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Abstract—Monitoring of a Water Distribution Network (WDN)
requires information about the present state of the network. Since
all variables are usually not measurable directly, State estimation
is employed. State estimation is a process of determining the
unknown variables of a system based on the measurements and
mathematical network model. Measurements are often noisy, but
state estimation procedure makes use of a set of redundant
measurements in order to filter out such errors and find an
optimal estimate. This paper presents a literature review of
static state estimation problem pertaining to Water distribution
Networks.

I. INTRODUCTION

A water distribution network (WDN) is a system of in-
terconnected pipes designed to deliver potable water from
treatment works to various residential and business consumers,
at sufficient pressure and flow [1]. Typical components that
make up the network include pipes, valves, reservoirs/tanks,
and pumping stations. This complex network of pipelines is
usually buried underground and relatively inaccessible, which
provides a significant challenge for operational monitoring. It
is vital to maintain the integrity of the network to provide
water to consumers without any disruption in service. The
monitoring of WDNs also allows detection of peak demands,
leakages [2], [3] and excessive water flow (e.g. pipe bursts).
Moreover, it enables a better control mechanism such as real-
time pressure control systems [4]-[8] that will reduce the water
loss in the WDN.

Most water companies use telemetry systems not only to
measure flows [9] and pressure in the network, but also
obtain information on the present state of the network for
control and operation purposes. The calculation of all flows
and pressures in a WDN may be obtained by formulating
and solving the mass and/or energy conservation equations
depending on the measurements in the system. However, the
WDNs are very large and thus not practical to measure all
variables of interest due to financial constraints relating to cost
of telemetry devices. Using a minimal set of measurements
only, often consisting of pressure and flow measurements at
pump stations, reservoirs and key nodes, pressure and flow
for the whole system is problematic. The measurements are
prone to errors from transducers and may be missing due to
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failure in communication systems, thus preventing the analyt-
ical solution to the equations, that results in an incomplete
representation of the network state. A method that overcomes
these drawbacks is known as state estimation (SE). State
estimation is the process of determining the unknown variables
of a system based on the measurements and mathematical
network model, to gain a global system view [10]. Its strength
lays in processing all available measurements and formulating
the problem in terms of redundant equations. This redundancy
is essential for the successful performance of SE procedure
since it enables the erroneous information to be filtered out.
In water systems the degree of redundancy is achieved by
combining the measurement information with the pseudo-
measurements, to improve both the reliability and accuracy of
SE. Pseudo-measurements are predicted water consumptions
at the network nodes, determined from population densities
and past records.

This paper focuses on the static state estimation problem
applied in WDNs. Section II outlines the current literature in
WDN state estimation. Section III describes the SE problem
formulation and the solution methods applied are discussed in
section IV. In section V, the mathematical modelling of the
network is highlighted. The paper is concluded in section VI.

II. STATE ESTIMATION METHODS

The study of state estimation and its techniques in power
system is well developed, with relatively high measurement
redundancy and quality, and is widely used. However, the
application of SE algorithms to water distribution networks
(WDN ) is still an ongoing research, especially for real-time
estimation, due to low measurement redundancy. Smart Water
Management systems make use of SE as an integral part of a
collection of applications designed to monitor and control the
water distribution network [11]. The increase in complexity of
modern water networks makes SE an important tool in assist-
ing operators in their operational decision-making. The state
estimators are required to be both capable of real time data
processing and be relatively immune to numerical convergence
problems that might be caused by incomplete or inaccurate
data. The application and development of Information and
communications technologies (ICT) in the management of



WDNs provides an opportunity for real-time (or near real-
time) monitoring. Communications technologies include cel-
lular, radio, telephone, satellite and Ethernet [3].

In general, static state estimation can be categorised according
to the minimisation cost function used. This is formulated as
either a quadratic or a non-quadratic function. According to
Arsene and Gabrys [12] the criterion used in the SE procedure
can be divided into the following three major groups:

o Least Square (LS) criterion where the sum of the squared
differences between the measured and estimated values is
minimised,

e Least Absolute Value (ILAV) criterion where the sum
of the absolute differences between the measured and
estimated values is minimised and

e Min-Max criterion where the maximum difference be-
tween the measured and estimated values is minimised.

The LS criterion is popular but known to be sensitive to
bad data and large errors, while LAV and Min-max tend to
have non-differentiable objective functions which may cause
analytical problems and require more computational time.
The choice of the estimation criterion depends on the type
of errors that are likely to occur in the system, as a result
the LS and LAV and their variations have been used in
WDN state estimation problem. The most common method
of estimation of the state vector from an over-determined set
of measurements is the LS criterion, which gives a minimum-
variance estimate provided that the measurements are affected
solely by Gaussian noise [13]. Unfortunately, this is rarely
the case in on-line computer control systems, where the
measurement inaccuracies are far from a Gaussian distribution
but, in fact, contain gross errors derived from telemetry
or instrumentation malfunction. The LAV criterion performs
better for an error with Cauchy distribution and the min-max
criterion is a better when the measurements are relatively free
from outliers. Although a standard LS method may be poor for
a non-Gaussian error distribution, the method of weighted least
squares (WLS) can used when the variance in the errors is not
constant (outliers). The LAV criterion may be also preferable
when very little is known about the distribution of errors, and
weights can also be introduced to form weighted least absolute
value (WLAV). In order to reduce the influence of outliers,
a more robust iteratively re-weighted LS or LAV estimator
can be used. The method for weighted least-absolute-values
(WLAV) estimation, based on the least sum of absolute values
(a non-quadratic criterion) was implemented by Sterling and
Bargiela [13] for water distribution networks.

This method was formulated as a linear program and it is
sometimes considered more robust in the presence of bad
data because it selects a number of measurements equal to
the number of state variables and ignores the remaining mea-
surements. The comparison of WLAV and WLS was shown
Bargiela [14]. A modification to the standard WLS approach
[15] showed that a WLAV cost function could be approached
from a WLS cost function by a process known as re-weighting.
Powell et al. [16] further developed this idea showing that the

advantages of both the WLS and the WLAV approaches could
be obtained from one algorithm. Bargiela and Hainsworth [17]
introduced the idea of incorporating measurement bounds with
the aim of increasing the robustness of SE under uncertainty.
Carpentier and Cohen [18] used a graph-theoretic approach for
classifying variables and parameters as redundant, calculable
and as observable/unobservable, given a set of measurements
and topology of a WDN. Based on this classification, the
redundant measured variables and calculable variables are used
to derive the estimated values. Kumar et al. [19] argue that,
even though the procedure leads to significant reduction in the
problem size for an under-determined system, the reduction is
not significant. An implicit formulation of the standard WLS
state estimation technique for leak detection for an idealized
grid network under steady conditions was presented in [20].
The formulation is based on the loop equations and the state
variables are the unknown nodal demands. The minimisation
problem is solved using a Lagrangian approach. Andersen et
al. [21] proposed a constrained WLS technique to investigate
the effect of measurement bounds. The assumption so far was
that demands were measured or estimated from knowledge of
water consumers’ characteristics.

Kumar et al. [19] proposed a SE method using graph-theoretic
approach for well instrumented networks. They applied the
method to a realistic urban water networks assuming suffi-
cient measurements, such as pipe flow rates, nodal pressures,
and demands are available. The chord flows were used as
independent variables and a constrained optimization problem
was solved using a Successive Quadratic Programming (SQP)
technique which implied the calculation of the Jacobian and
the Hessian matrices of the objective function and the Jacobian
of the reduced constraints. This case of a well instrumented
WDN is not feasible yet. Cheng et al. [10] presented a real-
time WDN hydraulic model from SCADA measurements. A
WLS scheme based recursive state estimator and local linear
matrix transform algorithm are applied to estimate demand.
Piller et al. [22] presented a least squares problem with
bound constraints is formulated to adjust the demand class
coefficient to best fit the observed values at a given time. The
criterion is a Huber function to limit the influence of outliers.
A Tikhonov regularization is introduced for consideration of
prior information in the parameter vector. Then the Levenberg-
Marquardt algorithm is applied that uses derivative information
for limiting the number of iterations. A summary of the
methods and algorithms used to minimise the SE problem are
shown in table I. Different algorithms such as linear and non-
linear programming, and optimisation have been used to solve
the non-linear SE problem. The iterative solution methods are
derivatives of Newton’s method, and the Gauss-Newton is one
the common algorithm used to solve non-linear least squares
problems. The least squares method is indeed popular in the
literature and will be the focus of the next sections.

III. STATE ESTIMATION FORMULATION

The state estimation process is based on a mathematical
network model of the water distribution system. It involves



TABLE I

A SUMMARY OF THE DIFFERENT METHODS USED
Algorithm H Solution Method H Category
Revised Simplex [13] Newton’s method LAV
Augmented matrix [14] Gauss-Newton LS
Interval Linear program Newton’s method LS
Sensitivity Matrix [17]
Lagrangian approach [18] Gauss-Newton LS
Lagrangian approach [20] Newton-Raphson LS
Quadratic programming [21] Gauss-Newton LS
SQP and BFGS [19] Gradient Method LS
Golden section search [10] Direct Search LS
Levenberg-Marquard and Gradient method LS
Tikhonov regularisation [22]

solving an over-determined set of equations describing mass-
balances in network nodes and pressure-flow relationships, in-
cluding pseudo-measurements. The measurement errors result
in differences between measured and theoretical values, which
lead to the measurement equation:
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Where = is a vector of state variables, z is a measurement
vector which consists of real measurement values and pseudo-
measurements; g(x) are non-linear functions of the system
relating state vector to the measurements; e is a vector of
measurement errors and m is the number of measurements.
Then the error vector is

e(r) =z —g() )

Given the measurement vector z, the objective of the state
estimator is to estimate the state vector x such that some norm
of the error vector e(x) is minimised. For simplicity, the error
vector e is assumed to be standard Gaussian, with zero mean
and independent covariance. Hence:
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where R is the measurement covariance matrix, o2 is the
variance of the measurement. Therefore, SE can be expressed
as a problem of minimisation of discrepancies between the
actual measurements and the values calculated from the math-
ematical model. The classical WLS state-estimation criteria is
to minimise the objective function F', which is the sum of the
squared normalised residuals. It may be expressed as:
o~ [z — gi(@))?

min F(z) = 5
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To minimise equation (4), the first-order optimality conditions
will have to be satisfied by equating the gradient of F'(x) to
Zero;
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where G () is the gradient and J () = Oga—(;) is the Jacobian

matrix of g(x).
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The second-order optimality condition distinguishes between
a minimum and a maximum, and is given by the second
derivative;

PF(x) T p—1

where H () is called the Hessian matrix.

Solving for x using Newton’s method, and taking into
account non-linear g(x), leads to a linear WLS problem to
be solved;

HAxz = -G (7
JTRJ]Az = JTR™ [z — f(2*)] ®)
Az =[JTR™J)ITR [z — g(@™W)]  (9)

Weight is introduced to emphasise the trusted measurement
while de-emphasise the less trusted ones, and therefore the
measurement weight matrix is given by W = R™! =
diagloy?, 052, ...,0.,2]. Equation (9) can then be written as
follows;

Az =H 'JTW[z — g(@®)) (10)

The estimate of the state vector is obtained from the iterative
relationship, with the correction vector computed by solving
equation (10);
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(1)
IV. STATE ESTIMATION SOLUTION METHODS

The main challenge for state estimation problem in finding
the solution, is the term JTR~1J or JTW J and it’s inverse,
while including sparsity and optimal ordering techniques.

A. Gauss-Newton method

The solution to equation (9) using this method, is achieved
by Cholesky’s factorisation. The result is quadratic conver-
gence, but requires computational effort. The method tends
to fail if divergence occurs and according to Bargiela [14], it
also suffers tendency to ill-conditioning of the Jacobian matrix
due to the low measurement redundancy, and the strong non-
linearity of the network equations requires several iterations
where round-off error may be considerably amplified. If di-
vergence occurs, shift-cutting may be employed, but since the
direction of the shift vector remains unchanged, which, makes
it not very effective.

Bargiela [14] presented a solution via the augmented matrix
approach. Equation (8) is written as;

JTR™'J) Ax = JTR Az (12)



The normal matrix was written as a system of three simulta-
neous equations;

r=Az—JAZ (13a)
A=Rr (13b)
JIx=0 (13¢)

where 7 and X are the auxiliary vectors which do not have to
be calculated explicitly. These equations are assembled into a
supermatrix structure:

0 I J A Az
—I RY o|l-|r|=]0 (14)
JT 0 ol |Az 0

Although the dimension of the augmented matrix is now
way bigger than the normal matrix, the equation (14) can be
solved very efficiently using a sparse linear equation solution
technique. This procedure requires less computational effort
and is capable of significantly reducing the ill-conditioning.
Carpentier and Cohen’s [18] approach to the solution of a
least-square minimization problem, incorporates all measure-
ment equations in the cost function, solving iteratively the
linear quadratic problem to find (z*, z*), then the next solution
is obtained from;

1
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where € is the tolerance value and M is the diagonal matrix
with weighting coefficients. Replacing u* = (2%, 2¥), and
with A as the Lagrange multiplier of the constraint, the
optimality conditions of the previous linear quadratic problem
in matrix form are:
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The Zollenkopf bi-factorization was used to invert the large
sparse matrix

B. Levenberg-Marquardt

The Levenberg-Marquardt algorithm is commonly used
instead of shift-cutting. Equation (8) is modified to give;

JTWJ + AlAz = JTWz — g(@®)] (17

where A is the Marquardt parameter and I is an identity matrix.
Marquardt parameter can change the direction and length of
the shift vector, when it is increased. This results in the shift
vector being rotated towards the direction of steepest descent.
Piller et al. [22] A constrained Least-squares problem is solved
with a projected Levenberg-Marquardt method. The criterion

consists of two terms, a Hubert function of the residuals
and a Tikhonov regularization term, for convexification of the
problem.

C. Gradient method

Kumar et al. [19] is solved the least square problem
using successive quadratic programming (SQP) technique.
SQP requires the gradient of the objective function and the
gradient of the reduced constraints. Analytical expressions for
the derivatives with respect to the chord flow variables are
obtained using the chain rule. The Hessian of the objective
function for the reduced SQP problem is obtained using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

D. Direct search methods

Direct search methods depend on evaluations of the objec-
tive function at a variety of parameter values and do not use
derivatives at all. They offer alternatives to the use of nu-
merical derivatives in the Gauss-Newton method and gradient
methods. Cheng et al. [10] solved the least square estimation
problem using optimal search vector. One dimension search
method, i.e., golden section search, is applied along with this
vector in the optimization process as well as using what they
termed, the local linearisation matrix transformation.

V. STATE ESTIMATION MATHEMATICAL MODELLING

State estimation problem needs a model of the water system,
including all hydraulic elements of the network as well as
consumer parameters. A water distribution network is usually
modelled as a collection of arcs connected to nodes. The
arcs (edges) represent pipes, pumps, and control valves. The
nodes represent junctions, tanks, and reservoirs. Junctions are
points in the network where links join together and where
water enters or leaves the network. Any sequence of pipes
within the network that begin and end at the same node
forms a Loop. There are two variables associated with nodes
of the network; heads (pressure) and flows as a result of
consumption. Also, there are two variables associated with
arcs; head losses (pressure drop at the end nodes of the arcs)
and flows in the arc. Steady-state hydraulic relationships in
WDN can be described by conservation principles [23], which

leads to two sets:
H; — H; —®(Qx) =0 (18)

where i and j are nodes at the extremes of pipe k
H;, H; are the heads at node i and j
®(Qy) head loss due to friction as a function of flow

rate.
n;
Z Qk‘ihj =dq;
k=1

where Q. ; is flow in the generic pipe k;;; connected to node
i

19)

n; is number of pipes connected to node i; and
q; 1s known demand at node i.



The frictional head loss function is typically expressed as a
power function of Q,

© = 1| Qrl* T Qu

where r is the resistance coefficient of pipe k
« is 2 when using the Darcy-Weisbach equation or
1.852 for Hazen-Williams equation.

(20)

Cross [24] proposed the first mathematical method for
calculating flows in complex networks, which dealt with one
equation at a time. This is a manual, iterative procedure that
was implemented in a number of network analysis software
and used throughout the water industry for decades. Recent
approaches that replaced the Hardy Cross method solves si-
multaneous equations of large systems with improved conver-
gence characteristics, using either the Newton-Raphson (NR)
linearisation approach or the linear theory (LT) successive
approximation [25] approach to accommodate the systems
non-linear equations. The method for network analysis are
usually based on either the loop, nodal or the hybrid node-
loop formulation.

Hamam and Brameller [26] pioneered the "Hybrid Method” to
take advantage of the loop formulation for its best convergence
characteristics and nodal formulation for its inherent maximum
sparsity. There are similar approaches later as described by
Osiadacz [27]termed the new loop-node method, Todini and
Pilati [28] and salgado et al. [29], called it the “Gradient
Method”. Rossman et al. [30] in developing the algorithm for
EPANET, used Todini and Pilatis [28] approach,to solve the
flow continuity and head-loss equations.

The system of equations for the hybrid method as described
by Hamam and Brameller [26] is derived from conservation
principles, a modified version of equation (19) by eliminating
the equation of the reference node and written as follows:

B
6= CirQ @1
k=1
where Q) is the flow in branch &
[ is the number of branches
n is the number of nodes excluding the reference
q are the known nodal demands at node
and

—1, if the flow in branch k leaves node i
0, if branch k is not connected to node i
+1, if the flow in branch k enters node i

(22)
Equation (21) can be written to relate the flow in branches of
a network to the load at the various nodes. The matrix form
is represented as;

Cik =

gn = CrpQp (23)

where gy, is the load vector (n x 1)
Qg is the vector of the flows in the branches (5 x 1)
Cp is the topological node incidence matrix (n x )
The equation relating the pressure drop across the branches to

the nodal pressures is derived in the same manner as above,
and taking the pressure at the reference node to be zero. It is
represented as;

C}.H, = AHg (24)

where H,, is the nodal pressure vector
A Hg is the vector of pressure drop across the branches
C3,, is the transpose of Crg
Another critical set of equations needed are the branch-flow
equations, relating the pressure drop across a branch to the
flow in that branch. In vector form:

AHg = ¢3(Qp)

The converse is also true, where Qg can be expressed as a
function of AHpg, which results in;

Qs = ¢3(AHp)

If equations (21) and (24) are substituted into equation (26),
the resultant nodal analysis equation is given by;

dn = nﬁd)II@(CEan)

Loop analysis equations are derived from equation (18), gen-
erally written as

(25)

(26)

27

B
> D;Q; =0 (28)
Jj=1
where
—1, if the branch j is in the opposite direction
as loop i
D;; = 0, if branch j is not in loop i

+1,

if the branch j is in the same direction
as loop i
(29)
In matrix form;
D,sAHpg = Dypdp(Qp) = 04 (30)

where 7 = 8 — n, the number of loops in the network.

The loop analysis equation of the solution is derived by
forming a tree and co-tree for the system. A tree is defined as
a minimum number of branches connecting all the nodes, and
a co-tree is the loop forming branches. Equation (23) is then
partitioned into;

nnQn + CnyQy (€29)

qn =

or

Qn= C;iqn - C;;Cn'va (32)

where C,,,, is the nodal-incidence matrix for the tree branch
and Ch~ is the nodal-incidence matrix for the cotree. The
loop analysis equation was derived by combining equations
(30) and (32), resulting in;

D,pdp(Q3 + D5 Qy) =0 (33)
where
_C;;qn
Qg = (34)

0,
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VI. CONCLUSION

State estimation studies in water networks have witnessed

several techniques in calculating the estimates of the system.
Least square method is still widely applied with various
iterative techniques to solve the non-linear equations. The LS
method is mostly preferred from the LAV, because the LS so-
lution tends to be stable and unique. The LAV however is very
robust, in that it is resistant to outliers in the data.The system
of equations that describes the water distribution network is
non-linear and thus for a large system, non-linearity introduces
complexity to the derivation and implementation of the state
estimation problem.
Non-linear estimators are not as mature, cohesive, or well
understood as linear ones. Generally, there is no optimal
estimator for non-linear problem, but techniques are based
on sub-optimal approaches. Graph theory, tree and co-tree
decomposition, significantly has been shown to reduce the size
of the optimization problem. Advances in ICT provides near
real-time estimation for real-time decision support. In the area
of the solution algorithm, the numerical optimization method
needs to be explored to increase the accuracy of the estimates
and reduced computational time.
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