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Abstract: 

Heavy Goods Vehicles (HGVs) are overrepresented in cyclist fatality 
statistics in the UK relative to their proportion of total traffic volume. In 
particular, the statistics highlight a problem for vehicles turning left across 
the path of a cyclist on their inside. In this paper we present a camera-
based system to detect and track cyclists in the blind spot. The system 
uses boosted classifiers and geometric constraints to detect cyclist wheels, 
and Canny edge detection to locate the ground contact point. The locations 
of these points are mapped into physical coordinates using a calibration 
system based on the ground plane. A Kalman Filter is used to track and 
predict the future motion of the cyclist. Full-scale tests were conducted 
using a construction vehicle fitted with two cameras, and the results 

compared with measurements from an ultrasonic-sensor system. Errors 
were comparable to the ultrasonic system, with average error standard 
deviation of 4.3 cm when the cyclist was 1.5 m from the HGV, and 7.1 cm 
at a distance of 1 m. When results were compared to manually extracted 
cyclist position data, errors were less than 4cm at separations of 1.5m and 
1m. Compared to the ultrasonic system, the camera system requires 
simpler hardware and can easily differentiate cyclists from stationary or 
moving background objects such as parked cars or roadside furniture. 
However, the cameras suffer from reduced robustness and accuracy at 
close range, and cannot operate in low-light conditions. 
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Abstract

Heavy Goods Vehicles (HGVs) are overrepresented in cyclist fatality statistics in the UK relative to their proportion of

total traffic volume. In particular, the statistics highlight a problem for vehicles turning left across the path of a cyclist on

their inside. In this paper we present a camera-based system to detect and track cyclists in the blind spot. The system

uses boosted classifiers and geometric constraints to detect cyclist wheels, and Canny edge detection to locate the

ground contact point. The locations of these points are mapped into physical coordinates using a calibration system

based on the ground plane. A Kalman Filter is used to track and predict the future motion of the cyclist. Full-scale tests

were conducted using a construction vehicle fitted with two cameras, and the results compared with measurements from

an ultrasonic-sensor system. Errors were comparable to the ultrasonic system, with average error standard deviation

of 4.3 cm when the cyclist was 1.5 m from the HGV, and 7.1 cm at a distance of 1 m. When results were compared to

manually extracted cyclist position data, errors were less than 4 cm at separations of 1.5 m and 1 m. Compared to the

ultrasonic system, the camera system requires simpler hardware and can easily differentiate cyclists from stationary

or moving background objects such as parked cars or roadside furniture. However, the cameras suffer from reduced

robustness and accuracy at close range, and cannot operate in low-light conditions.

Keywords

Active safety systems, Cyclist detection, heavy goods vehicles, computer vision, object detection.

Introduction

In Britain in 2013 there were more than 19,000 road

accidents involving cyclists, including more than 100

fatalities1. This represents 11% of all road casualties, despite

cyclists only accounting for 1% of total traffic. Heavy

Goods Vehicles (HGVs) accounted for 23% of cyclist deaths,

despite representing only 5% of total road traffic. There

is a clear need to address safety issues of cyclist-HGV

interactions on UK roads. Figure 1 shows a breakdown of

cyclist-HGV accidents by configuration. 43% of accidents

occur when the HGV turns left across the path of the cyclist.
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Figure 1. Breakdown of cyclist-HGV collisions by configuration.
Data from Robinson and Chislett 2, graphic adapted from Jia 3

This can be attributed to two primary causes: the large blind-

spot in this area next to the HGV, and the cut-in behaviour

exhibited by HGVs by virtue of their long wheelbase.

The relevance of this particular scenario is further

supported by an analysis of 19 fatal cycling accidents

involving left-turning HGVs in the UK by Jia3. Two of the

accidents occurred at roundabouts and 17 at road junctions,

mostly with traffic lights. In 15 of the 19 accidents the

cyclist’s intention was to travel straight ahead. Only four

intended to turn (left) at the roundabout/junction. All the

accidents occurred at speeds of less than 15 km/h. Further,

15 of the HGVs were rigid vehicles (not articulated), and

most of these were construction vehicles.

The objective of this work is to develop a system that

can detect and accurately locate a cyclist in the left-side

blind-spot of an HGV. The system should run in real-

time, have a field-of-view which covers the entire length

of the vehicle, and be suitably accurate to perform relative

motion predictions. The focus is on rigid HGVs in low-speed

manoeuvres.

Related work

Cyclist detection systems

A number of commercial systems exist to detect and

prevent low-speed collisions with vulnerable road users.

These range from non-discriminating range sensors to high-

end combinations of radar and cameras. Simple ultrasonic

proximity systems are low cost, but do not discriminate

between cyclists or pedestrians and inanimate objects such

as roadside furniture. This can cause false alarms giving rise

to a risk that drivers may become desensitized to alerts.

‘Cycle Safety Shield’, developed by Safety Shield

Systems and Mobileye4, is a camera-based system which

warns the driver of the presence of cyclists. Different

versions cover different fields-of-view around the vehicle,

however only moving objects trigger an alert.

Cycle Eye R© is a high-end system that uses a combination

of image processing and radar to detect and locate cyclists5.

The use of radar improves the accuracy in poor light

conditions but adds cost. The manufacturer claims a 98.5%

success rate in detecting cyclists over three days testing in

London, including during rush hour.

A system based entirely on an array of ultrasonic sensors

was developed by Jia and Cebon in the Cambridge Vehicle

Dynamics Consortium (CVDC)6. The system is intended

to provide an accurate but low-cost alternative to existing

commercial systems, making predictions about future cyclist

motion and actuating the vehicle brakes to execute an

emergency stop in the event of a predicted collision.

This strategy was shown to be effective at preventing

reconstructed accidents in simulation and was successfully

proven in low-speed field trials on a prototype system6

(Figure 2).

Vision technologies for vehicle and cyclist

detection

The use of wheel detection techniques has been popular

in vehicle and cyclist detection applications, owing to

the ubiquity and consistency of the features. Ardeshiri

et al.7 investigated the use of ellipse-fitting methods to

detect bicycle wheels, using reflective wheel-rims and dark

backgrounds to limit the number of pixels to process. The
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system used the Hough transform8,9 to detect ellipses (and

hence wheels), though it was noted that this approach is very

computationally expensive unless steps are taken to limit the

number of input pixels processed. Variations on the Hough

transform, such as the Randomized Hough Transform10,11,

or the approach described by Xie and Ji12, can reduce

computation time, but are error-prone in noisy or partially

occluded conditions.

The Hough transform was also used by Lai and Tsai13 to

detect the wheels of passing cars, using the orientation and

centre of the wheel to calculate relative heading and position

of the two vehicles.

More general feature descriptors include Haar Features14.

These are commonly used for face detection, using Adaboost

to train classifiers15,16 and a cascade architecture. The

cascade allows background regions to be quickly ignored

by the simplest classifiers, so that more computation time

can be spent by the higher-level classifiers on promising

‘object-like’ regions of the image. An implementation of the

Haar Cascade classifier is available as part of the OpenCV

computer vision library17.

This approach was used effectively by Chavez-Aragon et

al.18 to detect parts of nearby vehicles. Real-time processing

was achieved by using geometric arguments to limit the

region of image searched to a ‘Feasible Search Zone’,

drastically reducing computation time.

More complex methods for image feature detection and

classification exist, such as part-based models19, often

used for pedestrian detection. Although part-based models

can be very accurate, they are generally computationally

demanding.

In vehicle-based pedestrian detection work by Bertozzi et

al.20, an innovative camera calibration method was devised,

in order to create an efficient mapping of the ground plane

from image to world coordinates. The method avoided

the need for full camera calibration and image distortion

correction. Initial images of a calibration grid on the ground

Figure 2. Camera and ultrasonic setup

captured by the system allowed the generation of a direct

pixel-to-ground coordinate mapping. This enabled efficient

real-time processing.

System outline and test plan

The aim of the work in this paper was to investigate

whether a vision-based system could be used to measure

cyclists’ motion relative to an HGV with one or two cameras

instead of the 10 or 12 ultrasonic sensors needed by the

CVDC system. The primary advantage of a camera-based

system compared to an ultrasonic system is discrimination

between moving objects and stationary objects (which can

be immediately ignored). This could reduce false alarms due

to detection of street furniture or walls. Although complex

vision-systems for object detection exist, it was proposed that

simple shape-based detection might be sufficiently accurate.

System outline

The effectiveness of the proposed vision system is dependent

on the type of imaging system used (for example the choice

of lens) and the configuration in which it is installed on

the vehicle (location, orientation and number of cameras).

In establishing a suitable combination of these factors, the

following criteria were considered:
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Figure 3. Camera configuration and field-of-view, shown
approximately to scale with a cyclist at 1 m from the HGV

(i) The ground area covering the full length of the HGV

should be visible, using the minimum number of

cameras possible.

(ii) The camera field-of-view should cover the region

of interest but should minimise the inclusion of

background scenery and other moving objects.

(iii) Potential classification features such as wheels should

be visible.

(iv) Occlusion problems should be minimised in instances

where more than one cyclist is present.

Sample images were obtained from various points on the

test vehicle to determine the best location for the camera. The

chosen configuration is illustrated in Figure 3. The vehicle is

shown to scale and a representative silhouette of a cyclist is

included for reference. The system was mounted on the same

rigid construction vehicle used by Jia6 (see Figure 2).

The high mounting point of the cameras was a key

decision in the design of the system. An important benefit

of the top-down view is that lateral position errors arising

from image processing are minimised, because a single

pixel uncertainty in the measurement in image coordinates

corresponds to a much smaller lateral distance if the cam-

eras are looking almost straight down compared to if the

cameras were mounted at wheel height and looking ’across’

the ground plane. This vantage point also addresses the

fourth point above, by minimising potential occlusion. The

visibility of potential classification features (as in the third

requirement) may be slightly reduced, compared to lower

mounting points, but this was shown not to be prohibitive.

To address the first and second criteria, two ultra-compact

Point Grey Flea3 R©. USB 3.0 cameras fitted with Fujinon

2.8 to 8 mm wide-angle lenses with a maximum field-of-

view of 100◦ were selected21,22. The cameras were located

longitudinally so as to achieve maximum coverage along

the full length of the vehicle. There is a region of overlap

between the two views which is important for the transition

of tracking information between the two cameras. The front

camera (camera B) was mounted slightly higher than the rear

camera (camera A) due to the available height at that point

on the tipper bucket. A small outwards tilt to the cameras

extended the lateral viewing distance.

Test program

Tests were carried out on an open area of tarmac at Bourn

Airfield, near Cambridge, UK. Parallel passing manoeuvres

between the test vehicle and a cyclist were carried out at

various passing distances.

A straight line was marked on the road as a guide for the

driver to follow, such that the line roughly approximated the

left side of the HGV. Parallel to this, lines were marked at

distances of 0.75 m, 1 m and 1.5 m as guidelines for the

cyclist. Transverse tick marks at 0.5 m spacing were included

in order to estimate cyclist and vehicle speed during post-

processing. The lines are visible in Figure 4.

Three runs of each test were conducted to allow for

variations. A total of 18 sets of data were recorded, six

each at 0.75 m, 1 m and 1.5 m spacing (consisting of three

repetitions at HGV speeds of 5 km/h and 8 km/h).

A schematic of the instrumentation layout is shown

in Figure 5. The cameras were connected via USB 3.0

to a dedicated computer located inside the driver’s cab.

Synchronous greyscale images were captured from both

cameras at 20 frames per second (fps) with a resolution of
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(a) Camera A, cyclist at 1.5 m (b) Camera B, cyclist at 1 m

(c) Camera A, cyclist at 0.75 m (d) Camera A, cyclist at 1.5 m,
sunny

Figure 4. Sample images at various lateral separations and
lighting intensities

USB 3.0

xPC 

computer

Image 

acquisition 

computer

USB 3.0 

cameras

CAN

Inside truck cab

On truck exterior

Laptop (user 

interface)
Ethernet

Figure 5. Instrumentation schematic for image acquisition

640×480. A slave computer running MATLABs xPC Target

toolbox was used for data-logging, and a laptop computer

was used as the primary user interface. CANbus was used

for communication between the camera computer and xPC

slave unit.

Image processing

Strategy

Although the selected camera system and its particular

configuration has a number of benefits, it also presents some

challenges. Firstly, the elevated camera positioning results in

the cyclist’s shape varying with lateral distance. For example,

circular wheels are viewed as thin ellipses from above at

close range, and the proportion of head and torso in the

cyclist’s silhouette grows with proximity to the vehicle.

Similarly, the cyclists shape is variable from the left to the

right of the camera field-of-view, due to camera position and

lens distortion. These effects are highlighted in Figure 4a to

4c.

Secondly, as with any vision-based system, variations in

lighting can be problematic. Figure 4d shows the effects of

strong light conditions on an image. The shadow covering

the rear wheel makes it more difficult to distinguish from the

background.

The overall image processing strategy of the system can

be summarised into four parts:

(i) Wheel detection, to identify the presence of a cyclist

in the image.

(ii) Contact point location, to locate the positions of the

contact points between wheels and road.

(iii) Ground mapping, to convert image coordinates to

world coordinates.

(iv) Cyclist tracking using a bicycle model and Kalman

Filter, to mitigate spurious or occluded detections and

predict trajectories.

These are discussed separately in the following sections.

Wheel detection

Wheel detection was used to detect the presence of a

cyclist in the images. Both ellipse-based and classifier-based

methods for wheel detection were explored. Wheels were

chosen as recognisable features since they are common

to all bicycles with only minor variations. Ellipse-fitting

methods considered included Edge Following23,24, Genetic

Algorithm-based approaches25, and the Hough transform12.

The approach to the Hough Transform described by Xie

and Ji12 was implemented in Python, and a frame rate

of 10 fps was achieved. However, the algorithm is not

robust to occlusion of one side of the wheel, which

was a common occurrence. As an alternative, the Edge

Following approach was implemented but achieved only

1 fps maximum processing speed.
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The classifier-based method of Viola and Jones14 was

implemented in Python, using the OpenCV computer vision

library17. The output of the classifier is a bounding box

surrounding the detected wheel feature. This method was

found to be most suitable, and yielded an acceptable frame

rate of more than 20 fps.

Training data for detection and classification work is

available for cyclists, including the SUN26 and KITTI27

databases. However, the cyclist images in these datasets are

largely from a ground level reference and are not suitable

for the highly oblique view which results from our raised

camera setup. As a consequence, the data from two of the

three runs of each test were used as training data for the third

run. This is of course not suitable for a generalised system

which should be robust to varied cyclists and backgrounds.

However, it was deemed suitable at this proof-of-concept

stage. More generalised training data will be obtained and

used to retrain the classifiers in future work.

Due to the relatively small number of training images

available (approximately 900 images per camera for each

test run), separate classifiers were trained for each lateral

distance from the HGV. Positive image regions were marked

manually and images without wheels visible were used as

negative training data.

Figure 6 shows examples of positive training images.

Between 150 and 300 positive images were used to train

each classifier, depending on how many frames the wheels

were visible for. The positive samples were scaled to 24×24

pixels. Only 75 negative images were used due to lack of

variation between the images.

This method was fast enough for real-time implementa-

tion. However, the location accuracy was not sufficiently

precise since the detection bounding box could move relative

to the feature it enclosed. Due to the relatively small amount

of training data available, the classifiers were not very robust.

In order to guarantee detection of the wheels, the detection

threshold was kept low, which led to a high rate of false

(a) (b) (c)

Figure 6. Examples of positive training images

(a) (b)

Figure 7. Examples of (a) correctly and (b) wrongly detected
features

positive detections. Figure 7 shows example outputs of the

detection step.

It should be noted that this combination of testing and

training images is insufficient for robust implementation.

First, the number of negative training images should be

significantly larger than the number of positive training

samples, and secondly, both testing and training were carried

out on the same style of bicycle. This is due to the lack of

availability of training data for the oblique camera angles

used in this work. Some ad-hoc testing has been carried

out on classifiers trained with multiple different cyclists and

bicycles and found to work well.28

The current work is intended as a proof-of-concept of

the detection-location-tracking-prediction system as a whole,

thus it was considered that a partially-trained classifier would

give sufficiently accurate results. Future work should include

training the classifier on a much larger database of images

collected from the elevated camera angle.

Contact point location

Once wheels have been detected, the contact point with the

road must be determined. Several methods were considered

for finding the ground-wheel contact point within the
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detected bounding boxes. The methods considered and their

performance are summarised as follows.

(i) The Hough transform12 was used to fit ellipses inside

the feature bounding box.

(ii) Fitzgibbon’s algorithm29 was used to fit ellipses,

combined with RANSAC30 to remove outliers.

(iii) A simplified version of the Starburst algorithm31 was

used to limit the number of pixels in the box.

(iv) The ground point was assumed to be a fixed distance

down the centreline of the bounding box, where

the distance varied according to the passing distance

between HGV and cyclist in order to prevent loss of

accuracy at close range.

(v) The ground contact point was taken as the lowest

point on an edge in the cropped image. A grey-scale

threshold of 50 was first applied to remove bright

patches, such as road markings (Figure 8b), then the

images were normalised to maximise the contrast

between the tyres and the road (Figure 8c), and finally

Canny edge detected32 with a high threshold to ensure

that noise from the road surface was removed (Figure

8d). The cropped image was then searched in columns

to find the lowest edge pixel (Figure 8e). The threshold

and normalisation steps largely remove susceptibility

to lighting conditions, though more work is needed to

ensure complete robustness.

For methods (i) to (iii), the cropped images were first pre-

processed with a Gaussian blur and Canny edge detection32.

The Hough transform (i) was computationally expensive

and unreliable due to noise and occlusion in the images.

Combining Fitzgibbon’s algorithm with RANSAC (ii) was a

more reliable method of ellipse fitting, but still took too long

to run. The simplified Starburst algorithm (iii) was inaccurate

due to the noise and occlusion in the images. Using the full

Starburst algorithm might be more accurate, but would again

be computationally expensive. Assuming a fixed position

within the bounding box (iv) was accurate when the wheel

was near to the centre of the field-of-view but introduced

errors of up to 3 cm at the edges of the image due to the

camera distortion. This approach has the benefit that the

contact point can be estimated even when it is occluded by

the cyclist. Edge detection and minimum point selection (v)

was fast and accurate but was less accurate if the contact

point was occluded. Therefore this was the method chosen

except for close range tests where the fixed location method

was used instead. It is possible for the contact point to be

occluded in the tests at longer range. However method (v)

simply returns the location of the edge point which is closest

to the truck, which is likely to be whatever is obscuring

the wheel. This method is therefore still fairly accurate, and

so can be used, especially at longer test distances where

accuracy is less critical because the cyclist is further from

danger.

Ground mapping

A method was required for converting the detected cyclist’s

position into a world coordinate system. One approach

to this would be to rectify the distorted images, and

then use known camera parameters to perform a full 3D

calibration. However, this adds a computationally expensive

processing stage. Ground mapping was proposed as a simpler

alternative, which does not require an undistorted image.

The aim of the ground mapping process was to convert

the coordinates of the points of contact between the bicycle

wheels and the ground from the image coordinate system to a

global coordinate system (relative to the HGV). The point on

the ground directly below the front left corner of the vehicle

was chosen for the origin of the HGV coordinate system.

Defining bicycles in the ground plane by their contact points

simplified the calibration of the camera to a planar mapping.

There is an intermediate step needed to transform the image

coordinates into the HGV coordinate system because the

origin of the HGV coordinate system was not visible in either
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(a) (b)

(c) (d)

(e)

Figure 8. Stages in the extraction of the ground contact point.
(a) Cropping (b) Thresholding (c) Normalisation (d) Edge
Detection (e) Selection of the lowest pixel

camera’s field-of-view. The contact point between the left-

most HGV wheel visible in each camera’s field-of-view and

the ground was chosen as the origin for the intermediate

HGV-based coordinate system. Both intermediate HGV-

based coordinate systems were then translated into the world

coordinate system.

The cameras were calibrated by positioning the vehicle

next to a calibration grid (Figure 9).

The image coordinates (u, v) of the grid intersection points

were extracted manually; the world coordinates of each grid

intersection point (x, y) were already known. The camera

lenses introduced barrel distortion which is approximately

quadratic33. Therefore, a quadratic function was used to

approximate the transformed shape of the grid in both

dimensions. Shape-function-based interpolation was used

Figure 9. Calibration grid processed to cover the entire image

Figure 10. General illustration of coordinate mapping

to generate a map from image to world coordinates, as

described by Silva et al.34. The mapping is described as

follows:

u(x, y) = c1 + c2x+ c3y + c4x
2 + c5xy . . .

+c6y
2 + c7x

2y + c8xy
2

(1)

v(x, y) = d1 + d2x+ d3y + d4x
2 + d5xy . . .

+d6y
2 + d7x

2y + d8xy
2

(2)

where ci and di are constant coefficients. For an example

intersection point (x1, y1) the mapping to (u1, v1) would be

as follows:

u1(x1, y1) = c1 + c2x1 + c3y1 + c4x
2
1 . . .

+c5x1y1 + c6y
2
1 + c7x

2
1y1 + c8x1y

2
1

(3)

v1(x1, y1) = d1 + d2x1 + d3y1 + d4x
2
1 . . .

+d5x1y1 + d6y
2
1 + d7x

2
1y1 + d8x1y

2
1

(4)
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A one-meter square as shown in Figure 10 has intersection

coordinates (x1, y1) to (x8, y8), where (x1, y1) = (0, 0),

(x2, y2) = (0.5, 0), (x3, y3) = (1, 0), (x4, y4) = (1, 0.5),

(x5, y5) = (1, 1), (x6, y6) = (0.5, 1), (x7, y7) = (0, 1) and

(x8, y8) = (0, 0.5). These values of (xi, yi) can be substituted

into (2) to yield values of ui and vi for i = 1 to 8. For

example:

u2(0.5, 0) = c1 + 0.5c2 + 0.25c4 (5)

v2(0.5, 0) = d1 + 0.5d2 + 0.25d4 (6)

These expressions for all eight intersection points can be

written in matrix form:

u = Ac (7)

where

u =

[
u1 u2 u3 u4 u5 u6 u7 u8

]T
(8)

A =



1 0 0 0 0 0 0 0

1 0.5 0 0.25 0 0 0 0

1 1 0 1 0 0 0 0

1 1 0.5 1 0.5 0.25 0.5 0.25

1 1 1 1 1 1 1 1

1 0.5 1 0.5 0.5 1 0.25 0.5

1 0 1 0 0 1 0 0

1 0 0.5 0 0 0.25 0 0



(9)

c =

[
c1 c2 c3 c4 c5 c6 c7 c8

]T
(10)

Similarly

v = Ad (11)

Given a set of known image coordinates (u, v), c can be

found by

c = A−1u (12)

d = A−1v (13)

This process of finding c and d from images of the ground

grid constitutes the only calibration needed for the cameras.

Given a world coordinate point (x, y), the coordinates of

the transformed point in the image (u, v) can be found by

substituting x = x1, y = y1, c1 to c8 = c and d1 to d8 = d

into Equations 3 and 4.

However, given image coordinates (u, v), the correspond-

ing point (x, y) is not directly obtainable. To calculate (x, y)

an initial guess of the world coordinates is made and mapped

to image coordinates. This is compared to the target point

and the guess adjusted according to the error. This process

is repeated until the transformed coordinates converge to the

target point. A separate ground plane calibration map was

required for each camera in this case, owing to their different

heights and small variations in pitch and internal parameters.

To speed up the real-time element of the program the

conversion was calculated in advance for every pixel, and

stored in a lookup table. The calibration process should only

be required once per vehicle unless the cameras are moved.

From the 40 grid intersection points shown in Figure 9,

only eight are required for each 2D quadratic approximation.

To maximise the accuracy, the calibration image was split

into ten patches, in two rows of five, with overlap between

the two rows to ensure continuity in the more critical

lateral direction. Each patch was treated separately. This

introduced small discontinuities between the patches which

could be reduced by using a finer calibration grid, but this

was not considered necessary. All measurements of position

and velocity were transformed into relative measurements

between cyclist and vehicle.

The resolution of the images limited the precision of

the manual extraction of grid coordinates to approximately

±3 pixels which can be shown to correspond to an error in

world coordinates of up to 4 cm. This calibration assumes

the HGV was perfectly aligned with the grid while the
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calibration images were taken, which was not necessarily

the case. This could introduce an additional offset to the

final position outputs. In total, errors due to the coordinate

conversion of up to 7 cm are likely, although the uncertainty

will vary across the field-of-view with higher uncertainty

corresponding to regions of highest distortion on the images.

Once the image coordinates of the wheel-ground contact

points were extracted from the images, they were passed

through the coordinate map, and then translated so as to be

relative to the global origin under the front left corner of the

HGV.

Cyclist tracking

In order to track the cyclist’s motion using a Kalman Filter,

the cyclist was modelled by converting the coordinates of

the contact points of the front and rear wheels to a yaw

angle, wheelbase and position of the centre-of-mass of the

cyclist. Due to the relatively high rate of false positive

detections of the wheels, the positions of the front and rear

wheels were used to validate each other: a bicycle detection

would not be confirmed unless both wheels were detected in

the correct relative positions. This check was performed in

world coordinates and so the acceptable relative position was

governed by an approximate bicycle wheelbase of 1.2 m, and

a maximum expected yaw angle of ±5◦ relative to the x-axis.

Any detection with a plausible wheelbase was compared

to detections from the previous frame, and a maximum

velocity limit of 25 cm per frame in the direction of travel and

8 cm per frame laterally was imposed at 20 fps. These values

were determined from an assessment of feasible cyclist

motions. The bicycle was then tracked and its future position

predicted, so that in future frames only one wheel needed to

be detected, and checked against the expected position.

A simple Kalman Filter35 was added to reduce

measurement noise. Constant accelerations both parallel and

perpendicular to the direction of motion were assumed. This

also had the effect of providing motion estimates even in

ranges where detections were missed. The positions of the

front and rear wheels were averaged to output a list of

positions of the approximate centre of the cyclist (mid-

wheelbase) in each frame.

The prediction equations of the Kalman filter were:

X̂ = Xk−1 + Ẋk−1∆t (14)

p = P + Q (15)

where X is the state vector (lateral and longitudinal

displacement and velocity of the center of the cyclist’s

wheelbase), X̂ is the prior estimate of the state vector, P is

the error in the estimate, p the prior estimate of the error, and

Q is the process covariance.

The update equations were:

K = p(p + R)−1 (16)

Xk = X̂ + K(z − X̂) (17)

P = (1 − K)p (18)

where z is the observed states, R is the model covariance,

and K is the Kalman gain.

The prediction equations produce estimates of the system

states and their uncertainties. The update equations take these

estimates and the observations from the image processing

and calculate a weighted sum, giving a higher weighting to

the more certain predictions. The model covariance was set

to 1 for all states, and the process covariance set to 1.2 for

the position states and 2 for the velocity states. These values

were approximated from inspection of the covariance of the

unfiltered states and then adjusted to give suitable results.

A Python implementation of the whole algorithm ran at

an average of 7.7 fps on a 3.6 GHz laptop. Analysis by Jia6

showed that for effective intervention in the HGV motion, the

system should predict 1.5 seconds ahead. At typical closing
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speeds, this requires a minimum of 7.5 fps. The algorithm

frame rate was therefore deemed suitable.

Error analysis

As no ‘ground truth’ position of the cyclist was available, the

position of the ground contact point was manually extracted

from each of the images in order to remove the effect of

imperfect following of the nominal position lines by both

cyclist and HGV. However, there are errors associated with

this process, both in the mapping itself and due to imperfect

alignment between the vehicle and the calibration grid during

the capture of calibration images.

This manual measurement was designated M , the

camera system’s measurement C and the ‘true’ position

of the cyclist T . The maximum uncertainty between the

manual measurement and the true position, εMT,max was

approximated as the sum of two components—a 3 cm

uncertainty in the drawing of the calibration grid, and a three

pixel uncertainty in the accuracy of manually selecting points

from images. This three pixel uncertainty was converted

to world coordinates at different lateral distances from

the vehicle, representing increasing distances at higher

separation as anticipated from the angle of the cameras,

equalling 2 cm at 0.75 m, 3 cm at 1 m and 4 cm at 1.5 m.

Combined with the 3 cm uncertainty from drawing the grid,

this gave εMT,max = 5 cm, 6 cm and 7 cm at 0.75 m, 1 m

and 1.5 m respectively.

The standard deviation of the uncertainty, σMT was

estimated from the maximum error between the manually-

extracted position and true position. Assuming the errors

followed a Gaussian distribution, 99% of the data lie within

three standard deviations of the mean, leading to σMT ≈

εMT,max/3 giving σMT = 1.67 cm at 0.75 m, 2.00 cm at 1 m,

and 2.33 cm at 1.5 m. The mean uncertainty was assumed to

be zero. Although a slight bias possibly occurred due to the

nature of the data extraction task, this was likely to be small

and impossible to quantify.

The error between the camera measurement and the

manual measurement (εCM ) had a different mean and

standard deviation for each test run. The total error

between the camera measurement and true position εCT

was calculated as the sum of εCM and εMT . The mean (µ)

and standard deviation (σ) were found by assuming that the

errors εCM and εMT were uncorrelated, according to:

εCT = εCM + εMT (19)

µCT = µCM + µMT (20)

σ2
CT = σ2

CM + σ2
MT (21)

The standard deviations were also normalised as a

percentage of the nominal passing distance.

The camera system can continue to make estimates of the

cyclist’s position using the Kalman Filter if a previously-

detected wheel becomes occluded, so there is no loss of

data at the edges of the fields-of-view of the cameras. This

contrasts with the manually-extracted position data points,

which cannot be extrapolated in the case of an occluded

cyclist and therefore do not cover the same longitudinal

range as the camera-measured position. There are data points

missing in the region around X = 5 m and at the highest

and lowest values of X . This corresponds to points close to

the edge of either camera’s field-of-view, where one wheel

is occluded, so manual position extraction is impossible. The

camera system can detect a wheel even if the contact point

is fully occluded, if the view of the cyclist is sufficiently

similar to training images. Additionally, the camera system

can predict from previous positions, or from detection of a

single wheel. This loss of data points is more significant at

d = 0.75 m where the wheels are occluded further from the

edges of the camera field-of-view.

As an initial validation of the wheel detection algorithm,

the relative longitudinal velocity between cyclist and HGV

was compared with manual measurements taken from the
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Figure 11. Comparison of calculated and measured
longitudinal velocities

lateral tick marks on the ground. The manual extraction was

approximate due to discretisation errors: there may not be

an image at the exact moment a wheel passes a tick mark.

The manual speed measurement was smoothed by taking a

moving average.

Results and discussion

Figure 11 shows the relative and absolute longitudinal

velocities of the HGV and cyclist for the cyclist nominally

at 1 m from the side of the HGV (d = 1 m). The results

indicate reasonable agreement between the algorithm and the

measured speeds.

Figure 12 shows the trace of the camera-estimated position

for three of the test runs at different lateral distances. The

nominal position is the location of the marked lines on the

road at d = 0.75 m, 1 m and 1.5 m from the HGV, shown

in dashed lines on the figure. These results show reasonable

performance in the estimation of the cyclist’s position

relative to the nominal position, although comparison to the

nominal position is of limited value as the cyclist and the

HGV may not have followed their respective lines precisely.

However, the estimated position is within a 10 cm window

of the nominal line in most cases. Errors are higher at

smaller values of d because the wheels were more often

occluded by the cyclist’s body. This reduced the number of

X coordinate (m)
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Y
 c

o
o
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in
a
te

 (
m

)

0.0
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1.0

1.5

Nominal Position Measured Position

Figure 12. Output of camera-based detection system over
three different lateral distances from the side of the HGV

Table 1. Average detection errors across all tests.

Nominal distance (m) 1.5 1.0 0.75

σCM (cm) (measured) 3.27 3.66 4.72
σMT (cm) (estimated) 1.67 2.00 2.33
σCT (cm) (calculated) 3.67 4.17 5.26
Normalised σCT 2.4% 4.2% 7.0%

observations, thus reducing the robustness of the Kalman

Filter. The occlusion of the wheels at the edges of the

fields-of-view of the separate cameras also contributed to the

large discontinuity in position at the join between the left

and right cameras at X ≈ -4.5 m for d = 0.75 m, as the

position estimate there was based on prediction rather than

observations.

In total, 18 sets of testing images were recorded—six

each at 0.75 m, 1 m and 1.5 m. These included a range

of passing speeds between the HGV and the cyclist, and a

range of lighting conditions, from overcast to bright sunlight,

with combinations of HGV and cyclist shadows in different

orientations. The lighting conditions had no noticeable effect

on the accuracy of the detection. Table 1 summarises the

average results for each of the three test distances.

Figure 13 shows a comparison of the camera-measured

position and the manually-extracted position for one test run

at each of the test distances.

At 1.5 m distance (Figure 13a), the camera detection

matches closely the manually extracted positions, with a

Prepared using sagej.cls

Page 13 of 18

http://mc.manuscriptcentral.com/jauto

Journal of Automobile Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Eddy, de Saxe and Cebon 13

(a)

X coordinate (m)

-10 -8 -6 -4 -2 0

Y
 c

o
o
rd

in
a
te

 (
m

)

1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70

(b)

X coordinate (m)

-10 -8 -6 -4 -2 0

Y
 c

o
o
rd

in
a
te

 (
m

)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

(c)

X coordinate (m)

-10 -8 -6 -4 -2 0

Y
 c

o
o
rd

in
a
te

 (
m

)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Nominal Position

Camera Measured Position

Manually Extracted Position

Figure 13. Comparison between camera measurements and
manually-extracted data points for a single run at (a) 1.5 m
separation (b) 1 m separation (c) 0.75 m separation

maximum error of 4.1 cm at X = −9.1 m. This is close

to the width of the bicycle tyre and also to the uncertainty

introduced by the calibration system at that distance which

had a standard deviation of ±1.67 cm.

Across all six test runs at a nominal spacing of 1.5 m,

the camera system performed very well. The errors between

the camera system and the manually extracted coordinates

were very small, with a standard deviation across all six

runs of only 3.27 cm—only slightly greater than the tyre

width. The error between the camera measurements and

manual measurements dominates the error between the

manual measurements and true value. This implies that the

calibration process is very accurate and reliable, even at d =

1.5 m.

At 1 m distance (Figure 13b), occlusion prevents manual

measurements between the two cameras (X = -6 m to -

3 m). The errors relative to the manually extracted position

are slightly larger, but still close to the 3 pixel uncertainty

window (corresponding to 3 cm at d = 1 m), again implying

that the image processing system can find the ground contact

point at least as accurately as a human. The maximum error

for the displayed test run was 10.9 cm at X = -7.4 m, but the

standard deviation across all tests was 3.66 cm. The higher

maximum error suggests that the camera system is slightly

less robust at closer range, as the wheels become more

liable to occlusion, but the overall accuracy is similar. As

predicted, at closer range, the uncertainty in the calibration

process drops, as the camera ‘looks down’ on the closer

points instead of ‘across’ them, allowing the ground point to

be more accurately defined. This causes the errors due to the

detection stage to become even more dominant as the range

reduces.

At 0.75 m distance (Figure 13c), the camera system

is much less reliable. Occlusion strongly limits the areas

where manual extraction can be performed. The maximum

errors are much larger (15.2 cm at −2.7 m), although the

standard deviation is still under 8 cm across all the test

runs. The calibration process is more accurate at the closer

distance, so the errors in the detection stage dominate,

leading to a standard deviation in the error between the

camera measurement and the true position of up to 5 cm.

This is largely due to significant occlusion of the wheels

at close range by the cyclists body. Since the classifier

training dataset included images of partially occluded wheels

the system can still estimate the position of the wheel, but

accuracy is reduced compared to the fully visible case.

Prepared using sagej.cls

Page 14 of 18

http://mc.manuscriptcentral.com/jauto

Journal of Automobile Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14 Journal Title XX(X)

The errors at the closest nominal distance were noticeably

larger than at further distances. Inspection of the output of

the detection stage for these runs shows significant loss of

accuracy at the gap between the images taken by the two

cameras. This often caused the Kalman Filter to fail for all

or part of the test, without enough observations to inform

the model. This loss of detections was most significant at the

closest distance because the wheels are more easily occluded

when the cyclist is close to the camera, leaving only two

small patches, one in the centre of each camera’s field-of-

view where the detection system was working well. This

pattern was consistent across all the runs at 0.75 m. Reducing

the separation between the cameras, or increasing the number

of cameras would eliminate this blind-spot in the field-of-

view, and improve the accuracy significantly.

Jia6 quoted the accuracy of the ultrasonic measurement

system as a standard deviation of 3.4 cm at a nominal

passing distance of 1 m. This is very similar to 3.92 cm for

the camera system in a similar test. However it should be

remembered that a component of this value is an uncertainty

in the manually extracted position (as the true position

was unknown, unlike the ultrasonic tests) and the standard

deviation of the camera detection alone was 3.66 cm. The

output of the camera system is the world coordinates of

the point midway between the ground contact points of

the bicycle’s wheels, whereas the output of the ultrasonic

system was the distance of the cyclists shoulder from the

side of the HGV. The translation from the ground point to the

shoulder would introduce discrepancies between the camera

and ultrasonic systems due to roll motion of the cyclist, and

the position and angle of the cyclist’s torso relative to the

bicycle. However, for the purposes of predicting trajectories

rather than merely detecting proximity, the point in the

ground plane is the more reliable predictor of future motion,

which is a benefit of the camera system.

A significant disadvantage of the camera system compared

to the ultrasonic system is the loss of accuracy at close range.

However, this could be mitigated by smaller separation

between the cameras (possibly increasing the number of

cameras required) and also by lowering the camera, to reduce

the angle between the camera and the ground plane, thus

reducing occlusion of the wheels by the cyclist’s torso.

Conclusions and further work

Conclusions

(i) A camera system was been developed to measure the

motion of cyclists on the nearside of Heavy Goods

Vehicles. The system consisted of two downward-

facing cameras mounted high on the side of the

vehicle. A calibration grid marked on the ground

was used for initial calibration. Cyclist wheels were

detected using boosted classifiers and validated using

geometrical arguments. The point of contact between

the wheel and the ground was extracted and converted

into world coordinates using a coordinate mapping

generated from the calibration grid.

(ii) The system was evaluated using test data from a

number of parallel passing manoeuvres between a

cyclist and HGV. The system was generally able to

track the position of the cyclist to within 10 cm

at distances of 1 m or greater from the HGV. The

detection step was accurate to ±4 cm (standard

deviation) at most points. The remainder of the error

was introduced by the mapping to world coordinates.

At lateral distances of less than 1 m the system was

found to be significantly less accurate due to occlusion

and distortion of the image features. Quantification of

the error was hampered by the lack of a ground truth

to compare to.

(iii) The system was slightly less accurate than Jia’s ultra-

sonic system, most significantly when the cyclist was

close to the HGV. The camera-based approach also

suffers in poor lighting or weather conditions, meaning
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a solely camera-based approach is likely unrealistic.

However, the camera system addresses many of the

limitations of the ultrasonic system, including com-

plexity and cost of installation and the ability to dif-

ferentiate between multiple cyclists. A hybrid system

using cameras to identify cyclists and a few ultrasonic

sensors to accurately locate them would be a possible

enhancement.

Further work

(i) Additional image features such as helmets or

handlebars could be detected and used to validate

wheel detections. This would need to be done in image

coordinates as the other features are not in the ground

plane and so cannot be located in world coordinates

without a more complex calibration stage.

(ii) Processing time could be reduced by limiting feature

searching to a zone close to the previous detection

(with the size of the search zone controlled by the

cyclists velocity as tracked by the system). A full

image search could be included periodically to detect

any new cyclists.

(iii) A robust and efficient implementation of ellipse

detection would likely be a more reliable method of

locating the ground contact point than the current

solution. There is also a need for a way to recognise

when the ground contact point is occluded so as to use

the alternative method of estimating at a fixed position

in the wheel bounding box.

(iv) For the tests described here, lighting conditions

were favourable, although there was variation in

light intensity. Image normalisation (to intensity and

contrast) could help to produce robustness to lighting

conditions.

(v) The system does not work at night. The use of

night-vision cameras could be investigated. Since the

classifiers are based on shape features, they should

be adaptable enough to work on night-vision images.

Care would need to be taken to shield the cameras from

intense lighting such as headlights, which would wash-

out the images.
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Appendix

Nomenclature

A Transformation matrix

ci ith coefficient of mapping polynomial in the u

direction

c Vector of ci coefficients

C Camera system measurement of cyclist position

d Nominal lateral distance from the side of the vehicle

di ith coefficient of mapping polynomial in the v

direction

d Vector of di coefficients

K Vector of state Kalman gains

M Manually measured cyclist position

p Vector of prior estimates of the state errors

P Vector of state estimation errors

Q Vector of state process covariances

R Vector of state model covariances

T True cyclist position

u Vector of u coordinates

v Vector of v coordinates

X Longitudinal position relative to the vehicle

X Vector of bicycle states

X̂ Vector of prior estimates of the states

Y Lateral position relative to the vehicle

z Vector of state observations

(u, v) Location of a point in image coordinates

(x, y) Location of a point in world coordinates

εij Uncertainty between the measurements i and j

µij Mean error between the measurements i and j

σij Standard deviation of the uncertainty between the

measurements i and j
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Figure 1 - Breakdown of cyclist-HGV collisions by configuration. Data from

Robinson and Chislett, graphic adapted from Jia

Figure 2 - Camera and ultrasonic setup

Figure 3 - Camera configuration and field-of-view, shown approximately to

scale with a cyclist at 1m from the HGV

Figure 4 - Sample images at various lateral separations and lighting

intensities

a) - Camera A, cyclist at 1.5m

b) - Camera B, cyclist at 1m

c) - Camera A, cyclist at 0.75m

d) - Camera A, cyclist at 1.5m, sunny

Figure 5 - Instrumentation schematic for image acquisition

Figure 6 - Examples of positive training images

a) - 

b) - 

c) - 

Figure 7 - Examples of (a) correctly and (b) wrongly detected features

a) -

b) - 

Figure 8 - Stages in the extraction of the ground contact point. (a) Cropping

(b) Thresholding (c) Normalisation (d) Edge Detection (e) Selection of the

lowest pixel

a) - 

b) - 

c) - 

d) - 

e) - 

Figure 9 - Calibration grid processed to cover the entire image

Figure 10 - General illustration of coordinate mapping

Figure 11 - Comparison of calculated and measured longitudinal velocities

Figure 12 - Output of camera-based detection system over three different

lateral distances from the side of the HGV

Figure 13 - Comparison between camera measurements and manually-extracted data

points for a single run at (a) 1.5m separation (b) 1m separation (c) 0.75m

separation

a) - 

b) - 

c) - 
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