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Abstract—Since the wind power generated by a wind farm
is entirely dependent on meteorological conditions (such as wind
speed, wind direction, humidity etc.), accurately forecasting wind
speed based on these conditions over a 1 to 24 hour time horizon
is crucial to predict the potential short term energy supply of a
wind farm. These short term predictions in turn are crucial in
assisting with wind farm planning so that the required base load
provided to the electricity grid is always guaranteed (even in the
presence of highly variable wind power outputs). In this work
we show that the relative prediction performance of a short-
term Support Vector Regression (SVR) wind forecasting system
can be improved by up to 11.12% by systematically selecting and
combining relevant input features that influence short term wind
speed. We illustrate our results on meteorological data collected
in Alexander Bay, South Africa over a three year period from
2011-2013.

Keywords—Wind Speed Forecasting, Support Vector Regres-
sion, Feature Selection

I. INTRODUCTION

Generating renewable energy is significantly cleaner than
burning fossil fuels and with the overall abundance of wind,
renewable wind energy generation will play a large part in
renewable energy portfolios. The prediction of wind speed
plays a key role in wind power generation, with a large
correlation between wind speed, wind direction and wind
turbine power generation.

Support Vector Regression (SVR) has successfully been
used for wind speed prediction in the past [1] and the use of
various optimisation algorithms for hyper parameter selection
followed [2—4].

Hybrid methods employed, where some evolutionary met-
hods were combined with SVR, with the evolutionary met-
hod determining the hyper parameters used in the SVR.
Santanmaria-Bonfil et. al. [2] used a genetic algorithm for pa-
rameter tuning while SanchoSalcedo-Sanz et. al. [3] compared
the performance of two evolutionary methods, evolutionary
programming and particle swarm optimisation.

Wang et. al. [3] compared a genetic algorithm, particle
swarm optimisation and cuckoo optimisation algorithm (COA)
and found that the hybrid COA-SVR method outperforms the
other methods. In a previous study of wind speed forecasting
from 1 to 24 hours ahead it was found that Support Vector
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Regression with an RBF (Gaussian) kernel outperforms other
regression methods [5].

In that study a comparison was done between Ordinary
Least Squares, Bayesian Ridge Regression and Support Vector
Regression with an RBF kernel using a moving time window,
with a persistence forecast functioning as the benchmark.
It has also been shown in various studies that SVR can
outperform over other types of algorithms such as variations
on artificial neural networks (ANN) [6, 7].

Due to the relative good prediction accuracy of SVRs,
they are also utilised in conjunction with other methods
to create hybrid algorithms [8—11]. Lui er. al [8] used a
wavelet transform to decompose the wind speed into two
components to function as inputs in a SVM after mathematical
manipulation and employing Granger causality, with a genetic
algorithm used to optimise the hyper parameters. Chen et.
al. [9] adopted SVR with a Kalman filter that updates the
states under stochastic uncertainty. Hu ez. al. [10] decomposed
the wind speed data into a number of independent intrinsic
mode functions (IMFs) and one residual series using ensemble
empirical mode decomposition. The highest frequency band
(IMF1) and the residual series are discarded and after re-
scaling and normalisation the remaining bands are used as
the input for the SVM. Wang et. al. [11] created two hybrid
models by integrating SVR with seasonal index adjustment
and Elman recurrent neural network methods. The SVR is
used to detect and eliminate outliers during preprocessing and
the Kruskal-Wallis test is done to confirm that the dataset’s
distribution is similar. Next the seasonal index adjustment
method is used to extract the seasonal effects and the Elman
recurrent neural network was used to predict the trends. The
seasonal index is used to adjust the predicted trends to obtain
the forecasted wind speed.

Combining a SVR with feature tailoring was explored by
Liu et. al. [12] for forecasting wind power ramps. An orthogo-
nal test was used to determine which additional features, such
as wind speed, wind direction, temperature, relative humidity
and pressure, would be the optimal input for a SVR. Niu et.
al. [13] used ant colony optimisation to optimise the feature
selection mechanism for forecasting the power load. Short
term, 1 hour ahead, wind speed forecasting was done by Liu
et. al. [14], using a Support Vector Machine and compared the



results with that of an ANN. A principal component analysis
was employed to calculate the contribution rates of various
additional features to the prediction. The hyper parameters
were optimised using particle swarm optimisation. Four mo-
dels were created where different features were incorporated
and it was found that a combination of the air temperature
and air pressure has the largest influence on the wind speed
prediction accuracy 1 hour ahead from the features that were
investigated. It was found in a previous study [5] that by
adding additional features such as wind speed acceleration,
change in wind speed acceleration and the wind speed at other
heights that the prediction accuracy can be improved.

While feature selection has been explored [12-14], this
paper will explore the influence of feature selection on a 1 to
24 hour ahead forecast using an extensive list of atmospheric
features. In this paper we fully explore the effect of feature
selection on the forecasting accuracy of a 1 to 24 hour ahead
wind speed prediction at a 60 m hub height, using Support
Vector Regression. Atmospheric data from Alexander Bay,
South Africa [15], including wind speed at the same location
but at five metmast hub heights, wind speed acceleration,
change in wind speed acceleration, wind direction, air pres-
sure, air temperature and relative humidity, are combined and
incorporated in several models.

II. SUPPORT VECTOR REGRESSION

Support Vector Regression (SVR) is a regression algorithm
where the cost function ignores any training data inside a
tunable margin (determined by the hyper parameter epsilon)
around the model prediction, [16]. The margin thus controls
the bias-variance trade-off of the SVR. The RBF kernel creates
a new feature vector by mapping training examples to the
Euclidian norm of the example and some chosen landmark in
the data set with a bias function determining an offset. The
SVR forecast is benchmarked against a persistence forecast.
A moving time window is used in the SVR where, for each
prediction step forward in time, the training data window is
also shifted. The initial training of the SVR algorithm is done
using the training data set, with the predicting done on the
validation set. The training data set consists of the past data
of the parameter to be predicted, additional features such as
the wind speed at different hub heights, wind velocity and air
temperature can be added to provide more information to the
algorithm for a better prediction. Adding different features to
the training data to improve the forecast accuracy is called
feature selection or feature tailoring.

A. Theory
The non-linear epsilon-insensitive SVR [16] attempts to fit

a function,
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through the training samples, where all training data points
are within epsilon (€) from the function. € is the hyperparame-
ter that represents the band where there would be no penalty

to the function. k(Z;, ) is the kernel function, in this case the
RBF kernel, defined by
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[ is the number of support vectors (training points with non-
zero Lagrange multipliers), and b is the bias that can be solved
by making use of the Karush-Kuhn-Tucker conditions
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In this formulation, the hyper parameter C determines the
penalty assigned to target values outside of the epsilon-band
and thus controls the degree of regularisation, while the hyper
parameter gamma () is inversely proportional to the width of
the RBF kernel which is placed over each support vector.

TABLE 1
FEATURES WITH IDENTIFIER AND OPTIMISED HYPER PARAMETER FOR
SVR.
Feature Features
set
A Wind speed at 60 m.
B Wind speed at 60 m and wind acceleration (delta).
C Wind speed at 60 m, wind acceleration and
change in acceleration (double delta).
D Wind speed and wind direction at 60 m.
E Wind speed at 60 m and air temperature.
F Wind speed at 60 m and barometric pressure.
G Wind speed at 60 m and relative humidity.
H Wind speed at all heights (10, 20, 40, 60 and 62 m).
I Wind speed at 60 m, air temperature
and barometric pressure.
J All heights, air temperature and barometric pressure.
K All heights, air temperature, barometric pressure
and relative humidity.
L All heights, delta, air temperature and barometric pressure.
M All heights, delta, double delta, wind direction,
air temperature, barometric pressure and relative humidity.




B. Hyper parameter selection

These hyper parameters (e, v and C) used in the SVR are
selected through a rough grid search using the validation set
prediction, varying the hyper parameters to optimise the root
mean square error (RMSE). The RMSE is calculated by
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The ¢, v and C hyper parameter search grids were [le™2,
le7 1, 1e0, lel, 1e2], [le=5, le~%, 1le =3, 1le 72, le 1, 1eY, lel,
le?] and [le2, le~ 1, 1% le!, 1e2, 1e3, let] respectively.
This process is repeated for each model with different training
features. The final prediction is done on the testing data
set. The training and validation data sets are combined to
form a new training set to be used with the optimised hyper
parameters. The hyper parameter selection is done using the
validation set to lessen the chances of the SVR overfitting on
the testing data set. The designated feature set identifier for
the different features that are combined in the training data set
are shown in Table 1.

A prediction’s ( Feat. set Y av. RMSE) average improvement
on another (Feat. set Z av. RMSE) is calculated by taking
the difference between the two forecast average RMSES as a
fraction of the one,

Feat. set Z av. RMSE - Feat. set Y av. RMSE
Feat. set Z av. RMSE

X 100 = 2%.

III. RESULTS AND DISCUSSION

The RMSE of a SVR model with feature set A is compared
to a persistence forecast for the purposes of benchmarking.
The persistence forecast and SVR predicts the wind speed at
a 60 m hub height, as shown in Figure 1. The persistence
forecast is improved on at every step by the SVR, as expected
from previous work [5]. The RMSE from the SVR shows a
8.930% improvement on the RMSE of the persistence forecast
at 1 hour, 42.851% improvement at 12 hours and 17.246%
improvement at 24 hours ahead.

Due to the 24 hour cyclic behavior of wind, the persistence
forecast RMSE reaches a maximum at around 12 hours
and a local minimum around 24 hours, in Figure 1. If the
forecast window is increased the same cyclic behavior for the
persistence forecast will be observed throughout the whole
window. The SVR prediction of the wind speed at 60 m, using
only the 60 m wind speed time series in the training data set
(Feature set A), functions as the base case SVR prediction.

In the Figures 2-5 additional features are used in the training
SVR data sets to predict the wind speed at 60 m. The different
feature set combinations (defined in Table I) are compared
with the base case.

Basic feature tailoring, such as calculating the wind speed
acceleration (delta) and change in wind speed acceleration
(double delta) from the 60 m wind speed data, are added to the
training data set for predicting the wind speed at a 60 m hub
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Fig. 1. Persistence and SVR forecast of the wind speed at a 60 m hub height
(base case) [5].

height in Figure 2. The predictions, using tailored features in
the training set (Feature sets B and C), outperforms the base
case from 3 to 16 hours ahead. At 1 hour and from 19 to 24
hours the base case performs the best by a very small margin.
From 2 to 18 hours ahead the prediction using Feature set B
performs the best. On average the prediction using Feature set
B performs the best with a 1.11% improvement on the base
case RMSE.

Additional atmospheric measurements such as the wind
direction measured at 60 m (Feature set D), the air temperature
measured at 60 m (Feature set E), the barometric (atmospheric)
pressure measured at 6 m (Feature set F) and relative humidity
measured at 60 m (Feature set G), are added to the training
data respectively, to improve the SVRs prediction of the wind
speed at 60 m. These forecasts are compared with the base
case prediction in Figure 3.

The prediction using wind direction (Feature set D) does
not show any improvement on the base case, and at certain
times, such 14 hours ahead the forecast is significantly worse.
The forecasts using air temperature (Feature set E), barometric
pressure (Feature set F) and relative humidity (Feature set
G) show a clear improvement on the base case forecast. The
RMSE of Feature set E is the lowest from 1-15 hours ahead
and from 16-24 hours Feature set F produces the lowest
RMSE. On average Feature set E has the lowest RMSE which
is a 6.80% improvement on the base case prediction (Feature
set A).

Different features are combined in Figure 4 to further
investigate the effect of feature selection on the forecast
accuracy. The forecast combining wind speed data at different
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Fig. 2. SVR forecast of the base case forecast compared with the wind speed
at a 60 m hub height with additional training features.
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Fig. 3. SVR forecast of the wind speed at a 60 m hub height with additional
training features.

hub heights 10 m, 20 m, 40 m, 60 m and 62 m (Feature set H)
is displayed in Figure 4 and compared with the wind base case
speed prediction (Feature set A). It is found that the prediction
using the wind speed at various heights (Feature set H)
improves on the base case average RMSE by 4.48%. To further
improve the prediction accuracy of the base case forecast and
forecast using Feature set H, the additional training features
from the two best performing forecasts from Figure 3 (the air
temperature and barometric pressure), are merged with the two
sets of training data to create Feature sets I and J, respectively.
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Fig. 4. SVR forecast of the wind speed at a 60 m hub height with additional
training features combinations.

It is expected that the prediction using Feature set J will
outperform the prediction using Feature set I and that both
will outperform both the base case and the prediction using
Feature set H. But even though more height data (Feature set
H) improved the base case forecast, combining the various
heights’ wind speed data with the air temperature and baro-
metric pressure (Feature set J) does not improve the RMSE
further from the forecast using Feature set I and even performs
worse from 15 hours ahead. Feature set I improves on average,
the base case by 11.12% while Feature set J improves base
case by 10.97%.

In Figure 5 several features are added to the combination
that makes up Feature set I, to create Feature sets K and L.
Feature set K is a combination of the wind speed at vari-
ous heights, air temperature, barometric pressure and relative
humidity. Feature set L is a combination of the wind speed
at all the heights, air temperature, barometric pressure and
wind speed acceleration (delta) and finally Feature set M is a
combination of all the available features, see Table I.

The prediction using Feature set L shows the best overall
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Fig. 5. SVR forecast of the wind speed at a 60 m hub height combining
additional training features that performed well in Figures 2-4.

result in Figure 5 by a small margin, with the lowest RMSE
between 7 to 14 hours ahead and 16 to 24 hours ahead. This
is once again counter intuitive since the prediction using the
feature relative humidity (Feature set G, Figure 3) performs
better than the prediction using the delta (Feature set B, Figure
2). When all the features are combined in the training data
(Feature set M), the RMSE is not improved when compared to
Feature sets K and L and even performs visibly worse at 5 to 6
hours ahead. This highlights the importance of careful feature
selection. The average improvement of the prediction using
Feature set L on the base case is 10.95% while the prediction
using Feature set M improves by 10.06%. The RMSE values
for the SVR forecasts using Feature sets A, I, J, L and M
respectively, are shown in Table III, Appendix A.

The predictions that show the most noticeable improvement
on the base case (Feature set A) in each preceding Figure
are shown in Figure 6, to provide an overall clear visual
comparison of the most noted results.

The prediction using the air temperature (Feature set E)
shows visible improvement on the base case for the whole
1 to 24 hour window. The predictions using Feature sets I
and L, adds more features and further improves the prediction
with Feature set E’s RMSE. Feature sets I and L show similar
RMSE and trends, with Feature set L performing the best from
1 to 11 hours and 23 to 24 hours ahead. On average, the
prediction using the air temperature and barometric pressure
(Feature set I) shows the most noticeable improvement, with
an 11.12% improvement on the base case forecast.

The percentage of average improvement for each prediction
on the base case prediction is summarised in Table II. From

3.300

3.100

2.900

2.700

2.500
a ——Feature set A
E 2.300 -
—k— Feature set B
2.100 -
—#—Feature set E
1.500
—@— Feature set|
1.700
Feature set L
1.500 = T T T T
1 6 11 16 21
Window (h)

Fig. 6. Comparison of the best forecasts from Figures 2-5.

the results summary in Table II, every combination of features
shown in Figures 2-5, improves on average the forecast with
Feature set A to some degree, except the prediction using the
wind direction (Feature set D) that performs marginally worse
with a higher average RMSE.

By carefully tailoring the use of additional features in
training a SVR algorithm, the RMSE of the wind speed
predicted at 60 m hub height at Alexander Bay can be
improved upon by up to 11.12%. The importance of feature
tailoring is highlighted with the case where some features may
actually decrease the prediction accuracy, such as the wind
direction. Predictions that improve on the base case does not
necessarily improve further on the forecast when combined
with other features, such as the case of relative humidity and
delta in Figure 5.

IV. CONCLUSION

In this paper we explored the effect of feature selection
on the forecasting accuracy of a 1 to 24 hour ahead wind
speed prediction at a 60 m hub height, by combining and
incorporating wind speed at five metmast hub heights, wind
speed acceleration, change in wind speed acceleration, wind
direction, air pressure, air temperature and relative humidity,
in several Support Vector Regression models.

We have show that the relative prediction performance of a
short-term SVR wind forecasting system can be improved by
up to 11.12% (compared to a base case of only wind speed
data) by systematically adding and combining relevant input
features that influence short term wind speed.

We also found that the addition of air temperature and
barometric temperature to the 60m wind speed measurments



TABLE II
PERCENTAGE VAERAGE IMPROVEMENT ON THE RMSE OF EACH
PREDICTION IN FIGURE 6 OVER THE BASE CASE (FEATURE SET A).

Feature | Improvement on the
set base case
1.11%
0.90%
-0.15%
6.80%
6.23%
3.81%
4.48%
11.12%
10.97%
10.26%
10.95%
10.06%

S| R|—«|~=|Z|Qm|mjg|la|w

(used in the base case) gave the most significant perfor-
mance improvement and also observed that some feature
combinations provided optimal performance at shorter time
forecast horizons, while other feature combinations conversely
provided optimal performance at longer time forecast horizons.

For future work we will investigate various feature engi-
neering strategies to capture longer term behaviour in the input
features.
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APPENDIX

The RMSE of several forecasts, combining the 60 m wind
speed with features such as the wind speed at different heights,
air temperature and barometric pressure are shown in Table III.
The forecasted values in Table III are also displayed in Figures
4 and 6.



TABLE III

ROOT MEAN SQUATE ERRORS DIPICTED IN FIGURES 4 AND 6.

Win- | SVR | 60m,Tair, All heights, All heights,Delta, All fea-
dow (A) Pbaro (I) | Tair, Pbaro (J) Tair,Pbaro (L) tures (M)
1 1.619 1.541 1.536 1.536 1.556
2 2.116 1.953 1.920 1.920 1.920
3 2.434 2.172 2.138 2.139 2.134
4 2.668 2.323 2.299 2.300 2.291
5 2.856 2.438 2.425 2.425 2.463
6 2.996 2.529 2.519 2.519 2.559
7 3.088 2.604 2.586 2.587 2.631
8 3.146 2.655 2.625 2.626 2.688
9 3.180 2.694 2.671 2.671 2.732
10 3.200 2.726 2.706 2.709 2.774
11 3.207 2.755 2.758 2.740 2.807
12 3.212 2.781 2.788 2.798 2.838
13 3.213 2.804 2.815 2.824 2.856
14 3.186 2.823 2.841 2.849 2.874
15 3.188 2.840 2.908 2.908 2.890
16 3.193 2.862 2.920 2.921 2.935
17 3.198 2.889 2.932 2.933 2.948
18 3.203 2.908 2.942 2.944 2.964
19 3.208 2.929 2.957 2.958 2.980
20 3.216 2.948 2973 2.973 2.998
21 3.221 2973 2.994 2.996 3.019
22 3.232 2.994 3.017 3.017 3.038
23 3.246 3.053 3.040 3.037 3.058
24 3.270 3.068 3.060 3.057 3.078




