealistically large displacements and483
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Figure 8: Displacement ux at z = 1m.

very good agreement with the Abaqus/Explicit results are achieved. The484

lower damping values produce results very similar to those where no damp-485

ing is included, whereas it is clear that over damping the response results486

in an underestimation of the response. The important point is, however,487

that for each damping parameter tested the dispersion curves and the modal488

amplitudes need to be re-calculated and since damping is usually ‘tuned’489

to match experimental measurements, this could be numerically expensive490

and requires good, quantitative experimental results. On the other hand,491

post-processing methods such as those evaluated in Figure 8c, can be tuned492

without having to recompute dispersion curves or modal amplitudes.493

5.3. Frequency domain comparison494

Time traces of displacement are useful when comparing simulation and495

experimental results. Displacement signals on their own are, however, not496

necessarily a very rich source of information. Instead, what is required for497

transducer design is information about how well a certain (targeted) prop-498

agating mode is excited. Targeted modes would typically have energy con-499

centrated in the region of the waveguide where discontinuities are sought,500

and be as non-dispersive as possible [8]. To this end, it is advantageous to501

present the results in the frequency domain as modal amplitudes.502
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The SAFE-3D method computes modal amplitudes for each individual503

mode at different frequencies naturally. The accuracy of modal amplitudes504

close to cut-offs have not previously been investigated using SAFE-3D, and505

instead frequencies containing cut-offs have simply been avoided [8]. Here506

a quantitative comparison between SAFE-3D and Abaqus/Explicit is per-507

formed. The problem described in Section 5.2 and Figure 2 is considered508

again with the same voltage excitation as in Section 5.2. Since only the an-509

tisymmetric modes are strongly excited from this transducer location, only510

these modes are presented in Figure 9.511

Figure 9a depicts modal amplitudes computed using SAFE-3D, and those512

extracted from Abaqus/Explicit results using the process presented in Section513

4.3 for 7kHz centre frequency case. Excellent agreement is achieved between514

the modes extracted from the Abaqus/Explicit results and those computed515

using the SAFE-3D method. Although the excitation has a 7kHz centre516

frequency, not all of the antisymmetric modes presented have a maximum at517

7kHz. This is possibly due to the mode shapes (and the associated modal518

amplitudes) being frequency dependent.519

Results for the 10kHz centre frequency excitation are presented in Figure520

9b. In this case, an additional mode (a5) is seen to cut-off on the frequency521

axis between 9 and 10 kHz. Considering first the SAFE-3D results, the modal522

amplitude of mode a2 rises as the cut-off frequency of mode a5 is approached.523

As the cut-off frequency is reached, a discrete drop in the modal amplitude524

of a2 is observed as energy is used to excite mode a5.525

It was noted from Figures 6e and 6f that the cut-off frequency for the526

Abaqus/Explicit model is predicted at a slightly lower frequency than the527

SAFE-3D model. This accounts for the difference in predicted modal ampli-528

tudes between the cut-off frequencies predicted using the two models, where529

essentially the incorrect basis functions (SAFE eigenvectors) are used to ex-530

tract modes from the Abaqus/Explicit results. Despite these discrepancies531

similar trends are observed between the two sets of results, even close to the532

cut-off frequency. For example, in both cases mode a2 has the highest modal533

amplitude, followed by modes a5 and then a3. This information would be534

useful for transducer design. At frequencies away from the cut-off frequency535

(below 9kHz and above 11kHz) better agreement is achieved.536

In order to improve the agreement, either mesh refinement strategies537

could be employed in both the SAFE-3D, but especially in the Abaqus/Explicit538

model, or the SAFE model could be modified (in terms or material properties539

or small geometrical modifications) in order to achieve a better agreement in540
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Figure 9: Modal amplitudes extracted from Abaqus/Explicit and computed using SAFE-
3D.

the predicted cut-off frequencies between Abaqus/Explicit and SAFE-3D.541

6. Conclusions542

A method to efficiently couple a conventional 3D finite element (FE)543

model of a piezoelectric transducer to a 2D semi-analytical finite element544

(SAFE) model of a waveguide is presented. The method is referred to as545

SAFE-3D. The proposed procedure is efficient for transducer design since546

various transducer geometries and attachment locations can be evaluated547

without having to recompute the SAFE eigenvalue problem, and without548

requiring the SAFE and 3D FE nodes to be coincident. A numerical verifica-549

tion of the proposed method is presented through a comparison with results550

from a commercial finite element solver, Abaqus/Explicit in this case.551

The SAFE-3D analysis requires an estimate of the waveguide dynamic552

stiffness. It is shown that the SAFE forced response accurately predicts the553

waveguide dynamic stiffness, even at frequencies where mode cut-offs occur.554

It is demonstrated, however that the SAFE-3D and Abaqus/Explicit models555

predict slightly different cut-off frequencies.556

A time domain comparison between SAFE-3D and Abaqus/Explicit sim-557

ulations of a waveguide excited by a piezoelectric transducer is performed. A558

thermal equivalent Abaqus/Explicit transducer model is used with absorb-559

ing boundary conditions to model the piezoelectric transducer excitation.560

Firstly, it is demonstrated that the SAFE-3D method does not require 3D561
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FE and SAFE nodes to be coincident. Next, various methods to deal with562

the large time domain responses predicted using the SAFE-3D method, when563

a mode is excited close to its cut-off frequency, are evaluated. It is shown564

that introducing hysteretic damping effectively reduces the response if an565

appropriate level of damping is introduced. However since realistic damp-566

ing properties are not always known, some iteration may be required, which567

could be numerically expensive. Alternatively, post-processing methods were568

shown to have similar performance and are less numerically expensive.569

Frequency domain modal amplitudes are extracted from Abaqus/Explicit570

time domain results using a SAFE-based method, and compared with modal571

amplitudes computed using SAFE-3D. Excellent agreement is achieved at fre-572

quencies where no mode cut-offs occur. However, since the Abaqus/Explicit573

and SAFE-3D models predict slightly different cut-off frequencies, mode ex-574

traction from Abaqus/Explicit is not as accurate close to cut-off frequencies.575

Despite these differences, there is acceptable agreement between the two576

methods, demonstrating the accuracy of the SAFE-3D method.577
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