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Abstract 

We study the relationship between the distribution of data, on 

the one hand, and classifier performance, on the other, for 

non-parametric classifiers. It is shown that predictable factors 

such as the available amount of training data (relative to the 

dimensionality of the feature space), the spatial variability of 

the effective average distance between data samples, and the 

type and amount of noise in the data set influence such 

classifiers to a significant degree. The methods developed here 

can be used to gain a detailed understanding of classifier 

design and selection. 

 

1. Introduction 

The quest to optimize the performance of trainable classifiers 

has a long and varied history. Soon after the design of the 

earliest parametric and linear classifiers, researchers found 

refinements (such as polynomial classifiers and the nearest-

neighbour rule) that produced more accurate classification on 

comparable data sets. Hence, the quest for “the most accurate” 

classifier was initiated, and several generations of candidates 

for that title have been proposed: kernel functions, neural 

networks, support vector machines, etc. 

In some ways, this activity has been extremely productive 

– we today have a wide range of classifiers that are employed 

in numerous applications, from credit scoring to speech 

processing, with great technical and commercial success. 

However, from another perspective, this entire enterprise can 

be considered a dismal failure: we still do not have single 

classifier that can reliably outperform all others on a given 

data set [1], and the process of classifier selection is still 

largely a process of trial and error. 

This apparent contradiction would not be surprising in the 

context of purely parametric classifiers, since the accuracy of 

a particular parametric classifier on a given data set will 

clearly depend on the relationship between the classifier and 

the data. The concept of a single best parametric classifier is 

clearly not useful, and a trial-and-error process will generally 

be required to find the parametric form that best describes a 

given data set (although statistical tests may be employed to 

guide that search). 

In the realm of non-parametric classifiers, however, there 

is less awareness of the need to harmonize the characteristics 

of data and classifiers. As we describe in Section 2, a few 

empirical studies have shown that the choice of optimal 

classifier does in fact depend on the data set employed, and 

some guidelines on classifier selection have been proposed. 

However, these guidelines do not provide much insight on the 

specific characteristics of the data that will determine the 

preference of classifier. To address that shortcoming, we 

focus on two pieces of conventional wisdom, which are often 

repeated in review papers [2] and text books [3].  The first 

wisdom is that discriminative classifiers tend to be more 

accurate than model-based classifiers at classification tasks 

(see, e.g. [3, p. 77]); the second is that k-nearest-neighbour 

(kNN) classifiers are almost always close to optimal in 

accuracy, for an appropriate choice of k (e.g. [2, p. 17]). A 

common subsidiary to the latter belief is that the best value of 

k can only be determined empirically. We therefore focus our 

attention on three specific topics: 

• Do model-based classifiers substantially outperform 

discriminative classifiers under any circumstances? 

• What attributes of classification data determine the 

optimal value of k in a kNN classifier? 

• Are there specific circumstances that cause the kNN 

to underperform other classifiers substantially? 

We have developed a methodology (summarized in 

Section 3) that uses artificial data sets to probe the interaction 

between classifiers and data sets. In Section 4 we show that 

these three questions can be answered using that 

methodology, and in Section 5 we discuss the implications of 

those findings. 

 

2. Data sets and classifiers: previous work 

Several comparative studies have been conducted to 

determine features in data that will predict classification 

performance. Tax and Duin [4] consider a one-class 

classification problem, 19 classifiers and 101 data sets were 

used. They define two features to characterise data sets, 

namely the effective sample size and the class overlap. The 

classifier disagreements for the data sets are calculated and 

data sets with the disagreement measures are mapped into a 

two-dimensional space. Datasets for which classifiers perform 

well and poorly are investigated. They find that the only 

variable that characterizes a data set well is the effective 

sample size (the ratio between the number of observations and 

variables in a data set). 

Brazdil et al. [5] performed a comparative study based on 

the results of the StatLog Project [1]. The StatLog project 

compared 22 classifiers on more than 20 different data sets. 

The aim of [5] was to obtain a set of rules to predict 

classification performance of data sets. Statistical and 

information theoretic measures were used to extract features 

from data sets. These measures were used together with the 

classification results of the StatLog project to construct an 

expert system, named the Application Assistant, to predict the 

classification performance of various classifiers on a 

particular data set. The C4.5 algorithm [6] was used to 

construct rules from the given data. The classification results 

were considered one at a time by the C4.5 algorithm, until a 



final set of rules were constructed. All the rules had a 

confidence measure to indicate the usefulness of a rule. Only 

22 classification errors were used per classifier due to the fact 

that they used the StatLog project results. The rules that were 

generated by the expert system were not very meaningful due 

to a lack of training data – it is easy to find counterexamples 

to the conclusions reached in [5]. For example,  one of the 

basic rules in [5] is that the Linear Discriminative classifier 

will perform well (with a confidence or information score of 

0.247) if the number of samples in the data set is less or equal 

to 1000. All the rules with an information score of more than 

0.2 are considered useful. This is clearly not a rule that will 

hold in general: only the size of the data set is considered,  

and factors such as the dimensionality and number of classes 

in the data set is ignored. The linear classifier used in StatLog 

is a model based classifier; generally the performance of the 

Linear classifier improves as the number of observations 

increases. This rule is thus valid for Statlog specifically, but 

does not generalize to other data sets. 

It is therefore fair to say that limited understanding on the 

relationship between data properties and classifier 

performance is currently available, and it is against that 

background that we present our methods and results below. 

 

3. Methods and data 

In order to experiment with the relationship between data and 

classifiers, we have generated several series of artificial data, 

and experimented with both model-based and discriminative 

classifiers. 10-fold cross-validation is used to evaluate and 

compare the performance of the classifiers on the different 

data sets. 

3.1. Artificial data generation 

Multivariate Gaussian distributions are used to generate 

artificial data sets. We use d  single variable Gaussian 

distributions   
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to generate n  samples per distribution. Note that µ  is the 

mean and 
2σ  is the variance of (1).  This result in a d xn  

matrix x . The d  single dimensional variables are expanded 

to a multivariate Gaussian distribution by using 

 

BAxY += ,   (2) 

 

where B  is the d -dimensional mean of the distribution 

repeated n  times and T
AA  is the covariance, Σ , of the 

multivariate distribution. The consequent multivariable 

distribution may be written as 
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where x  is a d-component column vector, µ  is a d-

component mean vector, Σ  is the d-by-d covariance matrix, 

T)( µx−  is the transpose of )( µx − , 1−
Σ  is the inverse of 

Σ , and |Σ|  is the determinant of Σ . 

A weighted mixture of multivariate Gaussian distributions 

of the form in (3) are used to generate class conditional 

probability density functions for each class in a data set.  

Data sets were generated for three different experiments 

explained later in this section.  

3.1.1. Correlation of variables 

Multivariate artificial data with class conditional probability 

density functions of the form given in (3) are generated for 

correlated and uncorrelated variables. A full covariace matrix 
T

AA  is used for correlated variables. Diagonal A  matrices 

are used to generate uncorrelated data. This results in 

diagonal covariance matrices T
AA . 

3.1.2. Standard deviation 

Data sets were generated with different standard deviations 

(SDs) for the class distributions. SD was introduced into the 

data by multiplying all the elements in the A  matrix with the 

SD value.   

3.1.3. Noise 

Two forms of noise are relevant in classification problems: 

input noise affects the class-conditional density functions, and 

can be adjusted by changing A  and B in (2). Output noise is 

implemented by changing the class labels of the observations 

in the original data set. For reasons that will become clear, we 

are more interested in output noise; for this case, the 

percentage noise is measured by the percentage of class labels 

that have been changed. 

3.2. Classifiers 

Two model-based and four discriminative classifiers are used 

in this study. The model based classifiers are the Naïve Bayes 

classfier (NB) [6] and the Gaussian (Gauss) classifier. The 

discriminative classifiers are the Decision Tree classifier (DT) 

[7], the k-nearest-neighbour (kNN) classifier [8], the multi-

layer perceptron (MLP) and support vector machines (SVMs) 

[9].  

The NB, DT, kNN, MLP and SVM classifiers are all 

implementations of the machine learning package Weka [10]. 

The Gaussian classifier is a Matlab implementation available 

at [11]. 

The kNN uses a LinearNN nearest neighbour search 

algorithm with an Euclidean distance metric [8]. The optimal 

k value is determined by performing 10-fold cross-validation. 

An optimal k value between 1 and 10 is used for Experiments 

1 and 3. Experiment 2 uses optimal k values between 1 and 

20. 

The SVM uses C-Support Vector classification with a 

radial basis function kernel. The optimal cost parameters, ,C  

and gamma parameters, ,g  are determined by performing 10-

fold cross validation. g  values in the range ]10,10[ 67−  and  

C  values in the range ]10,10[ 33−  are considered. 

A single hidden-layer back-propagation MLP is used. The 

optimal number of nodes in the hidden layer is determined by 

10-fold cross-validation. An optimal number of hidden nodes 

between 2 and 10 are used. 



3.3. Experimental design 

The three research questions introduced in Section 1 were 

studied through the design of targeted data sets for three 

experimental conditions, as described below. Note that all the 

experiments were repeated ten times on ten different data sets 

(with the same properties) to reduce the effect of variability in 

the results. 

3.3.1. Experiment 1 

Experiment 1 uses artificial data sets with Gaussian 

distributed classes to illustrate where the Gaussian classifier 

and the Naïve Bayes classifier outperform discriminative 

classifiers. 

The method of data generation explained in this section is 

used. Artificial data sets for correlated and uncorrelated 

variables are generated. Data sets with three classes are used. 

The number of samples per class in each data set ranges from 

20 to 100. All the data sets have ten variables. The SDs for 

each data set ranges from 1 to 25, and the class means are 

manually chosen to give well-separated means in the 

hypercube where each variable ranges from -5 to 5. 

The purpose of this experiment is to generate data sets 

with models that fit the Gaussian classifier and the Naïve 

Bayes classifier assumptions well. The Gaussian classifier 

assumes data with Gaussian distributions and dependent or 

correlated variables, whereas the naïve Bayesian classifier 

assumes independent variables of a particular one-

dimensional distribution (for simplicity, we have employed 

Gaussian distributions for those cases as well). The number of 

samples per class is varied to probe for cases where the 

model-based assumption is optimally useful.  

3.3.2. Experiment 2 

Experiment 2 uses artificial data sets with Gaussian 

distributed data and added  output noise to illustrate the effect 

of output noise on the optimal value of k in the kNN 

classifier. The effect of output noise on the ratio between the 

error rate of the optimal kNN classifier and the error rate of 

the 1NN classifier is also illustrated.  

Two and ten dimensional correlated data sets with noise 

fractions ranging from 5-25 % are generated. All the data sets 

have three classes and the number of samples per class range 

from 20 to 100. The standard deviations of the distributions 

are varied from 1 to 25 to illustrate the effect of the SD on the 

optimal k values. 

The error rates for the optimal kNN classifier and the 

1NN classifier are calculated for all the data sets and are 

compared.  

3.3.3. Experiment 3 

Experiment 3 uses two-dimensional Gaussian distributed data 

with different SDs in the x and y directions. These data sets 

are used to illustrate the effect of the constant distance metric 

used by the kNN classifier throughout the entire variable 

space. 

Data sets are generated where the number of classes in a 

data set range from 2 to 4. The number of samples per class 

ranges from 20 to 100. 

The 10-fold cross-validation error rates for the model-

based and discriminative classifiers are calculated and 

compared to the error rates of the optimal kNN classifier. 

 

4. Results 

The results of the three experiments explained in Section 3 

are summarized in this section. Throughout our discussion, 

high dimensional data is defined as data with a small number 

of samples in each class per dimension. 

4.1. Experiment 1 results 

The classification results from experiment 1 are given in 

Figures 1 and 2. 

Figure 1: Classification results of correlated ten 

dimensional data sets. 

Fig.1 shows that the Gaussian classifier achieves the lowest 

error rate over all the correlated data sets in this experiment. 

This result is not surprising in itself since the data are in fact 

normally distributed. The interesting results are contained in 

(1) the extent to which the discriminative classifiers 

underperform the appropriate model-based classifier, and (2) 

the dependence of this underperformance on factors such as 

data overlap and the size of the training set. 

We see that all the discriminative classifiers perform 

considerably worse than the model-based classifier in the ten 

dimensional space. It is thus not safe to assume that 

discriminative classifiers will perform comparable to a 

Gaussian classifier on correlated high dimensional data with a 

small number of samples per class. 



Figure 2: Classification results of uncorrelated ten 

dimensional data sets. 

Fig. 2 shows that the NB classifier has the lowest error 

rate over all the uncorrelated data sets used in this experiment, 

whereas all the other classifiers had substantial error rates for 

at least some experimental conditions. It is thus not safe to 

assume that discriminative classifiers will perform 

comparable to a Naïve Bayes classifier on uncorrelated high 

dimensional data with a small number of samples per class. 

4.2. Experiment 2 results 

The results of experiment 2 are given in Figures 3-6. 

Figure 3: Classification results of correlated noisy two 

dimensional data sets. 

Fig. 3 shows that the optimal value of k for the kNN classifier 

increases monotonically as the (output) noise in the data 

increases, whereas the optimal k value seems to decrease 

(though not as predictably) when the SD increases. At first 

glance these results seem contradictory, since the SD can also 

be viewed as a form of noise – specifically, input noise. 

However, these results are actually consistent, and provide an 

important hint on the choice of k: whereas increasing SD does 

create increasing overlap of the class distributions, that 

overlap tends to lie at the edges of these distributions. Output 

noise, on the other hand, permeates the entire feature space – 

hence, a larger k value is required to properly smooth over 

these samples as the noise percentage increases. 

Figure 4: Classification results of correlated noisy ten 

dimensional data sets. 

Fig. 4 shows that in a high-dimensional feature space with 

high SD, the optimal k values are close to 1. This might be 

because, for large k, the contributing samples may be so far 

away from the sample as to be meaningless. Fig. 4 also shows 

that the optimal k value continues to increase reasonably 

monotonically with the noise percentage in 10 dimensions 

both for high and low overlap.  

Figure 5: Classification results of correlated noisy two 

dimensional data sets. 

How significant are the differences between the 

accuracies obtained with the various values for k? Figs. 5 and 

6 show the error rates of the 1NN classifier divided by those 

of the optimal kNN classifier for each of the cases 

corresponding to Figs. 3 and 4. In the vast majority of cases, 

for a SD of 1, the 1NN classifier has more than 1.5 times the 

error rate of the optimal classifier, indicating that these 

differences are indeed significant.  



Figure 6: Classification results of correlated noisy ten 

dimensional data sets. 

4.3. Experiment 3 results 

The results of experiment 3 are summarized in Tables 1 and 2. 

The highest error rate for each data set is in bold. 

Table 1: Classification results of model-based  and DT 

classifiers 
Classes SPC  NB Gauss DT 

2 20 

40 

60 

80 

100 

0.03 

0.0275 

0.028333 

0.026875 

0.0285 

 

0.07 

0.05 

0.037045 

0.033417 

0.036342 

 

0.0625 

0.04375 

0.041667 

0.03375 

0.0375 

3 20 

40 

60 

80 

100 

0.031667 

0.030833 

0.024444 

0.025 

0.026 

 

0.057667 

0.050909 

0.042222 

0.043279 

0.040943 

 

0.056667 

0.040833 

0.035 

0.030833 

0.029333 

4 20 

40 

60 

80 

100 

0.02875 

0.03 

0.02625 

0.02625 

0.02625 

0.070179 

0.053083 

0.043261 

0.043689 

0.044705 

0.06625 

0.04125 

0.04125 

0.04125 

0.03975 

Table 2: Classification results of remaining discriminative 

classifiers 

Classes SPC  kNN MLP SVM 

2 20 

40 

60 

80 

100 

0.07 

0.05 

0.045833 

0.04125 

0.042 

 

0.0575 

0.04125 

0.0375 

0.029375 

0.033 

 

0.045 

0.0375 

0.036667 

0.030625 

0.031 

 

3 20 

40 

60 

80 

100 

0.14667 

0.1 

0.073333 

0.06375 

0.056667 

 

0.055 

0.038333 

0.035556 

0.032917 

0.034667 

0.035 

0.026667 

0.025556 

0.025417 

0.027333 

4 20 

40 

60 

80 

100 

0.155 

0.10625 

0.090417 

0.08125 

0.07375 

0.05875 

0.049375 

0.04875 

0.045625 

0.04475 

0.045 

0.03375 

0.032917 

0.031563 

0.037 

Two dimensional data sets with uncorrelated class-

conditional densities were used. The SD of the classes in the 

data sets were different in the x and y directions. Figure 7 is a 

scatter plot of the four-class data set with 100 samples per 

class that was used. 

Fig. 7 shows that the classes marked with ‘x’,’o’ and ‘+’ 

all have the same SD in the vertical (y) direction but have 

different SD’s in the horizontal (x) direction. The class 

marked by ‘.’ has a very large SD in the x direction and a very 

small SD in the y direction.  

Tables 1 and 2 show the high error rates of the kNN 

classifier. The tables also show that the classification results 

become worse, compared to the other classifiers, when the 

number of classes increases.  

 

Figure 7: Scatter plot of 4 class 100 samples/class 2 

dimensional data set. 

The kNN uses a constant distance metric throughout the 

entire variable space. Due to the different SDs of the classes 

in different directions, the distance metric should ideally 

adapt to each sub-space covered by a different class. Because 

the distance metric remains constant, samples are 

misclassified in the regions where different classes overlap or 

are close together.  

  

5. Conclusions 

We have studied two examples where “conventional wisdom” 

is concretely shown to be incorrect – namely, classification 

problems where model-based classifiers outperform several 

discriminative classifiers by a wide margin, and other 

classification problems where kNN classifiers, even with 

optimized k, perform poorly in comparison with the other 

classifiers studied. 

These examples contain a number of lessons relevant to 

the particular classifiers studied here, and also suggest some 

more general conclusions regarding classifiers. Thus, we have 

seen that kNN classifiers are best employed in cases where the 

“natural” metric is fairly constant throughout feature space, 

and that the optimal value for k depends on the effective 

output noise, rather than the input noise (which produces a 

different form of class overlap). We have also seen that 

model-based classifiers are a viable alternative to 

discriminative classifiers when the amount of training data is 



severely limited (relative to the dimensionality of the feature 

space), and the parametric form of the assumed model is a 

sufficiently good fit for the actual data distribution. 

More generally, our results show how certain properties 

of the data (e.g. spatial variability of the natural metric) can 

influence even non-parametric classifiers in much the same 

way that the parametric fit can influence the performance of 

parametric classifiers.  

It remains an intriguing challenge to fully describe these 

relationships between data characteristics and classifier 

behaviour, and to develop algorithms that automatically select 

classifiers and parameters appropriate for a given set or subset 

of data. 
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