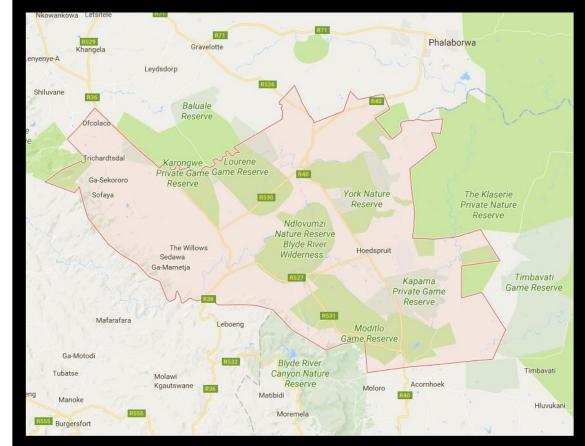

Practical application of qualitative and quantitative methods

Nikki Funke, Sebastian Riera and Hiroshi Yamamura

Introduction

- Importance of robustly collected and analysed data and relevant evidence-informed decision-making support tools.
- Focus of this workshop is on qualitative and quantitative data analysis.
- Links to a research project done by CSIR on effective agricultural water use in the Maruleng Municipal Area – Mpumalanga South Africa (2010 -2014).

Background to research project


- South Africa's dual economy agricultural sector.
- Challenge: minimise productivity losses during land reform to avoid food security risks.
- Project was about water conservation in food value chains by beneficiaries of land reform programmes in South Africa.
- Quantitative and qualitative research.
- Series of policy-relevant outputs.

Maruleng Local Municipality

This qualitative and quantitative research method workshop

- Introduction of two research methods: typology development and cost-benefit analysis.
- Divide up into four teams two for typology development and two for cost-benefit analysis.
- Apply these methods and discuss their strengths, shortcomings/challenges.

This qualitative and quantitative research method workshop

- Typology development apply to identify types of conference participants and key messages coming out of the conference.
- Cost-Benefit-Analysis apply methodology to facilitate the decision making process to invest in drip irrigation technology.

Qualitative data method - typology development

- What is a typology?
 - Way to categorise a particular phenomenon, e.g. emerging farmers, into different types to better understand it.
 - Different types form part of coherent single framework.
 - Types must be comparable.

Example of a typology – emerging farmers

Туре 1	 The "really" big players Generally identified as large scale commercial farmers who do not need to be in a strategic partnership
Type 2	 The big players in training Generally identified as large scale commercial farmers who still need to be in a strategic partnership
Type 3	 The entrepreneurs Generally identified as small scale commercial farmers with aspirations to grow their farming business
Type 4	 The transitioners Generally identified as subsistence farmers well on their way to becoming commercial farmers
Type 5	 The wishful thinkers Generally identified as subsistence farmers with vague aspirations to become commercial
Туре 6	 The survivalists Generally identified as subsistence farmers with no aspirations to become commercial

Use of a typology

How can you develop a typology – stepby-step approach (1)

- Qualitative data collection ask the right questions.
- Qualitative data capturing transcriptions.
- Qualitative data analysis:
 - Get a sense of the interview context.
 - Find text to characterise your types e.g. characteristics of emerging farmers.
 - Make sense of what you find go deeper.

Types of qualitative data: "Narrative"

- > Texts
- Observations
- Interview transcripts
- Focus group transcripts
- In depth case study

How can you develop a typology – stepby-step approach (2)

Build the typology

- Identify a set of characteristics.
- Identify different types as defined by these characteristics.
- Keep the descriptions short and clear.
- Types must be comparable.
- Think of a name for each type both descriptive and 'catchy'.

Practical application of qualitative and quantitative methods

Cost-Benefit-Analysis (CBA)

- New technologies, practices or innovations arise.
- We want to know if they are suitable for our current activities.
- How do we analyze viability from a practical point of view?

 Cost-Benefit Analyses consitute a framework to facilitate decision-making processes.

- Framework to analyze if the cost involved for a certain decision are out weighted by the benefits generated at a determined point in time.
- Represents a suitable tool to assist in the decision making process.
- CBA can be applied to a myriad of socioeconomic decisions, public and/or private sphere.

Considerations from perspective

- Direct cost & benefits
- Indirect effects
- Third parties effects
- Social adjustments
 - Social prices

Private

Public

Preparation for group exercise – Case study

Community adoption of drip irrigation technology

What could be the private and public effects to consider?

Considerations from perspective

- Direct cost & benefits
 - Drip irrigation system
 - Agricultural productivity
 - Cost reduction
- Indirect effects
 - Water savings
 - Crop optimization
- Third parties effects
 - Technology suppliers
 - Institutional strenghtenning
 - Technical assistance
- Social adjustments
 - Social prices

Public

Steps for decision making

Identification of planned task to be performed and their consequences

Quantify the effects of the interventions

Value assignment for each consequence

Value net effects in a specific point in time

We only consider differentials!!!

Perspectives	Private	Public
1	Investment cost crops suitability	Investment
2	Water savings crop productivity	 Support programs for adaptation Organize tech suppliers Plan technical assistance
3	Cubic meters per ha Changes in crop yield	Budget for programs
4	Private market prices Volume quantities	Values per beneficiaries or hectare

Cost-Benefit-Analysis (CBA) - example

Adoption of drip irrigation technology in beans

Balance net benefits of adopting drip irrigation versus continuing with furrow Season of June and December

		Drip	VS.	Furrow	Differentials
•	Water use (m ³ /ha)	3,874	VS	6,600	2,776 (m ³ /ha)
•	Yield (kg/ha)	2,200	vs	2,000	200 (kg/ha)
•	Fertilizers (kg/ha)	45	vs	45	
•	Labour (persons/ha	a) 0.9	vs	0.9	

Net effect = 4,934 ZAR (Rand/ha)

our future through science

Cost-Benefit-Analysis (CBA) - exercise

Community adoption of drip irrigation technology beans & tomato

Assumptions	Private	Public
1	Investment = USD 1,000 /ha ZAR 13,000/ha	Subsidyzing Investment:
<u> </u>	crops suitability= Beans & tomato	USD 200/ha = ZAR 2,700
	Water savings Crop productivity	. Support programs for adaptation
		2. Organize tech suppliers
		3. Plan technical assistance (TA)
	Water savings tomato= 4,308 m ³ /ha	Budget for programs
3	Water savings beans= 2,726 m³/ha	Investment USD 200/ha
	Crop yield = + 10%	TA = USD 50 /ha
	Not effect to make 7AD 4 200 /b -	Policy cost /ha
4	Net effect tomato= ZAR 4,300 /ha	USD 250 /ha
	Net effect beans= ZAR 4,934 /ha	ZAR 3,400 /ha
		CSIR

our future through science

Thank you

Name (email@csir.co.za)