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Abstract: Bessel beams have been extensive studied to date but are always 
created over a finite region inside the laboratory. Means to overcome this 
consider multi-element refractive designs to create beams that have a 
longitudinal dependent cone angle, thereby allowing for a far greater quasi 
non–diffracting propagation region. Here we outline a generalized approach 
for the creation of shape-invariant Bessel-like beams with a single phase-
only element, and demonstrate it experimentally with a phase-only spatial 
light modulator. Our experimental results are in excellent agreement with 
theory, suggesting an easy-to-implement approach for long range, shape-
invariant Bessel-like beams. 
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1. Introduction 

Bessel beams (BBs) represent a class of so-called diffraction free solutions to the Helmholtz 
equation, and have been studied extensively [1–5] since the seminal work of Durnin et al. [1, 
2] in the late 1980s. Experimentally it is not possible to generate such a beam (due to the 
infinite energy required), and so an approximation is made in the form of a Bessel function 
enveloped by a Gaussian profile, thereby limiting the energy carried by the field to some 
finite value. Such beams have been produced by many different techniques, both internal [6–
8] and external [9–15] to the laser, as well as in the quantum regime with single photons and 
entangled states [16–18]. It is now common to create such beams with digital holograms 
written to spatial light modulators and much work has been done to improve the efficiency 
and quality of the beams produced [9–15]. Bessel beams have been topical due to their 
applications in optical trapping and tweezing, particle sorting, imaging, materials processing 
and quantum information to name but a few [1–5]. Their well-known ability to self-heal has 
been applied in many applications and remains a subject of ongoing study [19]. 

In general, the non–diffracting nature of these beams changes at the boundary of the non–
diffracting region from a Bessel function (near–field profile) into a conical field with the 
characteristic ring–shaped intensity distribution (far–field profile), as shown in Fig. 1. This 
raises the question about the very nature of what it means to be non-diffracting, as ideally the 
Bessel profile would exist to infinity. It is possible to extend the region of non-diffracting 
propagation by carefully engineering the beam parameters and judicious choice of optics. For 
example, so-called needle beams of ultra-short pulses have been created with extended depth 
of focus without the need for relay optics [15]. 

Another approach has been to allow the cone angle of the Bessel field, γ, to decrease 
during propagation so that as z→∞ so γ→0; the Bessel-like beam that is created is shape-
invariant during propagation, but at the expense of divergence in spatial extent. Such beams 
have been created by complex multi-element set-ups (usually three or more) with free space 
propagation between them [20–22]. This makes the set-up difficult to align and prohibits the 
option of implementing the design with a thin phase-only solution, e.g., as a diffractive optic 
or with spatial light modulators. 

In this paper we outline a general approach to create shape invariant Bessel-like beams 
using single element phase-only solutions. We derive the key design equations and verify the 
concepts experimentally with the aid of a spatial light modulator. In contrast to previous 
approaches, our method is easy to implement, requires no special alignment of multiple 
optical elements, and provides for easy, all-digital tuneability in the output parameters of the 
shape invariant beam. 
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Fig. 1. Illustration of the difference between a conventional and shape-invariant Bessel beam: 
(a) A conventional Bessel beam is created with a digitally implemented axicon, resulting in a 
finite region where the Bessel field exists. (b) A novel phase screen is implemented to create a 
shape-invariant Bessel beam that exists in all space. 

2. Theoretical approach 

We wish to design a phase-only element such that the field at any transverse position along 
the propagation axis may be represented by a superposition of conical waves, and moreover, 
that the angle of arrival of the conical waves at a given plane must be identical and decrease 
with distance. When these conditions are satisfied the transverse field, which may be seen as 
the interference of these waves, will remain Bessel-like for all propagation distances. To 
realise such an element, let us begin with the ansatz that the desired phase function can be 
presented as a sum of two power functions so that 

 ( )0( ) exp ,n mr ik ar brϕ  = +   (1) 

where φ(r) is the transmission function of the phase-only element and k0 = 2π/λ is the 
wavenumber of the field. The problem is to find the unknown coefficients a and b given the 
powers n and m. 

A simplified analysis of the design can be made using a geometrical optics approximation 
to the diffraction of the field incident on the phase-only element. The fast changing part of the 

integrand of the Fresnel diffraction integral is given as ( ) ( )2
0 0 0 02n m

sar br r z r r z+ + − , where 

z is the distance to the screen plane, and r0 and rs represent the co-ordinates of a line (ray) 
mapped from the initial plane to the screen plane, respectively. From the method of stationary 
phase we can extract the mapping of rays from the initial plane of the element to some final 
plane (screen plane) some distance away 

 1 1 0
0 0 0.n m sr ranr bmr

z z
− −+ + − =  (2) 

Intuitively we can expect these ray positions to be similar since the interference pattern 
must exist to infinity. If we denote this stationary radius as rI, then we find that our phase-only 
element function must satisfy 
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 ( ) .n m
I

nb a r
m

−= −  (3) 

Here rI may be interpreted as the clear aperture of the phase-only optic: any field within this 
radius will be converted to the desired beam in a lossless manner. Since the powers n and m 
are arbitrarily chosen, choice of parameter a dictates the value of b. If the phase terms in Eq. 
(1) are viewed as optical aberrations, then Eq. (3) provides the weighting of aberrations to 
produce the desired field. This simple relation allows for the optical element to be designed as 
a single element, hitherto not possible. 

 

Fig. 2. We trace ray between two planes and demand that they arrive with the same cone angle 
at the two extreme radii (origin and at rI). 

The problem of defining the element is solved, but it is necessary to relate the element 
parameters to that of the desired Bessel-like field 

 0( ) [ ( ) ],cu r J k z rα∝  (4) 

where J0 is the zero-order Bessel beam and αc(z) is the cone angle which we expect to be 
dependent on propagation distance, z. To complete the solution, we consider the arrival angles 
of the rays at the screen plane at positions rs = 0 (axial point) and rs = rI (infinity point), 
which we denote as αc and αb, respectively, and assume that they originate from radial 
positions rc and rb, respectively, at the initial plane. This is illustrated in Fig. 2. We wish the 
rays arriving at any given plane do so at the same angle, based on Bessel Beam ray behaviour 
at the screen plane where all rays arrive at a given plane with the same cone angle (even if the 
angle differs from plane to plane), and thus a criteria for our two chosen rays must be that 

 2 .c bα α=  (5) 

Note that this is the extreme case: by conditioning the rays at the two extreme points on 
the field to meet this criterion we assume that on average all other intermediate rays will also 
meet this criterion. Applying Eq. (2) to these two rays, those arriving at the axial and infinity 
points, we easily find the following relations: 

 

1 1 0
,

n m c
c c

c
c

r
anr bmr

z
r
z

α

− − + + =

 ≈


 (6a) 
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We can solve the coupled equations given by Eqs. (6) (a) and (6) (b), taking into account 
the relations in Eqs. (3) and (5), to find the cone angle αc 

 ( ) ( ) ( ) ( )( ) ( )1 1 1 1
2 2 0.

n m m m n nn m

c I c I I c I c c
an r z an r r z r z an zα α α α α− − − − −−+ + − − + + − + − =  (7) 

This is the general solution to finding the unknown cone angle of the Bessel-like beam given 
the input elements parameters of a, n and m. It is clear from Eq. (7) that the solution for the 
cone angle will be dependent on the propagation distance, z, as expected. By way of example, 
particular solutions for common optical elements are given in Table 1, namely, n = 1, m = 2 
(an axicon-lens doublet), n = 2, m = 3 (aberrated lens) and n = 1, m = 3 (aberrated axicon). 
The solutions in the Table 1 are valid for real-valued cone angles 

Table 1. Dependence of αc
n,m angle (the cone angle of obtained Bessel beam transversal 

distribution) on the propagation distance z and the coefficients a and rI. 

n = 1; m = 2 n = 2; m = 3 n = 1; m = 3 

( ) I

c

I

r a
z

az r
α =

−
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4. Numerical simulations 

This analysis can be tested using a wave optics approach, and the two results are compared in 
Fig. 3, where the cone angle is plotted as a function of distance. As per the design, the cone 
angle decreases with increasing distance. In the paraxial approximation (large separation 
distances) the two solutions are in very good agreement. 

 

Fig. 3. Dependence of the cone angle from the geometrical optics and the wave optics 
approaches for different parameters of n and m. Design parameters where a12 = 2 × 10−3; a23 = 
1 a13 = 1.2 × 10−3 where the subscripts refer to orders n and m, and rI = 3 mm. 

As the field propagates so it maintains its shape (Bessel), all the way to the far-field. This 
is shown in Fig. 4 with specific cross-sections shown in Fig. 5. 

#227141 - $15.00 USD Received 19 Nov 2014; revised 30 Jan 2015; accepted 1 Feb 2015; published 11 Mar 2015 
© 2015 OSA 23 Mar 2015 | Vol. 23, No. 6 | DOI:10.1364/OE.23.007312 | OPTICS EXPRESS 7316 



 

Fig. 4. Examples of the propagation characteristics of Bessel-like beams over an extended 
distance for rI = 1 mm, λ = 633 nm and (a) a12 = 2.8 10−3, (b) a13 = 8.7 10−3, (c) a23 = 0.2. Note 
that at the plane z = 0 the beam is a phase modulated Gaussian beam and not a Bessel function. 

 

Fig. 5. The far-field intensity pattern for two examples of n and m overlaid with this is a fit of 
an ideal Bessel beam intensity (red). The following parameters for the initial field were used: 
(a) (n = 1, m = 2): a12 = 2.8 10−3; (b) (n = 2, m = 3): a = 0.2, for rI = 1 mm, λ = 633 nm. 

Such Bessel-like beams have some interesting properties that have been reported on 
previously: they are not non-diffracting but shape preserving, and may be tailored to have a 
higher on-axis intensity than the equivalent Gaussian beam incident on the optic. Note 
however that the shape is not an ideal Bessel function near the optic but becomes increasingly 
more so during propagation. This is evident in Fig. 5 where the Bessel fit to the beam profile 
is shown. However the deviation of the beam’s intensity profile from a Bessel function is very 
small, particularly the central region of the field. Given this, and the fact that the far-field is a 
Bessel function and not an annular ring, the beam can be consider shape-invariant. 

6. Experimental verification 

To verify the theoretical results we made use of a phase-only spatial light modulator to create 
our shape invariant Bessel beams following Eq. (1). It should be noted that prior multi-
element approaches with propagation distances between the elements prohibited such a 
realisation of these beams. We expanded a Gaussian laser beam from a Helium-Neon laser 
and modulated it following Eq. (1) using a phase-only spatial light modulator (SLM). Our 
SLM (HoloEye Pluto, 1080 × 1920 pixels) was calibrated for the operating wavelength to 
produce a maximum of 2π phase shift over the full range of grayscales in the programmed 
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holograms. The experimental set-up together with some example holograms are shown in Fig. 
6. 

 

Fig. 6. (a) Schematic of the experimental set-up. (b) Some example holograms for creating 
Bessel-like beams and the resulting measured intensity profiles. The laser was continuous wave 
at a wavelength of λ = 632.8 nm. It was expanded through a 3x magnification telescope (f1 = 
100 mm and f2 = 300 mm) and directed to the SLM. The holograms on the SLM have a 
depicted range from 0 (white) through to 2π (black) phase shift in 256 steps. The beam after 
the SLM was Fourier transformed with lens L3 (focal length f3 = 200 mm) and the resulting 
beam measured on the CCD camera at the focal plane of this lens. 

Figure 7 shows a comparison of theoretically predicted (top) and experimentally measured 
(bottom) beam profiles in both the near and far fields, the latter taken at the focal plane of a 
Fourier transforming lens, for the case of n = 1 and m = 2. The experimental results are in 
very good agreement with the theory presented earlier. Consequently we can conclude that 
our field is indeed shape invariant as required by theoretical analysis. 

 

Fig. 7. (a) Near-field and (b) Far-field images of the Bessel-like beam, both theoretically (TOP) 
and experimentally (BOTTOM). The near-field experimental image was at a distance of 62 cm 
from the optical element, while the far-field was measured at the focal plane of a lens with a 
focal length of 40 cm. 

In Fig. 8 we measure profiles for a range of propagation distances and extract the cone 
angle from the fit of the Bessel function to the intensity plots. The experimental results (data 
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points) match the theoretical curves very well for all the tested phase elements. As the theory 
is based on a simple geometrical approach, the results match better towards longer 
propagation distances. The values of kr were extracted from fitting Bessel functions to the 
beam intensity cross-sections [Fig. 8(b)], and the error bars show the uncertainty in the fitting 
routine. There was sufficient resolution in the beam intensity measurements for the fitting. 

 

Fig. 8. (a)The experimental verification of the z-dependent radial wave number 

( ) ( )
r c

k z k zα= , as given in Table 1 for following parameters of the phase screen and laser 

beam: λ = 633 nm, a = 0.01, rI = 0.85 mm. (b) Correspondingly obtained experimental intensity 
distributions at distances 0.8 m (1 and 2) and 1.6 m (3 and 4) and for n = 1, m = 2 (1 and 3) ; n 
= 2, m = 3 (2 and 4). 

7. Discussion 

One of the advantages of this approach is that the transformation from the Gaussian to the 
Bessel-like beam can be executed in a single phase-only device, thus making implementation 
on a spatial light modulator possible. Previous work in this field has considered multiple 
element designs with significant propagation distance between the elements. In such systems 
it is not possible to simply reduce the system to a thin element approximation by considering 
the total optical path length. As a consequence, whereas previously the properties of the 
Bessel-like beam could be controlled by adjusting the distance between elements, thus 
requiring optical realignment, here we can move within the parameter space by simply 
changing a hologram, requiring no optical alignment. If the hologram is reduced to that of a 
single axicon then the resulting beam is again the well-known Bessel beams. Our results may 
be extended to higher azimuthal orders, to create Bessel-like beams that carry orbital angular 
momentum [23], by simply modulating the holograms with an appropriate azimuthally 
varying phase. 

There are however some limitations to these beams: the Bessel-like character is very 
accurate close to the center of the field and less accurate at the perimeter of the field, which 
can be rather complicated in structure as observed elsewhere [21]. This is also a characteristic 
of Bessel beams created with axicons. However, if the central region of interest is considered, 
then indeed the Bessel-like beam is shape invariant from a short distance after the optic 
through to the far field. 

8. Conclusion 

We have outlined a simple design approach to produce shape invariant Bessel beams from a 
single phase-only element, and then implemented the concept with digital holograms written 
to a spatial light modulator. Our experimental results confirm the theory, and thus we offer an 
easy to implement method for creating such beams. The advantage our single element 
approach will likely be apparent in compact applications such as holographic optical trapping 
and tweezing. 
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