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ABSTRACT
High-capacity vehicles have been shown to be highly effective in
reducing emissions associated with road freight transport. However,
the reduced manoeuvrability of long vehicles often necessitates the
use of active trailer steering. Path-following trailer steering systems
are very effective in this regard, but are currently limited to on-
highway applications due to the manner in which trailer off-tracking
is estimated. In this work, a novel trailer off-tracking measurement
concept is introducedwhich is independent ofwheel slip andground
surface conditions, and requires no additional sensor measurements
or parameter data from the tractor. The concept utilises a stereo cam-
era pair affixed to the trailer and a visual odometry-based algorithm
to calculate off-tracking. The concept was evaluated in detailed
simulation and full-scale vehicle tests, demonstrating its feasibility
and highlighting some important characteristics. RMSmeasurement
errors of 0.11–0.12m (3.3–3.6%) were obtained in a challenging
visual environment.
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1. Introduction

Logistics efficiency and greenhouse gas emissions are pressing research areas today as pop-
ulations grow, economies strive to be more competitive, and as the world aims to meet
demanding greenhouse gas emissions reduction targets. Freight transport, particularly
road freight transport, is fundamental to all of these issues. In the UK in 2014, 185 bil-
lion tonne kilometres of inland freight was moved, and of this 74% was transported by
road on heavy goods vehicles (HGVs) [1]. Domestic transport accounts for approximately
20% of theUK’s total CO2 emissions, andHGVs account for 21% of this or 4.2% of the total
[2]. The case is similar in Europe, with road transport responsible for about 20% of total
CO2 emissions, approximately one quarter of which is attributable to trucks and buses [3].

Both the logistics efficiency and emissions associated with HGVs in performing a given
freight task are a direct function of vehicle efficiency. High-capacity vehicles (HCVs)
have increased capacity due to increased permissible mass or dimensions relative to
conventional HGVs. They are normally longer and have more articulation points than
conventional HGVs. The use of HCVs has been trialled and implemented in a number
of countries including Australia, South Africa and parts of Europe [4–6], and proved to be
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a highly effective means of addressing efficiency and emission challenges in road freight
transport.

The introduction of such vehicles is not without its challenges, chief among which
in Europe and the UK is their reduced manoeuvrability. The Longer Semi-Trailer (LST)
trial in the UK [7] is studying the benefits of semi-trailers which are 2.05m longer
than conventional semi-trailers. However, all participating vehicles must still meet the
UK’s ‘roundabout test’ requirement, and this almost certainly necessitates trailer steering
technology.

1.1. Off-tracking and trailer steering

Off-tracking primarily refers to the ‘cut-in’ behaviour of a truck or trailer as it navigates
a turn. Off-tracking is illustrated in Figure 1(a) for a tractor semi-trailer. In this research,
off-tracking is measured as the deviation of the rear of the trailer relative to the path of the
hitch point, measured laterally to the longitudinal trailer axis.

Conventional trailer axles are unsteered which limits manoeuvrability. A number of
passive and active trailer steering technologies exist to address this. Passive systems have
limited scope for improving manoeuvrability, and often result in unwanted side-effects
such as increased ‘tail swing’ or degraded stability at high speeds [8,9]. In compari-
son, active steering systems can approach optimal manoeuvrability performance without
unfavourable transient effects and have been shown to improve high-speed stability and
safety performance [9–11].

Early work on active steering byHata et al. [12] andNotsu et al. [13] introduced the idea
of the ‘path-following’ steering concept. Building on this, Jujnovich and Cebon [14] devel-
oped an active path-following semi-trailer steering system in which a ‘ follow-point’ at the
rear of the trailer follows the path of the lead point (fifth wheel) for all speeds and paths.
This is illustrated in Figure 1(b). Their strategy for achieving this was to compare heading
angles at the front and rear of the trailer using a non-linear control strategy. A ‘model-
matching technique’ requiring a reference trailer model was used to address problems
associated with steering angle saturation at low speeds. The controller required knowl-
edge of vehicle parameters for both tractor and trailer, as well as measurements of speed,

Figure 1. Trailer off-tracking: (a) unsteered trailer, (b) steered trailer with path-following control.
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Figure 2. Trailer steering performance in a roundabout manoeuvre (modified from [15]).

articulation angle and trailer yaw rate. The performance of the path-following concept
comparedwith a conventional trailer and command steer is shown in Figure 2, highlighting
its superior cut-in and tail swing behaviour.

An alternative (linear) strategy was proposed by Cheng et al. [10,16], using a ‘virtual
driver’ located at the rear of the trailer and a simpler proportional-integral-derivative con-
troller to estimate off-tracking at low speeds. The system was also capable of controlling
the vehicle at high speeds, minimising a cost function with respect to both high-speed sta-
bility and off-tracking. The controller required knowledge of various tractor and trailer
parameters, as well as measurements of tractor speed and steer angle, trailer yaw rate and
articulation angle in order to estimate trailer off-tracking, and hence calculate the required
trailer steer angles. The off-tracking estimation method also assumed zero wheel side-slip
at low speeds.

By basing the control on off-tracking error instead of heading angles, Cheng’s approach
avoids possible steady-state tracking errors that are possible in Jujnovich’s approach. Fur-
ther, Cheng’s controller does not require a reference trailer to handle steer angle saturation.
However, like Jujnovich’s controller, it requires sensor measurements from the tractor as
well as knowledge of tractor parameters for the vehicle model. In addition, the assumption
of zero slip limits the application of the system to high friction (on-highway) conditions.
This is a reasonable assumption for many applications, but is limiting for icy conditions on
the highway and for off-highway applications such as logging, livestock and dairy collec-
tions from farms, andmilitary convoys. Off-highway applications are prone to low friction,
cambered and inclined roads, and tight corners, giving rise to potentially large wheel slip.

The ability to measure trailer off-tracking, in a manner which is independent of fric-
tion conditions and requires no parameter data or sensor measurements from the tractor
unit, would improve the commercial prospects of path-following trailer steering systems.
Furthermore, such a solution could find application in other areas requiring a versatile
means ofmeasuring trailer off-tracking. For example, it could be used tomeasure the swept
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path performance of heavy vehicles for certification with performance-based regulatory
schemes, such as those in Australia and South Africa [4,5].

1.2. Trailer off-tracking sensing

Miao and Cebon [17] demonstrated the limitations of Cheng’s controller in simulations of
roundabout manoeuvres with camber and low friction. Miao [18] then showed how the
controller could be reformulated to take an independent measurement of off-tracking, i.e.
relaxing the no-slip assumption and subsequently proposed a ‘ground-watching navigation
system’ (GWNS) for independent off-tracking estimation.

The ground-watching concept was demonstrated for a tractor semi-trailer combina-
tion using two downwards-facing cameras mounted beneath the semi-trailer, one near the
fifth wheel and one near the trailer follow-point. Miao used FAST features [19] and SURF
descriptors [20] to detect features in each image of the road surface. Feature matching
between front and rear camera images was achieved using the FLANN algorithm [21].
A RANSAC scheme was adopted to calculate the planar homography from the feature
matches, and single value decomposition was used to determine planar rotation and trans-
lation from the homography. A variation of the system that used a single camera was also
presented for instances when off-tracking was too large for the dual camera system to
function.

Performance of the system was demonstrated in vehicle tests on dry tarmac with a
tractor semi-trailer. Off-tracking measurement errors of 0.05m were obtained at 10Hz
in open-loop tests (i.e. with non-steered trailer axles and no control). In closed-loop
tests, using measurements from the GWNS as inputs to Miao’s modified path-following
controller, path-following errors of less than 0.1m were obtained.

Although the system addressed the issue of wheel slip dependence, it assumed an
unchanging and planar road surface with static features. In conditions where wheel slip
is likely (i.e. where there is mud, standing water, ice, snow), it is also likely that the road
surface is non-planar and displaces with the passing of the vehicle, and so may be unsuit-
able for the ground-watching concept. Furthermore, cameras mounted beneath a trailer in
these conditionswould also be very prone to dirt andwater splashwhich could significantly
affect the performance of feature extraction and matching.

This paper develops an off-tracking measurement concept which is independent of
tractor measurements or parameter knowledge and wheel slip conditions, and which
makes no assumptions regarding the visual properties of the ground surface. We present
a novel camera-based concept which builds on and addresses the limitations of Cheng’s
path-following controller [10] and Miao’s ground-watching navigation system [18].

2. Off-tracking estimation concept

The off-tracking estimation concept utilises a stereo camera pair mounted on the roof of
a trailer which captures stereo images of the surrounding landscape. These images are
processed using visual odometry to determine the motion of the trailer relative to the
surroundings. Cameras can be either mounted along the side or rear edge of the trailer,
though rear-facing cameras cannot be used if there is an additional ‘link’ trailer. The open-
source VISO2-S visual odometry algorithm [22] was adopted for the image processing task
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and was coupled with a buffer-based off-tracking calculation algorithm. The combined
VISO2-S and off-tracking calculation algorithm is denoted as ‘VISO-OT’.

Target off-tracking errors of 0.10mRMS and 0.15mmaximumare sought. This is in line
with previous work on path-following control [14,23]. These are deemed to be reasonable
upper bounds for obstacle avoidance and control stability. For comparison, in the Aus-
tralian performance-based standards scheme for heavy vehicle certification, vehicle swept
path measurements are permitted an error of up to 0.1m [4].

2.1. Visual odometry

Visual odometry is the estimation of the pose and motion of a camera through a 3-D
scene. Advances in visual odometry algorithms have resulted in its widespread use for
autonomous road vehicles andmobile robotics. Compared to other odometry systems such
as wheel speed sensors and GPS ,1 visual odometry offers high precision, low-cost hard-
ware and independence from traction conditions. Although vehicle-based visual odometry
is commonplace in autonomous vehicles (see, for example, [22,24]), little work has been
done with heavy vehicles, with the exception of recent work by Miao, Harris, de Saxe and
Cebon [18,25–27].

The VISO2-S algorithm [22] assumes that the stereo cameras have been calibrated and
the images rectified. The ‘stereo baseline’ (lateral separation between left and right cam-
eras) must also be known. Details of the VISO2-S algorithmmay be found in [22] and can
be summarised into the following steps:

(1) A stereo image pair is obtained and ‘corner-like’ features are detected in each image.
(2) ‘Circular’ feature matching is performed, comparing features between left and right

images (normal stereomatching) as well as between current and previous image pairs.
Features are accepted if matching succeeds through the entire ‘circular’ loop of four
images.

(3) A ‘bucketing’ process [28] divides the images into a rectangular grid, and each ‘bucket’
may only store a maximum number of features. This ensures a good distribution of
features around the image, minimising the effects of bias and of moving objects.

(4) Ego-motion is estimated by minimising reprojection errors through Gauss-Newton
optimisation with respect to the rotation matrix R and translation vector T.

(5) The ego-motion estimation incorporates a RANSAC strategy to remove outliers.
(6) A constant acceleration Kalman Filter is used to minimise noise.

In performance tests on the KITTI data set, the VISO2-S algorithm was shown to yield
2.44% translation error and 0.0114◦/m rotation errors on average with a 0.5m stereo base-
line [29]. The algorithm runs at 20 fps on a single processing core using the recommended
parameter settings. Using a representative trailer length of 14m (fromfifthwheel to follow-
point), translation drift of 2.44%would result in approximately 0.0224 × 14m = 0.3136m
of lateral off-tracking between the fifth wheel and the rear of the trailer.

It is expected that the accuracy of VISO2-S can be improved nearer to the target max-
imum error of 0.15m by using a larger stereo baseline. Increasing the baseline of a stereo
camera pair can improve depth accuracy and hence odometry accuracy [30] but at the
expense of increased difference in perspective. The distance to scenery in this application
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was deemed suitably large for relatively large baselines to be considered without the need
for specialised wide-baseline stereo vision algorithms (see, for example, [30–32]). The
maximum practical baseline would be approximately 2.5m for rear-facing cameras, con-
strained by maximum vehicle width. However, other practical limitations on maximum
baseline exist, such as the ease of stereo camera calibration and the rigidity of the camera
mounting.

2.2. Off-tracking calculation

Figure 3(a) illustrates step-by-step (or frame-by-frame) yaw-plane motion of a tractor
semi-trailer combination at frames i, i−1, i−2, i−3 and so on. The camera origin is arbi-
trarily assumed to be at distance a behind the fifth wheel and b ahead of the follow-point.

Figure 3. Off-tracking calculation process from visual odometry data. (a) Camera trajectory from visual
odometry. (b) Fifth wheel trajectory. (c) Rotated trajectory in ith reference frame. (d) x-y co-ordinates in
ith reference frame.
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Raw visual odometry data are in the form of a rotationmatrix, R, and translation vector, T,
at each frame, where R and T are relative to the prior vehicle location, and in that vehicle’s
reference frame. The yaw-plane components of these data are shown in the figure as �x,
�y and�ψ (incremental translation and yaw angle). Pitch and roll motions were assumed
to be negligible relative to motion in the yaw plane. By making use of a data buffer or shift
register, these data were used to calculate off-tracking.

First, depending on whether the cameras are rear-facing, side-facing, or at some inter-
mediate angle between, translational data from the cameras must be rotated and aligned
with the vehicle co-ordinate frame. To do this the camera-to-vehicle rotation parameter is
defined as ψc2v . For perfectly rear-facing cameras, ψc2v = 180◦, and for cameras pointing
to the right, ψc2v = 90◦. The co-ordinates can be rotated according to[

�x

�y

]
i

=
[

cos(ψc2v) sin(ψc2v)

− sin(ψc2v) cos(ψc2v)

] [
�x

�y

]
cam,i

. (1)

The motion data from the cameras can then be transformed into fifth wheel motion
(denoted by the subscript F for ‘front’) as follows:[

�x

�y

]
F,i

=
[
�x

�y

]
i

+ a ·
[

sin(�ψi)

cos(�ψi)− 1

]
, (2)

where a is the distance from the hitch to the reference point of the cameras. This is illus-
trated in Figure 3(b). These data are stored in a buffer which initially grows with each new
frame.

To find the fifth wheel trajectory relative to the current vehicle reference frame, previous
data in the buffer must be rotated at each new frame. This can be done by first summing
�ψ from the current frame to each previous frame as follows:

ψ
(i)
i−k = −

k∑
j=1

�ψ
(i−j)
i−j , k = 1, 2, 3, . . . . (3)

The counter, k, denotes the entry in the buffer, increasing from the current frame (k=1)
backwards. The superscript (i) denotes the co-ordinate frame (i.e. that of vehicle i).

For buffer entry k, and hence frame i−k, a rotation transformation from frame i−k to
frame i can then be applied to obtain�x and�y in the current reference frame:[

�x

�y

](i)
F,i−k

= −
⎡
⎣ cos(ψ(i)i−k) sin(ψ(i)i−k)

− sin(ψ(i)i−k) cos(ψ(i)i−k)

⎤
⎦ [

�x

�y

](i−k)

F,i−k

(4)

which is illustrated in Figure 3(c).
The x and y locations of each data point in the current vehicle reference frame (centred

on the fifth wheel) may then be found by simple summation of�x and�y data:[
x

y

](i)
F,i−k

=
k−1∑
j=0

[
�x

�y

](i)
F,i−k

. (5)

This result is illustrated in Figure 3(d).
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At a given frame i, (x, y) data of fifth wheel path history points can be used to find the
off-tracking at the rear of the trailer. Assuming the dimension a+b to be known, the most
recent path history point for which

y(i)F,i−k ≤ −(a + b) (6)

denotes the point beyond which the fifth wheel trajectory is past the rear of the trailer.
The value of k at which this condition is met is denoted kb or the buffer length. The

buffer only needs to retain kb data points, with older data being discarded and the most
recent data added at each new frame in the data buffer.

The off-tracking, etr, may be calculated by linear interpolation as follows:

etr = x(i)F,i−(kb−1) +
(
x(i)F,i−kb

− x(i)F,i−(kb−1)

)⎛
⎝y(i)F,i−(kb−1) + (a + b)

y(i)F,i−(kb−1) − y(i)F,i−kb

⎞
⎠ . (7)

If at least one trailer length has passed, the above calculation of off-tracking will be
possible. If not, the buffer will not contain sufficient data for off-tracking to be calculated.
In this case the next frame is obtained, and the buffer simply grows in size until sufficient
data are available and off-tracking can start to be calculated. Thereafter, the buffer size will
vary with the speed and path of the vehicle, only keeping data old enough to calculate
off-tracking. When a vehicle stops, it is possible to store the contents of the buffer. So in
theory, the calculation of a semi-filled buffer should only occur the first time a new vehicle
combination is launched.

Integration drift is inherent in visual odometry systems as a result of summing incre-
mental motion data in the above fashion. In typical automotive and mobile robotics
applications, these data are integrated indefinitely with time to obtain global position
estimates, so the integration errors can grow unbounded. However, in this application inte-
gration is performed only from the fifth wheel to the rear of the trailer and so integration
drift is bounded by the length of the trailer and will not grow indefinitely with time. Fur-
ther, the effects of any outliers in the visual odometry data will be removed from the buffer
after one trailer length has passed.

3. Simulations

3.1. Simulation overview

As a proof-of-concept, and to assess the theoretical accuracy of the VISO-OT system,
simulations were carried out in a virtual 3-D environment using Autodesk Inventor [33].
Autodesk Inventor includes functionality to generate animations using a simulated per-
spective camera, which represents an idealised pin-hole camera with no lens distortion
and with accurately known parameters. This functionality has proven to be useful in eval-
uating computer vision algorithms in a simulated environment under ‘perfect’ conditions,
thus determining an upper bound on the achievable performance in the field [18,25]. A
virtual stereo camera pair was made to travel through a visually representative road and
roadside environment, simulating the motion of an off-tracking trailer.

The ‘virtual environment’ is shown in Figure 4(a). Road width was set to 5m (within
the UK rural road design guidelines), and the size of roadside objects and textures were
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Figure 4. CAD simulation environment: (a) Perspective view, (b) plan view of constant side-slip
manoeuvre.

chosen to be representative. Soft ambient lighting and shadows were incorporated and all
scenery was stationary. A stereo camera pair was made to follow a straight path along the
road at a given slip angle, representative of a trailermoving with constant off-tracking. This
is illustrated in Figure 4(b). Stereo images from the cameras were rendered at 10 fps as the
trailer travelled 100m along the path at a constant speed of 5m/s. VISO-OTwas then used
to process the image sequences and estimate off-tracking.

Images were captured at a resolution of 1344 × 391 using virtual cameras with a 100◦
field of view. The cameras were located 3m above ground level with zero tilt or roll angles
relative to the ground. The simulated stereo cameras adhered to the simple pin-hole camera
model with no distortion, and so could be easily calibrated from knowledge of the image
size and field of view.

The default input parameters for VISO2-S were used, including 50 RANSAC iterations
per optimisation, outlier flow and disparity thresholds of 5 pixels, a bucket size of 50 × 50
pixels and a maximum of two features per bucket. For off-tracking calculations, the trailer
length from fifth wheel to follow-point (a+b in Figure 3) was taken to be 14m. This is
approximately representative of a UK LST. Given the trailer side-slip angle and knowing
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Figure 5. Stereo images at a slip angle of 10◦ and a baseline of 2.5m. (a) Rear-facing cameras.
(b) Side-facing cameras.

the trailer length, the ‘ground-truth’ off-tracking was known accurately in each case for
comparison.

Investigations into the sensitivity of the systemwere carried out using batch simulations,
with regard to variations in stereo baseline, camera location (side/rear), trailer slip angle
and scenery density. All CAD and visual odometry processingwas performed on a 3.2GHz
6-core desktop computer.

3.2. Results

Example views from the stereo camera pair are shown in Figure 5 for both rear and side-
facing camera cases. Locations of matched features are shown in each image. The example
case shown is for a trailer side-slip angle of 10◦ and a baseline of 2.5m.

3.2.1. Stereo baseline and camera location
The effect of stereo baseline was studied for a reference scenario of 14◦ trailer slip and a
baseline of 0.5m. A range of baselines was considered from 0.5 to 5.0m in 0.5m incre-
ments. Rear and side-mounted camera scenarios were considered. (Baselines of >2.5m
are possible for side-mounted cameras, but are not practical for rear cameras.)

Results are shown in Figure 6. The metrics shown include RMS and mean off-tracking
measurement errors, measured over the duration of each simulation run, as well as
the mean number of feature matches and the percentage mean inlying feature matches
from VISO2-S, indicating the relative performance of the underlying visual odometry
measurements.

A clear reduction in feature matching is evident with increasing baseline, as expected
due to the increasing difference in perspective of the two cameras. However, little effect on
errors is evident until a baseline of approximately 2.5m. Until this point, RMS errors are
in the region of 0.01–0.04m (0.3–1.2%), and mean errors in the order of 0.01m.

The reduction in the number of feature matches and increase in errors are more pro-
nounced for the side-facing cameras. This is expected due to the smaller average feature
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Figure 6. Sensitivity to the stereo baseline for 14◦ slip (reference = 0.5m). (a) RMS errors. (b) Mean
errors. (c) Mean no. of matches. (d) Mean no. of inliers.

depth which is less suited to wider baselines. The point at which errors grow (at a base-
line of 2.5m) appears to correlate with the number of feature matches dropping below 250
(shown in the figure).

At reasonable baselines (below 2.5m), the errors for rear and side cameras are compa-
rable. However, for higher baselines, the side cameras experience a significant increase in
RMS errors compared with the rear-facing cameras. The average feature depth for the side
cameras is lower, and an increased baseline yields more difficult feature matching for less
distant features. So an increased baseline will have more effect on the side-facing cameras.
Rear cameras therefore offer better accuracy and consistency over the anticipated operating
range of off-tracking.

3.2.2. Trailer slip angle
In addition to the reference case of 14◦ trailer slip (about 3.5m off-tracking), a wide range
of other slip angles and hence magnitudes of off-tracking were investigated. Slip angles of
between 0◦ and 60◦ were considered. Although 60◦ of side-slip yields an unrealistic off-
tracking of 24m (as per the definition in Figure 1(a)), these higher slip scenarios were
included for possible additional insights.

The results are shown in Figure 7 for a rear-mounted camera configuration. Results
for three baselines (0.5m, 1.5m, 2.5m) are shown for comparison. For realistic slip angles
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Figure 7. Variation in performance for rear-facing cameras as a function of vehicle slip angle and stereo
baseline. 16◦ trailer slip (4m off-tracking) shown as dashed line. (a) RMS errors. (b) Mean errors. (c) Mean
no. of matches. (d) Mean no. of inliers.

below 16◦ (4m off-tracking), the effectiveness of the feature matching is seen to be approx-
imately insensitive to slip angle, but clearly sensitive to baseline. RMS errors for the 0.5 and
1.5m baselines are comparable, and range from 0.01 to 0.03m. 2.5m baseline errors are
consistently higher between 0.02 and 0.04m. Mean error trends are similar, with a maxi-
mum bias of 0.01m for the 0.5m and 1.5m baselines, rising to up to 0.035m for the 2.5m
baseline case.

Themeannumber of featurematches for the 0.5mand 1.5mbaselines are approximately
380 and 325, well above the threshold of 250. However, for the 2.5m baseline, the number
of matches is on the limit of this threshold, sometimes dropping below it. This explains
the larger RMS errors for the 2.5m baseline, compared to those for the 0.5 and 1.5m
cases.

These results are promising, given the sub-0.15m target accuracy. However, they are
only an indication of the limit of performance in an idealised environment, with perfectly
calibrated cameras, and consistent lighting and scenery conditions.

3.2.3. Scenery density
Sensitivity of themeasurements to the density of the surrounding 3-D scenery was assessed
in order to give insights into real world performance under low feature environments.
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Figure 8. Sensitivity to the density of the roadside scenery (reference = 100%). (a) RMSerrors. (b)Mean
errors. (c) Mean no. of matches. (d) Mean no. of inliers.

Three scenarios were considered. The reference case was deemed to have ‘100%’ of the
available scenery. A 50% case was then considered, wherein 50% of the 3-D objects were
removed from the scene, at an approximately even distribution in the scene. Lastly, a 0%
scene was considered in which all the 3-D scenery was removed, leaving only the ground
textures.

The results for the three scenery scenarios are shown in Figure 8. As expected, the num-
ber of features drops with a reduction in scenery, for both rear and side cameras. The effect
on errors, however, is distinctly different between the rear and side cameras. The rear cam-
eras appear almost insensitive to the changes, which is a significant finding. This suggests
that in a typical off-highway scene such as large crop fields or pastures, the algorithm is
still able to detect and match sufficient features to maintain accuracy. This suggests that
the most important feature points are ground-based, and so having a good view of the
ground and road surface will be beneficial for performance.

In the case of the side cameras, however, there is a twofold increase in RMS errors when
the scenery is removed. Because the number of features in both rear and side cases is above
250, performance here is largely dictated by the average depth to feature (depth errors are
smallest for closer features). With side cameras, the average feature depth changes more
when the scenery is removed than in the case with rear cameras. For the side cameras, the
scenery is closer to begin with and more dominant in the field of view. So the effect of
removing it is more severe, resulting in the observed rise in errors.
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Figure 9. (a) Side-camera off-tracking results, 5◦ slip, 1.5m baseline; (b) visual odometry data for (a).
(The camera optical axis is along the Zc-axis, which is in the direction of off-tracking measurement for
side-facing cameras.)

3.2.4. Bounded drift
Instances of temporary error drift were observed in some results, for example, in
Figure 9(a) (side cameras, 5◦ slip, 1.5m baseline). Drift develops in region ‘A’, resulting
in a constant error in region ‘B’. The source of this can be seen in Figure 9(b), in the
visual odometry data in the camera Zc-direction, where Zc in this case is in the direction
of off-tracking measurement (as is the case with the side cameras). While the data exhibit
predominantly zero-mean noise, in region ‘A’ there is a distinct sequence of biased outliers
(circled) relative to the dashed reference value.

The sum of the magnitudes of these outliers equates to a cumulative error of about
0.08m, which is comparable to the observed off-tracking error in region ‘B’. The effect
disappears after approximately one trailer length (14m) has passed as the corrupting data
points are discarded from the buffer.

Although ideally no drift would be present, the temporary or ‘bounded’ nature of the
drift here is a significant benefit over using visual odometrymethods for global positioning
estimates. In this case, the drift was well below the maximum acceptable error of 0.15m,
but only in these idealised conditions. Depending on the tolerances of the application, it
would be desirable to try to detect or otherwise minimise drift in practical applications of
the system.

3.3. Summary

The simulation experiments have illustrated the theoretically achievable accuracy of the
off-tracking measurement concept, with RMS errors around 0.01–0.04m for representa-
tive conditions with ideal cameras. They have also highlighted some useful characteristics
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including sensitivity to stereo baseline and camera location, robustness to low density
scenery and drift behaviour which is bounded by the data buffer as a function of trailer
length.

4. Field tests

4.1. Experimental setup

Full-scale field tests were conducted on a tractor semi-trailer vehicle combination. The
combination is shown in Figure 10, and consisted of a 3-axle ‘B-link’ semi-trailer and a
Volvo FH12 6 × 2 tractor. The tag axle of the tractor was permanently lifted during testing,
as well as the front axle of the semi-trailer, making the combination effectively a 4 × 2
tractor with a 2-axle semi-trailer.

Two Point Grey Flea3 USB 3.0 cameras with wide-angle lenses were used for the stereo
visual odometry, mounted to a custommachined aluminiummounting frame. The mount
allowed for multiple camera baselines to be used, from 0.1m up to 1m in increments of
0.1m, and was mounted to the top of the semi-trailer using strong magnets. The mag-
nets attached the mounting frame to the top of the vehicle, enabling easy removal of the
mount to locate it at the rear or side of the trailer, or to adjust the baseline of the cameras.
Whenmounted to the top of the semi-trailer, the cameras were approximately 4.2m above
ground. The mounting locations of the cameras are shown in Figure 10.

The instrumentation and communication systems are shown in Figure 11. A Linux-
based computer was mounted inside the trailer for image capture and processing, and
connected to the cameras via USB 3.0. A laptop computer in the cabin of the tractor was
connected to the image processing unit via ethernet. This was used to remotely access the
Linux computer, to send commands to start and stop test runs, and to change camera and
run parameters as needed.

Figure 10. Test vehicle combination with cameras (dimensions in mm).
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Figure 11. Vehicle instrumentation layout (cameras shown in rear-facing configuration).

A trailer-mounted RT3022 inertial and GPS navigation unit was used to obtain mea-
surements of global trailer position and heading angle, from which a ‘ground-truth’ mea-
surement of off-tracking was calculated. The RT3022 contains precision accelerometers,
gyroscopes and GPS receivers, with dual GPS antennae to improve heading measure-
ment accuracy. A GPS base station (the ‘RT GPS-Base-2’) was used to provide differential
corrections, improving position measurements to a quoted accuracy of 20mm RMS.

The RT3022 unit was rigidly mounted to the floor inside the trailer, aligned with
the longitudinal axis of the trailer but offset laterally from the centre line due to practi-
cal constraints. The primary and secondary antennae were mounted on the roof of the
trailer with a longitudinal separation of 2.342m, also limited by practical constraints.
CANbus messages from the RT3022 were logged via a PCAN-USB on the Linux com-
puter. Ground-truth off-tracking calculations using RT3022 measurements were carried
out using a similar buffer-based approach to the VISO-OT algorithm. Maximum RMS
errors using this method were estimated to be 0.03m. Details on the processing of RT3022
data may be found in [34].

The VISO-OT algorithm was compiled to the Linux computer from C++ in much
the same form as used for the simulations. Minor additional functionality was added to
account for lens distortion, laterally offset cameras, RT3022 CAN message logging and
adjustable camera and image parameters. The algorithm ran at 10 fps. Individual cameras
were calibrated according to the methodology of Zhang [35] and the distortion model of
Heikkilä [36]. Stereo calibration was carried out using the method of Fusiello et al. [37].
The OpenCV library [38] was used for this purpose.

Tests were conducted at Bourn Airfield near Cambridge. Figure 12 shows an aerial
view of the test site, including camera views in the north-east, north-west and south-
west directions. Visually, the test site consisted of an area of tarmac 40m wide with
various imperfections and potholes, surrounded by large grain fields. The grain fields pro-
vided a challenging scenario for the visual odometry algorithm. Such a scenery might be
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Figure 12. Aerial view of the test site at Bourn Airfield, showing camera views of the scenery in three
directions.

experienced in a challenging off-highway application, and so provides a good assessment
of the system’s robustness.

Three types of manoeuvre were conducted, namely: ‘figures-of-eight’ and left and right
roundabout turns (three full turns per manoeuvre). Rear camera (ψc2v = 180◦) and side-
camera (left-facing,ψc2v = 270◦) configurations were assessed at baselines of 500, 700 and
900mm. Manoeuvres were conducted at relatively low speeds, in the range of 15 km/h
(during cornering) to 40 km/h (during some straight sections). Potholes and other surface
features were not avoided by the driver, so as to include these disturbances in the assess-
ment of the system’s performance. Two tests of each manoeuvre were performed for each
configuration.

Initial straight-line manoeuvres were carried out to determine any biases in both
RT3022 and camera measurements due to mounting misalignment, and these were cor-
rected for in subsequent test results.

4.2. Results

Example stereo image pairs overlaid with stereo feature matches are shown in Figure 13.
Off-tracking measurements as a function of time are given in Figure 14 for the 500mm
stereo baseline. Results are shown for all three manoeuvres and for both rear and side-
camera configurations. Results for one of the two tests per manoeuvre are shown. Included
beneath each plot is the time history of the number of successful featurematches per image
pair (after outlier rejection), as well as the calculated error signal between the VISO-OT
and ground-truth measurements.

At the beginning of each plot, there is a period of between 50 and 100 frames with-
out data (≈5–10 s). This is the period during which one trailer length of data was being
accumulated in the buffer (for both VISO-OT and RT3022 results), and so off-tracking is
not yet defined.
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Figure 13. Example rear and side-camera views with detected features. (a) Rear cameras. (b) Side
cameras.

Overall, off-tracking measurement accuracy was reasonable, with errors generally less
than 0.5m. However, some instances of large errors up to 1m were observed. The number
of features matched per image pair was in the region of 400–800 in most manoeuvres, but
as low as 50 features in one instance (Figure 14(c)).

The number of feature matches are well above the 250 threshold identified in the simu-
lations, below which errors were expected to rise steadily. The number of matches drops to
about 200 features in some cases, without an observed effect on errors. In Figure 14(c),
however, the number of feature matches drops to well below this to approximately 50
features, although there is no evidence of this having affected the measurement errors.

There is a clear periodic element to the number of feature matches in the left and right
roundabout results. There appear to be either three or six cycles per manoeuvre, which is
consistent with the number of turns driven per manoeuvre. At the time of testing the sun
was setting in the west, and the variations in featurematching can probably be attributed to
variations in lighting conditions as the cameras faced towards and away from direct sun-
light. These oscillations in feature matches do not seem to have affected any measurement
errors directly, as the total number of features matches has remained acceptable. These
effects could be reduced in future work through the use of more advanced automatic shut-
ter speed and exposure adjustment, compared to the manual adjustment adopted for these
tests.

There is a recurring error trend in the rear-facing camera results, in that positive off-
tracking (+etr) generally yields small errors, while off-tracking in the negative direction
(−etr) yields a consistent bias. A seemingly similar trend is also evident in the side camera
results, but is less consistent, and trends are more difficult to observe as the side-camera
results are generally more erratic. The steady bias in the right roundabout test did not
originate from zeroing bias, as it only appears at non-zero off-tracking magnitudes. This
error trend will be revisited in the next section.

For each test, RMS and maximum errors over the course of the manoeuvre were calcu-
lated. Feature matching statistics including the mean number of features matched, and the
number of these which survived the outlier rejection process, were also recorded. These
results are shown in Figure 15 for the left roundabout manoeuvre, for both side and rear
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Figure 14. Off-tracking time histories with features and errors, 500mm stereo baseline (speeds in the
range 15–40 km/h). (a) Rear cameras, figure-of-eight. (b) Side cameras, figure-of-eight. (c) Rear cameras,
left roundabout. (d) Side cameras, left roundabout. (e) Rear cameras, right roundabout. (f ) Side cameras,
right roundabout.
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Figure 15. Off-tracking vehicle test results summary, left roundabout. (a) RMS errors. (b) Maximum
errors. (c) Mean no. of matches.

camera configurations and all three baselines. The left roundabout tests were the least
affected by bias, and so provides a reasonable picture of the achieved accuracies.

Although the results are erratic as a result of the afore-mentioned oscillations and bias,
in general, the rear cameras appear to provide significantly better accuracy than the side
cameras. In the left roundabout tests RMS errors of 0.11–0.12m (3.3–3.6%) andmaximum
errors 0.31–0.44m were obtained for the rear cameras, and 0.14–0.59m (RMS) (4.2–18%)
and 0.36–1.16m (maximum) for the side cameras.

There seems to be an overall increase in errorswith increasing baseline for all tests.How-
ever, there appears to be a small but significant increase in feature matches with increasing
baseline for both rear and side cameras. The scenery in these tests was closest to the ‘0%’
scenery case from the simulations, in which average feature depth is at a maximum. In this
case, this should favour larger baselines as is observed. However, the effect is small, and
the number of features is already well above the required minimum (≈ 250), and so there
does not seem to be a benefit to baselines beyond 0.5m.

4.3. Systematic errors

The consistency of the errors within each camera configuration for all three manoeuvres
suggests an underlying systematic effect. It was hypothesised that these errors may have
originated from imperfections in the trailer structure, causing small quasi-static pitch angle
and/or roll angle deviations between the left and right cameras. Further, small yaw angle
deviations could have resulted when the cameras were attached to the mount during base-
line changes. These would have led to small deviations from the stereo calibration, so as to
bias the visual odometry measurements in one direction or another, but not so large as to
prevent feature matching entirely.

The magnitude and direction of pitch, roll and yaw angle variations may be expected to
differ between stereo baselines (as cameras are moved to different positions on the mount)
and side/rear camera configurations (as the mount was moved between rear and side
mounting locations). However, these were expected to be consistent for all three manoeu-
vres for a given camera configuration if this hypothesis was correct. Additionally, the trailer
structure itself could deform (twist) as a result of moments in the chassis generated during
turning. This may have acted to correct for these camera rotations in left turns, but amplify
them in right turns.
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4.4. Camera rotation correction

To validate the camera rotation hypothesis, a small investigation was carried out in which
artificial pitch, roll and yaw angle transformations were applied to right camera images
in post-processing. This would ‘correct’ for the theorised rotation incurred by twisting or
bending of the camera mount. If the rotation angles were chosen correctly, the systematic
errors in observed off-tracking measurements should diminish.

The right camera was assumed to have rotated only about its optical centre. Roll, yaw
and pitch rotation angles were denoted φ, ψ and θ . A ‘planar projective transformation’
was applied to the right camera images to simulate 3-D camera rotation as follows [39]:

w̃ = KRK−1w̃0, (8)

where

R =

⎡
⎢⎣
cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ

⎤
⎥⎦

⎡
⎢⎣
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎥⎦ , (9)

andwhereK is the cameramatrix, w̃0 is the image before camera rotation and w̃ is the image
after camera rotation. Images are in homogeneous co-ordinates. This transformation does
not assume a planar scene.

The three manoeuvres of the rear-facing 500mm baseline case (Figure 14(a,c,e)) were
used for a small parametric study. Transformations with different combinations of φ, ψ
and θ were applied to the right camera images in each manoeuvre, image sequences were
reprocessed, and the effects of the transformation on off-tracking results were observed.
A combination of φ = 0.15◦, ψ = −0.10◦ and θ = 0◦ yielded a plausible and consistent
set results for all three manoeuvres (suggesting that the right camera was rotated by φ =
−0.15◦ and ψ = 0.10◦ during testing). Results are shown in Figure 16.

By comparing Figure 16 with Figure 14(a,c,e), the corrections can be seen to effectively
correct for the bias for −etr values, while not significantly altering errors for +etr. These
results confirm that very small (< 0.2◦) changes in the camera orientation can signifi-
cantly affect off-tracking measurements, and this is likely to have been the case during
these experiments.

4.5. Summary

The full-scale vehicle experiments have yielded amore realistic understanding of the accu-
racies achievable with the VISO-OT concept, with RMS errors around 0.11 –0.12m for
rear cameras in the left roundabout manoeuvre. Systematic errors in the results of other
manoeuvres led to the hypothesis that measurements were highly sensitive to the rigidity
of the stereo camera mounting, and this was confirmed in a parametric study of the effects
of small camera rotations.

5. Conclusions and future work

(1) A novel concept for measuring trailer off-tracking has been described, using a stereo
camera pair, visual odometry and a buffer-based off-tracking algorithm. The concept
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Figure 16. Off-tracking vehicle test results, rear cameras, 500mm baseline, showing the effect of a
simulated rotation of the right camera (φ = 0.15◦,ψ = −0.10◦, θ = 0◦). (a) Figure-of-eight, corrected.
(b) Left roundabout, corrected. (c) Right roundabout, corrected

addresses the limitations of Cheng’s path-following controller and Miao’s ground-
watching system, especially for off-highway applications. It is independent of wheel
slip conditions, requires no tractor-based measurements or parameters and does not
assume a planar, static road surface.

(2) The theoretical performance of the systemwas evaluated in an idealisedCADenviron-
ment, yielding RMS errors between 0.01 and 0.04m (0.3–1.2%) under representative
operating conditions. A high robustness to scenery density was demonstrated, and
drift was shown to be bounded.

(3) Full-scale field tests were carried out on a tractor semi-trailer combination, in which
rear and side-facing camera configurations were evaluated at baselines of 500, 700 and
900mm. RMS errors of 0.11–0.12m (3.3–3.6%) were observed for left roundabout
tests at a 500mm baseline, with higher errors in other tests with other baselines.

(4) Results from othermanoeuvres were shown to be negatively affected by small (< 0.2◦)
misalignments in camera mounting. A correction model was proposed to validate
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this hypothesis, through which RMS errors were reduced and comparable to the left
roundabout tests. Large stereo baselines were found to have a small improving effect
on featurematching, but an overall negative effect on errors due to an increased chance
of camera misalignment and difficulty in calibration.

(5) In future work, a rigid stereo camera mount of sub-0.5m baseline should be used
to minimise the effects of trailer frame twist on camera calibration. It is also sug-
gested to conduct some experiments with the sensor ‘in the loop’ with the CVDC’s
path-following controller in an off-highway environment. Other suggestions include
reducing sensitivity to lighting conditions, incorporating a Kalman filter to smooth
off-tracking measurements, and improving side-camera measurement accuracy to
enable functionality with multi-trailer combination vehicles.

Note

1. Typical GPS accuracy is in the order of a few metres, insufficient for off-tracking measurement.
The target RMS errors of 0.10m can be reached through the use of a GPS base station for opera-
tion in a fixed area, but this is clearly impractical for unrestricted driving. It does, however, serve
as an attractive precision measurement tool for experimental validation (see Section 4.1).
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