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Abstract

The Anti-parallel edge Centerline Extractor (ACE) algorithm is
designed to extract road networks from high resolution satel-
lite images. The primary mechanism used by the algorithm
to detect the presence of roads is a filter that detects parallel
edges with a specified distance between them. The success of
the ACE algorithm thus depends critically on the quality of the
edges that are extracted early on in the algorithm, typically us-
ing Canny’s edge detector. This paper investigates the viability
of an ACE variant that uses a different edge detector, modelled
on the primary visual cortex (V1). Considering the experimen-
tal evidence, it seems unlikely that the V1-based algorithm is
able to produce better results than the original Canny-based al-
gorithm.

1. Introduction
The fully-automatic extraction of road networks from satellite
imagery is a problem that has not been solved to the desired
level of accuracy yet. Current systems, usually using a combi-
nation of techniques (e.g. [1, 2]) manage an overall extraction
quality of around 70%.

These algorithms can be classified by the number of as-
sumptions they make regarding the input scenes, or by degree of
training that they required. On this scale, the ACE algorithm [3]
makes only one explicit assumption, namely that the road width
is known in advance. This makes the ACE algorithm useful as a
first algorithm that can be used to bootstrap more sophisticated
algorithms.

Within the South African context the need for automated
road network extraction is clear. In particular, an automated
road network extraction system that can successfully extract
roads from low-income and/or informal settlements would be
invaluable to emergency services. With the pending launch
of ZASAT-002 [4], recently renamedSumbandilaSat, mean-
ing ‘Lead the way’ in Tshivenda, researchers in South Africa
will soon have access to affordable high-resolution satellite im-
agery. ZASAT-002 will offer a 2m resolution panchromatic
band, which will be ideal for road network extraction using the
ACE algorithm.

This paper investigates the possibility of improving the per-
formance of the ACE algorithm by replacing the Canny-based
edge detector it relies on with a different, neural network-based
algorithm.

Section 2 provides a brief overview of the two edge detec-
tors used here, followed by a description of the road network

extraction process in Section 3. Some experimental results are
presented in Section 4, followed by some concluding remarks
in Section 6.

2. Edge Detectors
Edge detectors are algorithms that detect large changes in in-
tensity within a relatively small area in digital images. A large
number of edge detectors exist in literature, with Canny’s algo-
rithm [5] being amongst the most popular.

A rather different edge detection algorithm, inspired by the
primary visual cortex (V1) in primates, was proposed by McK-
instry and Guest [6]. Brief descriptions of these algorithms fol-
low.

2.1. Canny

Canny’s edge detector, first proposed in [5], is supported by a
computational theory that explains why the technique works.
Through this theory, Canny defined what an ‘optimal’ edge de-
tector is, and subsequently showed that the first derivative of a
Gaussian function serves as a good approximation to the opti-
mal edge detector. In practice, the first derivative of the Gaus-
sian function is implemented by first blurring the input image
with a Gaussian filter, and then computing the finite difference
derivative on the result. The algorithm can be summarised in
the following steps:

1. Blur the image with a Gaussian filter with a specified
varianceσ2.

2. Compute the finite difference derivative in thex andy
directions to yield the directional derivative approxima-
tionsGx andGy.

3. Compute the edge magnitude asG =
p

G2
x + G2

y, and
the edge direction as

θ = tan−1

„
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Gx

«
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4. The gradient direction of each pixel is then discretized
into one of eight possible sectors.

5. Non-maximum suppression is performed on the magni-
tudeG by suppressing all pixels of which their neigh-
bours, along the normal to the discretized gradient di-
rection, are not all strictly smaller than the current pixel.
This effectively ‘thins’ the edge magnitude image to a
single-pixel width.



6. Hysteresis is applied to the remaining non-maximum
gradient magnitudes. If a pixel’s magnitude exceeds
the high thresholdThigh, then the pixel is marked as an
edge pixel. All neighbours of this edge pixel are then
traced and labeled as edges, recursively, provided that
their magnitudes remain above the lower thresholdTlow.

The output of Canny’s algorithm is thus a bitmap of single-
pixel-width edges, along with the edge orientation,θ, for each
of these edge pixels.

2.2. V1 Neural Network

McKinstry and Guest [6] suggested a Neural Network (NN)
based edge detector that models V1 according to the most
prominent characteristics. These characteristics were identified
as:

Complex cells represent approximately 75% of the cells in V1
[6]. The complex-cells module comprises of a simple
cell orientation filter layer and a complex-cell response
layer.

Feature maps are modeled as an arrangement of complex cells
in a two dimensional feature map.

Long-range connectionswere determined within the fea-
ture maps through the Self-Organizing Map Extended
(SOME) algorithm [7].

The process involved with integrating these characteristics are
described in the following steps at the hand of Figure 1:

1. Each pixel is represented by a neuron in the Input Layer.
The neuron output is the gray-scale value of the corre-
sponding image pixel.

2. Simple cells serve as an orientation filter, within the
complex-cell module, and is modelled by Gabor func-
tions. The simple cell response is computed as

sφ = f(gφ ∗ I)

whereI is the is the intensity image,∗ a two dimensional
convolution,g the Gabor function, andφ the phases90o

and−90o. The Gabor function is computed as

g(x, y) = e−πσ2(x2+y2) cos(2πω[x cos θ+y sin θ]+φ)

whereθ is the orientation,ω the spatial frequency, andσ
the Gaussian variance.

3. The Gabor Receptive Field (GRF) was developed to
model complex-cell responses by computing the dot
product of simple cell responsessφ (difference of Gaus-
sian filter) and the Gabor Functiong(x, y). The GRF
output is therefore

c = f(g ∗ s90 + g ∗ s−90).

4. Please see Section 2.1 for a description on edge thinning
through non-maximum suppression.

5. The SOME algorithm is used to detect the long-range
connections between the complex cells. Since it is not
computationally feasible to connect each neuron to all
the neurons within a neighbourhood, the number of con-
nections is limited to 500. These connections are dis-
tributed at random within a circular annulus area with an
inner,rinhib, and outer,rhorizontal, radius.

Figure 1: Integrated V1 model.

After every 500 iterations, each neuron’s connections are
evaluated and redistributed if a low connection strength
is detected. New connections are formed with randomly
chosen neurons from a set of all neurons adjacent to ex-
isting connected neurons. This results in groupings of
connection where high synaptic activity occur, similar to
those found in V1.

The reader is referred to [7, 6] for a more in-depth dis-
cussion of SOME.

The result of the V1 edge detector is a binary image, con-
taining edges where neurons with high synaptic activity occurs.
Due to the nature of the SOME algorithm, high synaptic activity
occurs over long-range edges. This method is less susceptible
to noise and tends to discard short edges, resulting on an em-
phasis on longer continuous lines, which is expected to lead to
improved results on road network extraction.

3. Road Extraction
3.1. ACE

Simple edge detection methods are not suitable for high reso-
lution images with a ground sampling distance1 of less than 5
meters, since a typical road will appear as a feature several pix-
els wide. It is, however, possible to use edge information if an
algorithm is constructed to consider pairs of parallel edges with
opposing gradient directions. Consider the profiles of a cross
section of a road, and its corresponding derivative, as shown for
an idealised road in Figure 2.

Note that, in the gradient plot (Figure 2 b), the edges of the
road are visible as two local extrema with opposing signs.

The ACE algorithm described in [8, 3] is one method that
extracts candidate road segments by locating such edges with
opposing gradients. First, a Canny edge detector is used to find
significant edges within the image, which is followed by a3×3
Sobel filter to determine the edge orientation. Therafter, the
edge image is scanned horizontally and vertically, for succes-
sive pixelsp andq that satisfy the distance and gradient orien-
tation conditions. The conditions can be summarised as follows
(See Figure 3):

• The gradient atp must be approximately equal to the gra-
dient atq plus180◦.

• If ~w is the vector fromp to q, and~wpq represents a vector
in the gradient direction atp with its magnitude equal to
the expected road width, then the angle between~w and

1a remote sensing term that corresponds roughly to the familiar no-
tion of ‘pixel size’
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Figure 2: Profile of a idealised road, with noise added
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Figure 3: Anti-Parallel Edge detection, as used in ACE

~wpq must be consistent with the distance betweenp and
q, so that

‖~w‖ cos φp ≈ ‖~wpq‖

If these conditions are met, the midpoint betweenp and q is
marked as a road centerline.

In [3], colour-infrared images were used as input to the
ACE algorithm, with the best extraction result occurring when
principal component 2 was used, rather than applying ACE to
each band individually. For this paper, only panchromatic (i.e.
grayscale) imagery was used.

3.2. Self-Organizing Road Map

The Self-Organizing Road Map (SORM) was developed by
Doucetteet al. [9, 3] as a topology verification and road net-
work construction technique. SORM is a spatial clustering al-
gorithm that links elongated neighbouring regions of similar
orientations. The SORM algorithm is typically applied to line
segments obtained from a low-level algorithm, such as ACE.

The main function of the SORM algorithm is to remove un-
wanted, isolated pixel clusters that do not form part of a road,
while at the same time reinforcing the valid segments that are

Figure 4: Data flow representation of road network extraction
process

likely to form part of the road network. The latter is typically
achieved by bridging small gaps between line segments that
have similar orientations.

The degree to which the SORM algorithm can repair a noisy
centerline image (as produced by ACE) is limited, and as a re-
sult the quality of the output of SORM is significantly affected
by the quality of the input image. To this end, it is advisable to
remove all connected component smaller than some threshold,
ccmin before the image is processed with SORM.

Implementation details of the SORM algorithm can be
found in [9, 3].

3.3. Road extraction pipeline

Figure 4 illustrates how the various components that make up
the road network extraction algorithms fit together.

In Section 3.2 it was mentioned that the SORM algorithm is
sensitive to the size of the smallest connected component in its
input. To investigate the impact of this parameter, and thereby
optimise the performance of the overall system, the connected
component filter minimum component size will be treated as a
system parameter in the experiments of Section 4.

4. Experiment
4.1. Quality Metric

The output of the two variants of the ACE algorithm presented
here will be compared using the quality metric suggested by
Heipkeet al. [10, 11], which compares extracted centerline vec-
tors to a reference set.

To simplify the calculation of the quality metrics, a raster-
based approximation was implemented to produce the results
presented here.

In order to measure the quality of the extracted road center-
lines, a reference set must be available, giving the true position
of the road centerlines, known as the ground truth. For the im-
ages used in this experiment, the ground truth was obtained by
manually tracing out the road centerlines, and saving the result-
ing bitmap images. An example of such a ground truth image is
presented in Figure 6.

Heipke’s quality metrics require the calculation of ‘buffer
zones’ around the ground truth centerlines. In the raster imple-
mentation, this requires the morphological dilation [12] of the



ground truth images with a disc of radius 3 as structuring ele-
ment.

The following symbols are defined:

Symbol Meaning
Le length of extracted line segment
Lr length of reference line segment

Pixels in the extracted centerline images that are covered by the
dilated ground truth image are counted as true positives (TP).
Pixels in the extracted centerline images that are not covered by
the dilated ground truth images are counted as false positives
(FP). Lastly, the difference between the number of on-pixels in
the ground truth image, and the number of true positive pixels
is called the false negatives (FN).

Using these quantities, the following metrics are defined:

Completenessis a measurement of the percentage of the ref-
erence road network that has been extracted.
The completeness metric is calculated as:

completeness =
matched Le

Lr

≈ TP

TP + FN

wherecompleteness ∈ [0, 1]. A completeness value of
1 indicates that the reference network is entirely covered
by the buffer area around extracted network.

Correctness is the percentage of the extracted road network
that is also present in the reference set.
The correctness metric is calculated as:

correctness =
matched Le

Le

≈ TP

TP + FP

wherecorrectness ∈ [0, 1]. A correctness value of 1
indicates that the extracted network is entirely covered
by the buffer area around the reference network.

Quality is a measurement that combines completeness and
correctness.
The quality metric is calculated as:

quality =
matched Le

Le + unmatched Le

≈ TP

TP + FP + FN

wherequality ∈ [0, 1]. A quality value of 1 indicates
that the extracted network lies within the buffer around
the reference network and vice versa.

4.2. Parameter selection

Table 1 presents the results of applying the two ACE variants to
a set of 12 images, all with a dimension of512 × 512 pixels.
The values reported are median value over all 12 images, for
each of the metrics defined in Section 4.1.

Based on these results, accmin value of 7 was selected for
the Canny ACE variant. This corresponds to the setting with
a good compromise between obtaining the high quality rating,
but also a good correctness value, For the V1 neural network
ACE variant, accmin value of 6 was selected, as this again cor-
responds to the best combination of quality and correctness.

Table 1: Extraction results of ACE variants for various mini-
mum connected component filters. The column headings are
as follows: ccmin is the minimum connected component size,
cor denotescorrectness, com denotescompleteness, andqual
denotesquality.

Canny V1 Neural Net
ccmin cor com qual cor com qual

5 0.732 0.606 0.498 0.864 0.357 0.302
6 0.839 0.562 0.488 0.932 0.342 0.303
7 0.868 0.540 0.480 0.927 0.318 0.294
8 0.851 0.518 0.470 0.895 0.306 0.298
9 0.863 0.498 0.442 0.899 0.265 0.258

10 0.893 0.492 0.430 0.912 0.268 0.256
11 0.909 0.488 0.442 0.915 0.252 0.250

Table 2: Explanation of image classes. The value in parentheses
indicates the number of scenes in each class.

Good contrast Poor contrast
Trees present class C (13) class B (5)
No/few trees present class D (12) class A (5)

4.3. Comparison

The ACE algorithm makes certain assumptions regarding the
nature of the input image. The first assumption is that the road
widths are known in advance — this assumption is readily satis-
fied for remote sensing images, since pixel sizes are fully spec-
ified via projection metadata. The four classes presented in Ta-
ble 2 were selected to reflect some of the implicit assumptions
that the ACE algorithm makes.

The second of these assumptions is that sufficient contrast
exists between roads and their immediate surroundings. This
assumption is satisfied when looking at well-developed subur-
ban areas, with newly tarred roads. Image classes C and D rep-
resent such areas where the contrast is (for most of the roads in
the scene) sufficient for the edge detection algorithms to detect
strong edges.

The third assumption that ACE makes regards the continu-
ity of visible road edges. In established suburban areas it is not
uncommon to have large trees growing next to the road, often
occluding a significant fraction of the road surface. This re-
sults in one (or even both) of the road edges being fragmented,
thereby resulting in the failure of ACE to extract a centerline.
Images in classes C and B include examples of partial to near
complete occlusion of the road surface.

Table 3: Stratified comparison of extraction quality: Canny
ACE + SORMvsV1 NN + ACE + SORM. The column head-
ings are as follows:cor denotescorrectness, comdenotescom-
pleteness, andqual denotesquality.

Canny V1 Neural Net
Class cor com qual cor com qual
class A 0.066 0.013 0.011 0.329 0.025 0.024
class B 0.811 0.341 0.314 0.760 0.272 0.249
class C 0.900 0.368 0.345 0.915 0.261 0.252
class D 0.789 0.500 0.442 0.880 0.339 0.322



Figure 5: Sample scene03-D.

Figure 6: Ground truth for scene03-D.

(a) Canny edges (b) Canny ACE

(c) Canny ACEccmin=7 (d) Canny SORM (final)

Figure 7: Canny + ACE + SORM applied to scene03-D

(a) V1 NN edges (b) V1 NN ACE

(c) V1 NN ACEccmin=7 (d) V1 NN SORM (final)

Figure 8: V1 NN + ACE + SORM applied to scene03-D

4.4. Sample outputs

Sample output for the two ACE variants have been pro-
vided in Figures 7 and 8. For reference, the quality met-
ric values for this scene (scene03-D) are as follows:

Metric Canny V1 NN
correctness 0.985407 0.925106
completeness 0.628306 0.532321
quality 0.622513 0.510329

5. Discussion
Based on the results presented in Sections 4.3 and 4.4 it would
appear that the Canny-based algorithm yields extracted road
networks of superior quality. In particular, looking at Table 3,
it appears as if the Canny-based algorithm delivers a fairly sub-
stantial increase of about 10% in performance over the V1 NN-
based algorithm on all image classes, except class A.

That being said, a randomisation test at a 5% confidence
level detected no statistically significant differences between the
two algorithm when applied to each of the classes individually,
which would thus lead to the acceptance of the null hypothesis
stating that both the algorithms have similar performance.

When this randomisation test is repeated at a 10% confi-
dence level, then a statistically significant difference is detected
in class D (for both completeness and quality) and in class C
(only for completeness). Given the large confidence interval,
it is probably safer to accept the overall null hypothesis recom-
mended by the 5% confidence interval test, and concede that the
algorithms perform similarly.

Thus, even though Canny achieved a fairly substantial in-



crease in performance over the V1 flavour, it is not a statistically
significant increase.

Additional test datasets, especially different sensor data,
would help to confirm if indeed a statistically significant dif-
ference between the two ACE variants exists.

6. Conclusion
Despite the evidence in the literature that the V1 NN-based edge
detector has superior edge coherence [6] compared to Canny’s
algorithm, it does not appear to translate into superior road net-
work extraction quality.

A few factors that might influence the performance of the
V1 NN-based algorithm have been identified:

1. The V1 algorithm might be more sensitive to the contrast
between roads and background.

2. The detected edge positions might differ from the edge
position reported by Canny’s algorithm, thus affecting
the apparent width of the road. This effect was compen-
sated for to some degree by adjusting the width parame-
ter in the ACE algorithm, however, no systematic study
of this effect has been performed yet.

3. The ACE algorithm requires fairly accurate edge orien-
tation information. Since the V1 NN-based algorithm
implementation used in the experiments did not provide
edge orientation information, it was estimated by com-
puting the gradient direction under the detected edge pix-
els. Given the point 2 above, this could result in signif-
icant edge orientation errors. The influence of this has
not been studied yet.

Based on the experimental evidence it seems unlikely that the
V1 NN-based road network extraction algorithm is able to pro-
duce better results than the original Canny-based algorithm.
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