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Abstract

In this work, droplet-droplet interaction is modelled using a multi-scale approach
which couples multiphase flow simulation using a volume of fluid method to a
surface thin film model operating on the sub-grid scale. The volume of fluid
model is based on a multiple marker method with a smoothed surface tension
calculation, and a thin film model is derived to simulate film drainage using a
Reynolds equation approach. A novel method of coupling the two allows for
the prediction of coalescence or rebound of colliding droplets essentially from
first principles, relying only on a critical film thickness parameter. The model
is implemented using the open source tool set OpenFOAM and tested against
experimental results of colliding hydrocarbon droplets from the literature. It is
found to produce accurate interface deformation results for the duration of the
collision, and to consistently predict the outcome of the collision process.

Keywords: Coalescence, Thin film, Droplets, VOF, Reynolds equation,
Multiphase

1. Introduction

This work consists of the development and validation of a reduced-order sur-
face thin film model coupled to a multiple-marker volume of fluid (VOF) method
[1 2], to model droplet-droplet interactions and their resultant coalescence or
rebound. Droplet-droplet interaction is found in various industrial applications
involving sprays, such as turbojet and rocket engines [3], internal combustion
engines [4], and spray drying [5]. The resulting coalescence events influence
the hydrodynamic and fluid transport phenomena that govern the overall flow
behaviour, affecting the droplet size distribution and shape which in turn influ-
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ence the overall optimal operating conditions. However, there are difficulties in
modelling the collision process computationally.

Several multiphase flow modelling techniques are available to deal with
droplets entrained in a fluid. These methods differ in their description and
treatment of the droplet-fluid interface. Euler-Euler and Euler-Lagrange type
methods model the distributed droplets as a continuous field, or as idealised
point particles, respectively, and therefore need to employ empirical correla-
tions when modelling coalescence [6]. They are therefore heavily reliant on
prior knowledge and assumptions about the flow structure. On the other hand,
interface tracking methods [7] can be computationally intensive due to the mesh
deformations required and, due to mesh entanglement, demand great algorith-
mic complexity to capture large topology changes that result when droplets
interact. The interface capturing VOF method provides a direct numerical sim-
ulation (DNS) approach to modelling droplet-droplet interactions. Although it
is straightforward to implement computationally it has two major drawbacks:
Firstly, inaccuracies in modelling the surface tension force [8 [9] [0, 11, and
secondly the inherent nonphysical coalescence that results when two particles
are very close to each other [12] 2]. It is necessary to prevent the nonphysical
merging of interfaces so that particle rebound can be modelled correctly. Nobari
et al. [1] introduced a ‘ghost cell’ method to achieve this, imposing a Dirichlet
boundary condition on the volume fraction field along the collision plane which
is changed to a symmetry condition in order to merge the droplets. This method
is, however, restricted to head-on collisions. To handle the general case, Coyajee
and Boersma [2] developed the multiple marker method, where separate droplets
are treated as if they are different, immiscible materials. Various studies have
demonstrated excellent agreement between numerical computation and exper-
imental snapshots of colliding bubbles, provided the moment of coalescence is
correctly imposed [13, 14, 15| [16].

The occurrence of coalescence and hence the outcome of the collision process
is determined by the dynamics of a thin film that forms between the droplets
as they come into contact. This introduces an enormous separation of length
scales: Not only are the droplet diameters usually on a smaller length scale
than the overall flow structures, but the thin film is typically several orders of
magnitude thinner again than the droplet diameter. While the Euler-Euler and
Euler-Lagrange methods fold all length scales into one by means of phenomeno-
logical collision models, the interface tracking and capturing methods have to
resolve flow velocity and pressure all the way down to the scale of the film thick-
ness. Thus, to resolve the interface correctly, many studies of droplet-droplet
interaction using the VOF method have resorted to using adaptive mesh re-
finement to provide enough resolution to capture the dynamics of the thin film
[17, I8, 19). The very fine spatial resolution required renders these methods
computationally expensive, however.

The motivation of the present work is to introduce a multi-scale model in
which the thin film is resolved by a reduced-dimensional model. This eliminates
the need to resolve the film thickness, while still maintaining direct numeri-
cal simulation of the bubble shape. Such methods sit between Euler-Euler or



Euler-Lagrange methods and the direct simulation approaches in terms of com-
putational cost, but avoid the need for empirical correlations. This provides
a more practical method to conduct direct simulations of collision processes,
as well as to validate and calibrate higher-level phenomenological models from
basic principles.

A few studies have already progressed in this direction. Kwakkel et al. [16]
predict the moment of coalescence using the model of Zhang and Law [20],
a system of ordinary differential equations derived to determine film drainage
time. However, this model is restricted to head-on collision of identical droplets,
and it was noted that it did not give a sufficiently accurate estimate of the
film drainage time to produce an acceptable comparison with the experimental
results [I6]. A further step towards a more general, but still inexpensive model
of coalescence was taken by Mason et al. [I5], who applied a model for the thin
film based on a Reynolds-type equation and coupled this to the fluid-flow model
by prescribing velocity and thickness boundary conditions on the film equation
based on the grid-scale model. The procedure uses cylindrical symmetry to
reduce the film equation to a one-dimensional model, and a symmetry plane
to prevent numerical coalescence. The numerical results were tested against
one experimental result. Therefore, a more generic model that can be shown
to consistently predict the collision outcome for a variety of collision regimes is
still required.

In the present work, we have taken a similar approach to the one above.
However, while the textbook application of the Reynolds equation solves for
pressure given prescribed thickness or velocity boundaries, we develop a different
approach in which the coupling is reversed. In addition, our aim is to produce
a generic model which can work for the collision of dissimilar droplets moving
in any manner relative to each other during the collision, rather than being
restricted to head-on collision. The resulting method is demonstrated to be
self-consistent across all four experiments which are available as validation data.

2. Flow model

The equations that govern incompressible immiscible droplets dispersed in
a continuous fluid phase undergoing isothermal and laminar Newtonian three-
dimensional flow are the volume averaged conservation of mass, momentum,
and liquid-gas interface advection equations [2],
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These equations describe N immiscible droplets dispersed in a continuous
fluid phase with each droplet assigned a volume fraction field value a1, aso, ..., an
in the range [0, 1]. Here p is the density, u the velocity, p the pressure, u the dy-
namic viscosity, g the gravitational acceleration, and o the coefficient of surface
tension between the droplet and surrounding fluid. o is a smoothed volume
fraction field corresponding to each droplet, and &} is the signed curvature cal-
culated using the continuum surface force (CSF) method [2I]. Smoothing of the
volume fraction fields is achieved by solving equation , which is physically
equivalent to solving a heat-conduction equation over a certain time interval
starting with ay as the initial ‘temperature’ profile. The use of smoothed vol-
ume fraction fields improves the numerical calculation of second order gradients
and thereby significantly reduces the errors in the calculation of the surface
tension force using the CSF method [22]. Here, 7 represents the square of the
characteristic smoothing length and will be discussed further in Section[f.5] The
density, velocity, pressure and viscosity are cell averaged; for a quantity &:
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where ®( corresponds to the continuous fluid phase surrounding the droplets.

The formulation above is known as the multiple marker VOF method, which
uses separate indicator functions ay for each droplet and is essential to prevent
premature numerical coalescence [2]. Although simple and straightforward to
implement computationally, as it stands it is inadequate in that it prevents co-
alescence in all circumstances [2]. Thus, to model coalescence with this model,
this work extends the method to include a reduced-order surface thin film model
to predict the outcome of droplet-droplet collisions. Once coalescence is de-
tected, the separate indicator functions are merged.

3. Coalescence model

The collision process between droplets can be described in three stages based
on the film drainage theory of coalescence [23]. Consider two droplets: During
Stage 1, they approach each other, and as they do so a thin film of the sur-
rounding fluid is trapped between them as shown in Figure[l] In Stage 2, this
fluid film drains out, and lastly in Stage 3 the droplets will either coalesce or
bounce apart. The outcome depends on whether the thin film drains to a critical
thickness h., at which point inter-molecular interactions across the film come
into play, and it becomes unstable and ruptures [24]. This critical film thickness



Figure 1: Formation of thin film between colliding droplets

is a characteristic of a given pair of fluids and is therefore considered to be a
known quantity.

The thin film is thus an important aspect in modelling coalescence. The
method developed here is aimed at modelling the dynamics of the thin liquid
film during Stage 2 of the collision process. It calculates the film thickness and
compares it to the critical thickness to decide whether coalescence should occur.
Due to the extremely small scale of the thin film (typically, k. is of the order of
10~® m) a multiscale model is essential, where calculation of the film thickness
occurs on the sub-grid scale.

It is known from lubrication theory [25] that the Reynolds equation describes
the dynamics of a thin film between two moving interfaces. This can be derived
based on the assumption that the film thickness h is much smaller than the
smallest radius of curvature of the film surface, R (h < R). This implies that
the surfaces of the two droplets, forming the bounding interfaces of the thin film,
can be assumed to be locally planar at a given location in the thin film, though
not necessarily parallel. This assumption leads by a standard procedure to the
derivation of the Reynolds equation as detailed in or for example
by Hamrock et al. [26]. Considering a locally planar portion of the film where
we define local co-ordinate axes X; oriented such that X5 is normal to the film,
with the interfaces bounding the film located at (X, X2, X3) = (0, £h/2,0), di-
mensional analysis is used to show that the Navier-Stokes momentum equations
(2) inside the thin film reduce to

5p - 8211,173
X1, ox2 0
and
dp

i.e. that the viscous forces dominate over inertial and gravitational forces in the
thin film. Here, u; are the components of velocity in the directions of the X; co-
ordinate axes. Equations imply that u; and uz have a quadratic profile with



respect to X for —h/2 < X5 < h/2. Applying boundary conditions uy 3 = Ul(l?))

at Xo = h/2 and uy 3 = U1(23) at Xy = —h/2, where Ui(l’Q) are the components
of the boundary velocity at the film surfaces, yields
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Inserting this velocity profile in the equation for mass conservation and integrat-
ing across the film thickness then leads to the well-known Reynolds equation
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h
+ 2 X3 2

ot 0X,
BN A N SR N T
0X; \ 120X, 0X3 \ 121 0X3 )

As a surface rather than a volume model, the Reynolds equation removes the
need for numerical resolution across the film and constitutes the desired sub-grid
model.

Returning to the original Cartesian co-ordinate system, and subject to the
assumption h < R, equation can be written as

d(ph "
%wvwm—(qn)n]—v' 527

[Vp—(Vp-n)n]| =0,  (11)

where n is defined as the unit vector normal to the interface and

UL L u®

Q=" (12)
is the average boundary velocity vector based on the velocities at the two droplet

interfaces bounding the thin film.

4. Numerical implementation

The model equations are made up of equations 7 and f. Equa-
tions 7 govern the flow between colliding droplets while equation de-
termines the outcome of the collision by evaluating the thickness of the thin
liquid film.

In traditional applications of the Reynolds equation, would be used to
solve for pressure p given the time-variation of film thickness h. This approach
is taken by Mason et al. [I5] and by Harvie and Fletcher [27, 28], where the
film thickness is obtained directly from the volume fraction field, and the film
equation is used to solve for pressure. The coupling of the volume fraction to
film thickness introduces a degree of algorithmic complexity [28], which is eased
through the use of a symmetry plane at the coalescence boundary. In addition,
the coupling of the film pressure back to the grid level solution is made more
tractable by simulating only the liquid phase on the grid scale [I5].



In search of a simpler and more generic method, we start from the intuition
that the inter-droplet pressure should be determined, at least to a first approx-
imation, by the momentum of the incoming droplets: Regardless of how well
the flow in the thin film is resolved, the pressure must produce the reaction
force necessary to decelerate them. More precisely, one can make the following
argument: Consider that the pressure is approximately constant across the film
thickness [equation (8)], and hence that the pressure in the film is equal to the
pressure at the edges of the adjacent droplets, minus the surface-tension pres-
sure jump. Since the pressure variation in the droplets is directly related to the
velocity therein [according to equation }, it stands to reason that the thin
film pressure can be directly related to the surrounding pressure at the edges of
the droplets, provided the velocity field there is accurately represented. Thus,
we do not need to know the velocity profile in the thin film, but only its effect
on the surrounding droplets in the form of a lubrication force. The pressure
inside the thin film can therefore correctly be extrapolated from the droplet
edges after subtracting the surface-tension pressure-jump.

Thus, in the algorithm proposed here, we reverse the normal process of
solving the Reynolds equation by solving for h based on pressure, and then
feeding back a lubrication force to the boundaries of the droplets.

4.1. Initial droplet separation

The approach of solving equation for film thickness requires an initial
film thickness estimate hg to initialise the solution, as equation is only valid
when the droplets are close to each other. It is therefore necessary to devise
a way to measure the initial separation distance hg between the droplets that
is valid on the grid level (for separation of a few mesh cells or greater). For
this purpose, a graphical approach based on measuring the distance from each
droplet interface is used to approximate the separation hg between the particles.

Consider two interfaces that enclose fluids described by the volume fraction
fields a7 and agp which are close to each other in a computational domain.
Consider lines which start from the interfaces pointing in the direction of the
outward unit normal to the interfaces, n] and n3, given by

(13)

For a given point x, we now measure the perpendicular distance to the surface
. . 1,2)
of either droplet, at a point x;

unit normal direction,

, by a path integral along a ray in the negative
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Figure 2: Method of approximating initial separation distance hg = h(()l) + h((f) at a given
point x. The faint lines represent equally spaced contours of ais) from which the normal
()

vectors n;”’ are calculated

This is shown graphically in Figure
In the region between the two interfaces, an estimate of the separation dis-
tance between the interfaces is

ho = h$" + n{?. (16)

Since this gives the sum of the distance to interface 1 along the ray in direction
—nj and the distance to interface 2 along the ray in direction —nj from any
given point, the estimate becomes more accurate as the condition h < R is
approached and the interfaces become locally planar. This approach cannot
however be used to obtain distances that are smaller than a mesh cell spacing;
instead, the value of hg is used as an initial condition for the Reynolds equation

[TD).
In order to solve equations and using standard matrix solvers, we

rewrite them in differential form. The equations for hol) and h(()2) now become
VA ng =1-ay (17)
and
VA ng=1-as. (18)

The differential form above is transparent to a uniform offset of h(()l) or h(()2), SO
to enforce the correct offset we peg the value inside the droplet to zero through
the introduction of a binary switch,

[1— H(ar — 0.95)] (th” : nf) Y H(a1—0.95)88" = [1 — H(ay — 0.95)] (1—a1)
(19)

and

1 — H(as — 0.95)] (Vhff) : n§)+H(a2—O.95)h82) = [1 - H(as — 0.95)] (1—as).
(20)



Here the function H(z) is the Heaviside step function,

CCR &

Therefore, when a; > 0.95 or as > 0.95 the equations reduce to hél) =0 or
h(()Q) = 0 respectively, as required.

4.2. Discretisation method

A Finite Volume Method (FVM) of discretization is followed for the flow
equations 7, where the integral form of the governing equations on a finite
number of non-overlapping control volumes is used to obtain a system of coupled
nonlinear equations. The discretisation procedure is standard [29] and will not
be detailed here. Equation is valid in the thin film only, but for efficiency we
opt to solve it on the same grid, also using the FVM. This avoids the overhead of
assembling a second, surface, grid as a 2D representation of the film. Finally, the
initial separation estimation equations 7 can also be discretised using
the FVM.

From the initial separation distance , a region in space can be calculated
to determine where the Reynolds equation is activated. For this purpose we
define a switch 8 that turns the computation of the Reynolds equation on when
the separation estimate hy spans a few mesh cells and turns it off for larger
separations. This restricts the calculation of the equation to areas that are very
close to the thin film region. The boolean switch used to identify this region is
defined by

B =H (&x — ho) H(af —0.001)H (a5 — 0.001) (22)

where £ is a dimensionless parameter that determines the width of the region
where the thin film equation is solved as a multiple of the mesh spacing §z. Since
£ determines the point at which the calculation of film thickness switches from
the estimate calculated using 7 to the value h calculated from , we
refer to it as the ‘switchover parameter’. The factors H(aj—0.001)H (a5—0.001)
are used to exclude regions very far from the droplets where the interface normals
(derived from the smoothed alpha fields) may not be accurately calculated and
hence the initial separation estimate would be invalid.

Since the calculation of h is only carried out inside the thin film region 53, a
boundary condition must be applied for evaluation of the gradient of h at the
edge of the film region. A zero-gradient condition is applied at the edges to be
consistent with the fact that i should be a constant across the film.

The discretised form of equation evaluated using an implicit Euler



scheme is given by

hm+1
@prvaphmHZAf (Q-Q - nn);
!
7n+1 m+1 m+1

12u
+(1—-8p) (h}lf“ hom“) Vp =0, (23)

where subscript (-)p and (-); are quantities evaluated at the cell centres and
cell faces of the control volume (via linear interpolation where necessary), while
()™*1 and (-)™ are values evaluated at the new and old time step. Vp is the
volume of the computational control volume, and Ay is the surface area vector
that points in the direction normal to the cell face. At the faces which span
active (8 = 1) and inactive (8 = 0) cells, hy is set to the active cell value instead
of being interpolated, in order to satisfy the zero-gradient boundary condition.
The final term in equation causes the film thickness h to be set equal to
the estimated film thickness outside the vicinity of the thin film. This causes h
to be automatically initialised to the starting value of hg as the thin film region
grows.

For notational simplicity the tangential pressure term has been assigned a
new symbol, Vp, = Vp'—(Vp/'-n)n. Furthermore, in order to correctly represent
the pressure gradient in the sub-grid region between the droplets, the surface
tension pressure jump has been removed by subtracting the surface tension force
from the pressure gradient as follows:

N

Vp =Vp—Y_ orjVay. (24)
=1

Finally, a smoothing iteration is applied to Vp; in order to reduce artifacts
caused by parasitic currents in the VOF method. This is accomplished in the
same way as the smoothed volume fraction field equation , i.e. by solving

Vpi — Vp, = V2 (Vp;) . (25)

The remaining gradient operators are discretised using the standard Green-
Gauss discretisation.

4.3. Lubrication force

Since the distribution of fluid velocity across the thin film is known from
equation @, the traction on the droplet surfaces caused by the thin film lubri-
cation force can be calculated. Following @, the X7 and X3 components of trac-
tion on the surfaces at Xy = £h/2 with normal vectors (X1, Xs, X3) = (0, F1,0)
respectively, are given by

811,173
7'173}1}1/2 = FH 59X, ih/2- (26)
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Substituting the expression for fluid velocity given by equation @ into the above
and expressing it as a vector, the traction on droplet (1) and (2) respectively is

P00 = Lgprl (U ), (27)
where U, =U — (U -n)n.

In the thin film region activated by the indicator function 3, the lubrication
force is added to the momentum equation in a manner similar to the CSF
approximation of the surface tension, and replaces the viscous force term (which
is inaccurate due to the inadequate resolution of the thin film in the grid-scale
model). Accordingly, the momentum equation is modified as follows:

9(pu)
ot

2
+V-(puu) = —Vp+(1—6)V-(uVu)+pg+Z [O'szag + 879 |Vay|
0=1
(28)
(restricted to two droplets for clarity).

4.4. Surface velocity extrapolation

A further technical issue is the calculation of the field Q, which represents
the average of the droplet surface velocities at either side of the thin film. Since
we are solving the volume-discretised Reynolds equation , Q must be avail-
able throughout the film region, even if there is a gap of one or more mesh
cells between the droplets. To achieve this, the boundary velocities are extrap-
olated outward from the edges of the droplets along rays in the direction of the
outward-pointing normals ng This is performed using a similar procedure to
the calculation of hg described in section 1] The extrapolation is described by
the differential equations

n - vu® =0 (29)

and
nj - vU® =, (30)

where UM>(2) must be set equal to the fluid velocity u inside droplets 1 and 2
respectively. As in equations and , this is achieved using a Heaviside
step function as a switch, which leads to the following set of equations to be
solved:

[1— H(ay —0.95)]n - VUY + H(a; —0.95)(UN —u) =0 (31)

and
[1— H(azy —0.95)]n5 - VU® + H(ay — 0.95)(UP —u)=0.  (32)

These equations are also discretised using the finite volume method.
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4.5. Volume fraction smoothing

As argued in [22], the CSF method of calculating surface tension suffers
from inaccuracies caused by the discontinuity of the volume fraction fields cy.
Explicit smoothing methods have been used to ameliorate these effects [8] 30
31], as well as the implicit method proposed in [22]. Intuitively, the smoothing
should act over a few cells to be effective. In order to achieve this with a mesh-
independent parameter, we replace n at each cell face in the discretised version
of equation with

n=[x(é-ny) (33)

where § is the vector joining the two adjacent cell centres, and ny is the unit
normal to the face. x is a user-selectable constant determining the smoothing
length as a multiple of the cell spacing.

4.6. Solution procedure

A summary of the overall solution procedure is as follows:

e Calculate the velocity fluxes and advect the multiple VOF fields by solving
equation .

e Solve for smoothed volume fraction fields and curvature [equations ([5)) and

@)]-

e Using the pressure correction algorithm PISO [32], solve the pressure equa-
tion derived from the continuity equation 7 and solve the momentum
equation to determine velocity.

e (Calculate initial separation distance hy by solving equations and .
e Where hy is smaller than a certain number of mesh cells, ¢:

— Extrapolate boundary velocities by solving equations and .
— Solve the reduced-order surface thin film equation to obtain h.

— If min(h) < h., merge the volume fraction fields.
e Where hy is greater than & mesh cells:
— Set h = hy.
— Do not solve the reduced order surface thin film equations.

e Move on to the next time-step and repeat until final time is reached.

The VOF field equations are solved explicitly using the MULES interface-
capturing method of OpenFOAM [33]. The remaining discretised equations are
solved using the algebraic multigrid matrix solver provided by OpenFOAM.

12
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Figure 3: Pressure profile across stationary droplet for o = 0.01 kgs™2 (left) and o = 0.1
kgs™?2 (right), for various smoothing parameters.

5. Numerical evaluation

5.1. Selection of volume fraction smoothing parameter x

In order to evaluate the effect of the smoothing length y, we simulate a
2D stationary droplet with radius R = 1 mm, density p; = 1000 kg/m?® and
viscosity g = 1 x 1073 kg/m/s suspended in a gas with density p, = 1 kg/m
and viscosity py = 1.5 x 107° kg/m/s. Two different surface tension coefficients
are used: o = 0.01 kgs~2 and 0.1 kgs~2. The orthogonal mesh consists of 40
cells across the droplet diameter.

After 0.05 s of simulation time, the pressure increment across the surface of
the droplet is compared to the known analytical solution, given by the Young-
Laplace equation [34]:

Ap =0k (34)

where the curvature « is given by k = 1/R in two dimensions. The results are
shown in Figure [3| for the two surface tension coefficients and for y = 0,1 and
2. There is a clear discrepancy of approximately 13% for the predicted pressure
jump in the unsmoothed case (y = 0), while the predicted pressure jumps for
x = 1 and 2 are within 2.5% of the true value.

We wish to make the smoothing large enough to eliminate mesh-scale inac-
curacies caused by the discontinuity of the volume fraction fields ay, but not
so large as to smooth out genuine interface deformations on the scale of the
smoothing length. The results of Figure [3|support the intuition that smoothing
on the scale of one or two mesh cells is sufficient to significantly improve the
accuracy of the CSF method. Therefore, to avoid the risk of over-smoothing,
we select x = 2 for the remainder of this study.

5.2. Experimental and numerical set-up for evaluation of droplet collision

In the remainder of this section, the implementation of the reduced order
surface thin film model coupled to the multiple marker VOF method is tested
against the experiment described by Pan, Law and Zhou in [13]. The experiment
provides detailed time resolved interface deformation images of the head on

13



Liquid (Tetradecane) | Gas (Nitrogen)
Density p (kgm ™ °) 762 1.225
Viscosity p (kg/m/s) 2.13 x 1073 1.76 x 10~*
Surface Tension o (kgs™?) 0.0265

Table 1: Material Properties for Tetradecane and Nitrogen at 20°C

Quantity Case I | Case II | Case IIT | Case IV
Up (ms~1)]0.302 |0.24 0.496 0.596
R (um) 107.2 | 170.6 167.6 169.7
We 2.25 2.26 9.33 13.63
T (ms) 0.415 | 0.831 0.811 0.826

Table 2: Experimental parameters for the four test cases presented in [13]

collision of two identical Tetradecane (C14H3g) droplets in 1 atm Nitrogen gas.
The material properties are shown in Table

The four test cases described in [I3] are studied. We refer to these as Case
I — Case IV as they are presented in [I3]. The first two result in droplet coales-
cence and rebound (respectively) with minimal droplet deformation while the
last two produce rebound and coalescence with large deformations in the droplet
shapes. They are specifically selected to be close to the transition between the
two behaviours, and therefore provide a stringent test of any model seeking to
describe the process consistently. The experimental parameters, viz. individual
droplet velocity Uy (half their relative approach velocity), droplet radius R, We-
ber number We = 4p,U2 R/c, and droplet oscillation period T = 27+/p; R3 /80,
are shown in Table [2] for each test case. Here p; is the density of Tetradecane.

Since the radii of the droplets is O(10~3 m), gravity is negligible compared to
surface tension forces and the term pg in the momentum equation is neglected.
The simulations are performed on an axisymmetric structured, Cartesian and
uniform mesh. The domain dimensions are 5D x 2D where D is the correspond-
ing droplet diameter, and an initial mesh size of 720 x 160 elements is used, i.e.
0(100) elements across the droplet diameter.

Since the known approach velocity is measured at the time when the droplets
have a separation of approximately 1.5D, we initialise the numerical simulation
with a separation of 1.5D and the liquid velocity set uniformly to the prescribed
initial value. It is noted that the velocity field in the droplets and surrounding
gas adjusts to a steady profile in a time much shorter than the droplets take
to meet, and that the overall droplet velocity is not perceptibly changed during
this initial settling period.

The boundary conditions for the pressure are set to zero gradient at the
walls with an internal air pressure set to 1 atm. A no-slip velocity boundary
condition is set at the walls with an initial internal gas velocity of zero and
velocity within each droplet set to Up.
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5.8. Selection of switch-over parameter &

In the determination of the thin film region 3, the numerical parameter
£ is required to determine the mesh cell spacing at which to switch from the
geometric determination of the initial separation hg to the solution h of the
surface thin film model. It is essential that the results are not sensitive to the
value of £ used in the simulations. If it is too small, then the results will be
corrupted by the finite mesh resolution of the inter-droplet region. On the other
hand, it should not be larger than necessary so that the assumption h < R is
satisfied as closely as possible.

Therefore, to determine an appropriate value of £, we observe the results of
Case IV with & varied from 3 to 8. For the purpose of this assessment we set
h. = 0 to inhibit coalescence and observe the Reynolds equation being solved
for the duration of the contact between the droplets. We have selected Case IV
for this experiment as it is the most dynamic case, expected to present the most
stringent test. Figure [f] shows the minimum film thickness across the domain
(denoted hpgin) attained for different values of €. Between £ = 6 to & = 8 the
value of hypin changes by less than 1% and therefore the value £ = 7 is selected
as sufficiently large.

7X10_7 T T T T

6x1077
5x10°77

4x10”7

hMin [m]

3x107 | .
2x107 | E

w7’ f .

0 ! ! ! !

Figure 4: Minimum film thickness hy, for Case IV, as a function of switchover point from
estimated to computed film thickness

5.4. Mesh dependence

To evaluate the mesh dependence of the model, we consider the same Case
IV described above, where the minimum film thickness is plotted as a function
of time for four different meshes. We start with a coarse mesh of 270 x 60
elements (approx 30 elements across the bubble diameter), repeatedly reducing
the mesh spacing by a factor of 1/4/2 to produce ‘Medium’, ‘Fine’ and ‘Finer’
meshes. The results are shown in Figure
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Figure 5: Minimum film thickness hygi, as a function of time for Case IV, for various mesh
densities

Whilst showing, predictably, some dependence of the result on mesh reso-
lution, these results indicate convergence to a final value of the minimum film
thickness. The ‘Finer’ mesh was used in the subsequent analyses.

5.5. Critical film thickness

The one physical parameter present in the model is the critical film thickness
h. at which film rupture, and therefore coalescence, occur. This is assumed to
be a universal parameter for a given pair of fluids, but is not known beforehand.
We therefore use the first experiment as a calibration, setting h. to achieve the
best correspondence with the numerical results, and then use the other three
experiments to test the model.

Similar to the determination of £, h. is initially set to zero and the numerical
results at £ = 7 are obtained for the four test cases, using the ‘Finer’ computa-
tional mesh. The results are shown in Figure[6] In order to achieve coalescence
in the first experiment, a value h. > 4.36 x 10~ "m is sought. Starting from
this value, we run the simulation again and compare the interface deformation
snapshots, adjusting h. until the best correspondence is achieved.

5.6. Interface deformation

The time series interface deformation plots of the droplets for Case I are
shown in Figure[7] and compared to the experimentally obtained photographs
presented in [I3]. The value of h. used to generate Figure [7]is 4.37 x 10~ "m,
which yielded the best comparison between experimental and numerical results
for that case. Cases II-IV were then simulated with the same value of h., and
the results shown in Figures
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Figure 6: Minimum film thickness hyin as a function of time for Cases I-IV

The interface deformation shows excellent agreement throughout the simu-
lation time for both the calibration simulation (Case I) and the validation tests
(Cases II-IV). In particular, the moment of coalescence can be seen to be very
accurately predicted in Case IV (two panels at bottom left of Figure , and
the absence thereof correctly predicted in Cases IT and III. The numerical results
are obtained at a reasonable computational cost without the need to excessively
refine the computational mesh.

5.7. Comparison with other studies

Several other studies have compared against the same set of experimental
data. Pan et al. [13] calculated the minimum film thickness for the cases re-
sulting in merging to be 2 x 10~7 m. This is in fairly close agreement with the
value arrived at here of 3.37 x 1077 m. By contrast, in the work of Mason et
al. [15] a critical film thickness of 0.4 x 10~7 m obtained agreement with the
results referred to as Case IV above, and did not consider the other three test
cases. Chen and Yang [35] used the head-on collision resulting in bouncing to
test their adaptive mesh refinement technique using an axisymmetric simulation.
The minimum cell spacing used in their simulations was roughly 1.5 x 1078 m
and a minimum gas film thickness of 3 x 10~7 m was calculated, also in good
agreement with the results obtained here where a minimum mesh cell spacing of
roughly 1.2 x 1076 m — two orders of magnitude larger — could be used thanks
to the multiscale approach.

In [13], it is discussed that the actual film thickness at which breakup should
occur due to Van Der Waal’s forces coming into play, is an order of magnitude
smaller than that which is predicted by continuum models, such as the present
one and those discussed above. This is due to the film thickness becoming small
compared to the molecular mean free path, rendering the continuum formulation
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Figure 7: Time series interface shape deformations for Case I, showing experimental snapshots
from [13] (L) and numerical computations (R). A grid of 50 pum is shown for scale.

inaccurate at very small film thickness. Nonetheless, it is argued in [I3] that the
continuum formulation holds predictive power, and the results presented here
support this. The quantity h., however, needs to be interpreted merely as a
parameter of the model, without a direct physical interpretation.

A method of compensating for the inaccuracy in the continuum formulation
is presented in the related work of Harvie and Fletcher [27], whereby a partial-
slip velocity boundary condition is used at the film surface. However, in [15],
a no-slip boundary is used, as in the present work, and therefore this does not
account for the discrepancy in the results compared to the present work as well
as the other continuum models discussed above — even though it is closer to
the result that would be expected if non-continuum effects were accounted for.
In [I5] it is discussed that parasitic currents stemming from the CSF surface-
tension formulation are seen to increase with increasing mesh refinement. This
could make it difficult to obtain a mesh independent result. Additionally, since
the film thickness is directly obtained from the volume fraction arrangement in
the volume-of-fluid mesh, it is possible that this would be disturbed apprecia-
bly by spurious currents on the surface of the droplet. The inverse coupling
arrangement presented in this paper, by contrast, is not sensitive to the precise
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Figure 8: Time series interface shape deformations for Case II, showing experimental snapshots
from [13] (L) and numerical computations (R). A grid of 50 pum is shown for scale.

separation of the volume fraction fields since it is coupled via the pressure which,
it has been argued, is a better behaved quantity for the purpose.

6. Conclusion

To model droplet-droplet coalescence a reduced-order surface thin film model
coupled to a multiple marker VOF method was presented. The model was
derived based on the thin film drainage theory which assumes the presence
of a gas film between interacting droplets and takes the form of a Reynolds
equation. The governing set of equations was discretised using a FVM and a
numerical solution obtained using an implicit scheme with pressure correction.
The implementation in this study uses the pressure from the Navier-Stokes
equations as an input into the thin-film model. The film model is initialised
with a grid-scale film thickness and thereafter allowed to solve on the sub-grid
scale with pressure as the only input. This is in contrast to the otherwise similar
technique of Mason et al. [I5] where velocity boundary conditions from the grid-
scale flow model are applied to the film model, which is then used to solve for
pressure.

The method was tested by simulating the binary collision of identical Tetrade-
cane droplets in 1 atm. Nitrogen and demonstrated the predictive power of the
surface thin film model. Although the critical film thickness was set based on
the first experimental datum, the results showed excellent agreement with the
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Figure 9: Time series interface shape deformations for Case III, showing experimental snap-
shots from [13] (L) and numerical computations (R). A grid of 50 pm is shown for scale.

other three experiments of Pan et al. [I3] under different collision conditions.
The method was shown to accurately predict the deformation of the droplets
for the duration of the collisions.

Although this method has been described and validated for droplets (i.e. lig-
uids suspended in a gas phase), it is also applicable if the phases are reversed and
colliding bubbles are considered. Bubble coalescence has a significant impact
on the performance of bubble-column reactors [36], among other industrial pro-
cesses. In addition, this method would be applicable with slight modifications
to analyse the thin film trapped between a droplet and a wall, and therefore the
smearing or rebound behaviour of the droplets. This is of interest in modelling
the behaviour of fuel in combustion chambers [3].
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Figure 10: Time series interface shape deformations for Case IV, showing experimental snap-
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apparent discrepancy in panels (h) and (i) can be explained by the fact that the photographs
capture a silhouette rather than the slice shown on the right.
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Appendix A. Derivation of Reynolds equation

It is assumed that the film thickness A is small, specifically that it is every-
where much smaller than the local radius of curvature of the film surface, R:
(h < R). Thus, the film surfaces are locally planar, and at any given location
we define local co-ordinate axes X; oriented such that X5 is in the direction of
the mean of the normals of the interfaces bounding the film, and the interfaces
are located at (X1, X2, X3) = (0,+h/2,0). Ul(1’2) are the components of the
boundary velocity at Xo = +h/2 respectively.

Starting from the Navier-Stokes momentum equations (2)), in the three co-
ordinate directions with ¢ = 1...3 these become

ou; ou; n ou; . ou; _ dp BQuZ 0%u; +8 n
ot "Mox, T "ax, T"™ax, ) T Tox, M\oxz Taxz Taxz) T

(A1)
Dimensional analysis is used to determine which terms in the above equations
dominate. Let the characteristic length in the X; and X3 directions be given by
the radius R of the droplet, and the characteristic length in the X5 direction by
the film thickness h. Let U denote the characteristic velocity magnitude, and
the characteristic time be R/U. The characteristic pressure used is the pressure
drop for Poiseuille flow, 4V R/h?. The equations in non-dimensional form
are then given by:

8u’{73 *6u*1‘73 R *3u’1‘)3 *8u’{73
Re — U3
B 8X§ 0X;
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(X1, X3 components), and
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he (8t*+ Uigx: T R"axg T Uaxg ) T
3 2 2 92 2
R° Op* O%uy  R? 9%uy  0%u pg2 R (A.3)
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(X5 component), where the starred quantities are non-dimensional variables
approximately of order 1 in magnitude, and Re = pUR/u is the Reynolds
number. Therefore, 1n the limiting case of h < R, (A.2) and ( reduce to
equations ([7) and (8|) already presented in Section [3 d Wlth the resulting
velocity profile given in terms of prebbure by equation @[)

The continuity equation dt + ”“1 = 0 is now included in order to close
the system of equations, being mtegrated across the film from Xs = —h/2 to
Xo = h/2 to give

h/2 h/2 h/2 h/2
/ 9 4x, + / 0P 1, + qu‘ + / 9PUs 1%, — 0. (A4)
_ - ~h/2 n/2 0X3




Applying the Leibniz integral rule, % fab flz,y)dy = f(:n,b)% - f(x,a)% +

f; %dy, and assuming that density remains constant across the film, we obtain

op. oMy UD+U® on O @)
ety — —
o' Tox, P 2 ax, P (08" ~v3?)+
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(A.5)
where M; = ff}{jz pu1dXs and Mz = ff{iQ puszdXs are the mass flow rates
in the X; and X3 directions. These can be determined from the previously
obtained expressions @ for uy and us to obtain

: (1) (2)

ph®  Op Uis +Us
M{3=—— ’ h. A6
1,3 1201 0X 1 5 +p 5 (A.6)

Finally, substituting expressions (A.6) into (A.5) and observing that Ul(l) -
Ul(z) = 9 vields the final form of the Reynolds equation (10):
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