Improving Northbound Interface Communication in
SDWSN

Sean W. Pritchard*, Reza Malekian® and Gerhard P. Hancke?
Department of Electrical, Electronic

and Computer Engineering
University of Pretoria
Pretoria, South Africa

Email: *spritchard001 @gmail.com, Treza.malekian@up.ac.za,

Abstract—Software-Defined Wireless Sensor Networking (SD-
WSN) is an emerging paradigm that seeks to alleviate the
inherent resource constraint issues present in Wireless Sensor
Networks (WSN) by adopting a Software-Defined Networking
(SDN) approach to the management of WSN. This SDWSN
paradigm is said to play a crucial role in both the developing
Internet of Things (IoT) paradigm and the development of smart
city grids. The northbound and southbound SDWSN interfaces
are important for realizing efficient network understanding and
programmability, however there has been a lack of attention
towards the northbound interface as most work done has been
surrounding the southbound interface. Therefore some work is
needed to improve the northbound interface so that it may allow
for a better degree of network programmability. In order to
achieve network programmability and automation, there is a need
for a metadata based Application Programing Interface (API).
The work done in this paper seeks to improve the northbound
interface communications by addressing the issue of a metadata
in REST as well as identifying potential platforms for the
development of a metadata framework.

I. INTRODUCTION

Software-Defined Networking (SDN) is a networking
paradigm that seeks to simplify network management and
configuration by separating control plane which encompasses
the network intelligence, from the packet forwarding engine
of the network [1]. This results in centralized control of
the network which allows for dynamic control and network
programmability.

Wireless Sensor Networks (WSN) consist of multiple
smart sensor nodes capable of data acquisition and wireless
communications [2]. The advancement in Micro-Electrical-
Mechanical Systems (MEMS) as well as the development of
the Internet of Things (IoT) paradigm have resulted in research
surrounding WSNs as platform for both the IoT paradigm and
smart city grid systems (for example smart water management
systems [3] - [5]).

However there are many inherent issues present in WSNs
which are intensified when trying to expand these net-
works. Poor network management and the inability to realize
heterogeneous-node networks, increase the severity of the re-
source constraints present in WSNs such as limited processing
and communication bandwidth. Therefore current WSNs are

tgerhard.hancke @up.ac.za

Adnan M. Abu-Mahfouz
Meraka Institute
Council for Scientific and Industrial
Research (CSIR)
Pretoria, South Africa
Email: a.abumahfouz@ieee.org

not able to meet the challenges presented by the IoT and smart
city grids.

This brings about a new paradigm called Software-Defined
Wireless Sensor Networks (SDWSN) which seeks to solve the
inherent issues present in WSNs by using a SDN approach to
WSNs [6], [7]. By combining the two paradigms, most of
the inherent issues of WSNs are alleviated resulting in a new
paradigm which is expected to play a large role in both the
IoT and smart city grid systems.

The SDN paradigm introduces three layers within network
architecture, the application layer which handles network
applications such as management applications, the control
layer which encompasses all control functionalities within the
network and the data layer which contains all data forwarding
functionality. However as SDWSN is a combination of two
developing paradigms, a lot of development is still needed. The
northbound interface is the interface between the application
layer and control layer and essentially provides the global
view of the entire network and its functions. This interface
is important as it provides for efficient network understanding
and resource optimization [8] and has received little attention
when considering both SDN and SDWSN as most of the focus
has been surrounding the southbound interface between the
control plane and data plane [9].

This lack of focus within the northbound interface arises
from the fact that the SDWSN northbound interface is said to
be application specific due to the application specific nature
of WSNs, and it is built on the SDN controllers, for which
there are multiple different types resulting in no commonality
within the Northbound interface and a lack of standards [10].
Therefore there is a need for a common northbound API to
increase interoperability.

In order to improve northbound communications and pro-
vide a more efficient network understanding, the SDWSN
specific design requirements must first be discussed in order
to identify specific areas for improvement.

There are few papers that address the northbound interface
[9], [10] and they are mainly focused on SDN. Within SDWSN
few papers address this issue [6], however, they do not
investigate possible solutions to this issue, thus asserting the
need for an investigation into possible solutions.

II. NORTHBOUND DESIGN REQUIREMENTS

The SDWSN architecture is split into three different layers
as shown in Fig. 1 [6]. Here it can be seen just how important
the northbound and southbound interfaces are for vertical cross
layer communication. Although both interfaces are vital to the
development of the SDWSN paradigm, most of the attention
has been placed on southbound communications.

Application

Plane ‘ Applications, e.g. Routing, Security,...

A A
' Northbound API :
h 4 h 4

Controller 1 Controller x

East/Westbound

Control Control Functions APls
Plane
Programming
Interface
A A
: Southbound API]
\ 4
Sensor Node 1 Sensor Node x
Data [Data Functions]
Plane

[Power] [Sensor] [Radio]

Fig. 1. SDWSN architecture [6]

Due to the multitude of SDWSN controller implementa-
tions, and given the fact that the northbound interface is built
on network SDN controllers and the fact that it is somewhat
application specific, there are no standards for northbound
interface communications. However, there is a need for a
standard framework that allows for interoperability.

Kobo et al. [6] propose the following design requirements
with regards to SDWSN northbound communications.

« Rigidity with built in security and conflict prevention.

o The interface can be used in conjunction with a visual-

ization layer to address high heterogeneity.

e In order to achieve better network programmability, a

metadata based interface is required.

In terms of rigidity and security, applying SDN application
layer security to the SDWSN application layer potentially
solves most of the security concerns within the northbound
interface [11]. These solutions include validation and verifica-
tion models such as PermOF [12], VeriFlow [13] and Flover
[14]. For rigidity, cryptographic solutions outlined by WSN
security measures can be applied to the northbound interface.

Currently, the OpenRoads [15] (also known as wireless
OpenFlow) API is the most common northbound APIL. It is a

management interface that allows for the management of wire-
less networks using network visualization. This visualization
layer approach can be used to address the design requirements
for high heterogeneity as mentioned above.

The remaining design requirement is the most important in
terms of network programmability, to implement a metadata
based northbound API. This metadata based API is said to be
REST [16] based as REST API’s are easy for developers to
use. Most of the existing SDN interfaces are REST based,
however the problem with REST is that it does not offer
metadata [6]. Metadata is crucial for obtaining information
from applications, therefore without metadata it becomes
challenging to automate programming.

An alternative to REST API’s would be Service Orientated
Architecture (SOA) which does offer metadata through ser-
vices such as Web Service Descriptive Language (WSDL)
[17]. However these services define different interfaces for
each service application, thus removing commonality and
heterogeneity.

Thus in order to improve the northbound interface com-
munication, the metadata challenge within REST must be
addressed. Various models and languages have been developed
in order to incorporate metadata into REST API’s in order to
develop a northbound API. These are discussed in the section
below.

III. REST-BASED API INTERFACE MODELS

Since the adoption of REST-ful APIs by the development
community, multiple languages and frameworks have been
made to document the behavior of REST-ful APIs. Although
most of the developed frameworks have focused on documen-
tation rather than metadata-based description due to the fact
that many believe that REST-ful APIs must be self describing
and therefore do not need metadata support [18]. Despite this,
some models provide promising solutions when considering
metadata support within REST APIs.

A. WSDL 2.0

WSDL is a language (typically in XML format) that is used
to describe web services which has previously not supported
REST web service descriptions due to the inadequate HTTP
binding used to describe HTTP and XML communications.
However, the second version of WSDL, WSDL 2.0, was
created to address this issue and as a result is now able to
describe REST web services [19].

WSDL can be used to describe all the details of a web
service such as the URL, communication mechanisms, inter-
face and message types. A WSDL 2.0 document contains a
root description element containing four sub-elements, namely
types, interface, binding and service.

1) Types: Describes the web service’s messages by listing
all XML schema elements and type definitions for the mes-
sages. WSDL 2.0 is typically used with XML schema, however
it can also support other type systems such as JSON.

2) Interface: Defines all operations and includes all input,
output and fault messages passed, as well as the order in which
they were passed.

3) Binding: Defines client-service communications. For
REST services, the binding would specify that the clients can
communicate using HTTP.

4) Service: Connects the web service’s address to a specific
interface and binding.

In the past, WSDL 2.0 has not been adopted due to the fact
that most believe that REST messages must be self-describing
and therefore there is no need for a description language.
There is also the issue of security in that WSDL files result
in vulnerabilities due the XML-based specification.

B. WADL

The direct REST-based alternative to the WSDL 2.0 spec-
ification is Web Application Description Language (WADL),
which provides a machine-readable description of HTTP web
applications in an XML format [20]. It is similar to WSDL
in that is is language independent and describes a list of
resources, the relationships between the resources, the HTTP
method that can be applied to the resources and finally the
resource representation formats.

Although WADL was submitted to the World Wide Web
Consortium (W3C), it has not been considered for standard-
ization, and has not been widely adopted in industry. However,
it has support from organizations such as Apache and Oracle
and some favor WADL as an attempt to add metadata support
to REST [9].

C. RESTCONF

RESTCONF is a model that describes the mapping of
YANG data to a REST-ful API [21]. It is a REST-based
protocol that runs over HTTP and is used to access YANG de-
fined data, using Network Configuration Protocol (NETCONF)
defined datastores.

NETCONF is a configuration protocol used to configure
network devices. It uses basic operations to edit and query the
network configuration on a device which are realized using
CML encoded Remote Procedure Calls (RPCs).

The YANG data modeling language is used to define the
data sent over NETCONF. It can model both the configuration
data as well as the manipulated state data. A YANG model
provides a hierarchical description of all NETCONF-based
operational data sent between a client and server.

When considering REST-ful APIs, RESTCONF provides
an interface to map the NETCONF operations to REST-like
operations in order to access the hierarchical YANG data [10].
This allows for a programmable network API, especially when
considering the SDN paradigm.

D. REST API Documentation Frameworks

In terms of generating documentation for REST-ful APT’s,
different frameworks have been developed in order automati-
cally and semi-automatically generate the required documenta-
tion. These different documentation frameworks are discussed
below.

1) Swagger: Swagger is becoming one of the most popular
API framework development tools available and enables the
development of REST-ful API’s, from design and documenta-
tion to testing and implementation [22]. The framework itself
is built on the OpenAPI Specification [23] (previously known
as the Swagger Specification) which aims to standardize REST
APIs and allow for human- and machine-readable documen-
tation so that they can understand services without access to
source code.

Using a tool called Swagger UI, documentation for the
entire API can be automatically generated in both human and
machine understandable formats (through an HTML interface
with JSON or XML formats). Swagger can be used to describe
high-level API behavior and also allows for API design from
the bottom-up through the use of code generation tools that
make use of Swagger documentation [24]. Also due to the fact
that Swagger is not language specific, code can be generated
for various coding languages, making Swagger a popular
choice for APIs that run on multiple platforms.

2) RAML: REST-ful API Modeling Language (RAML)
[25] is another framework that has been developed to describe
and document REST APIs. However, RAML can also be used
to describe APIs that are not truely REST-ful as well such as
APIs that make use of SOAP or RPC. Similar to Swagger, it
can also be used to design, document and test REST-ful APIs
and has a large industry backing.

At its core, however, RAML is a language used to describe
and document REST services, making use of YAML file
formats, although it also supports JSON formatting. The
hierarchical nature of RAML results in the visualization of
the requests and responses of the API, and therefore it can be
used to not only document the API, but also plan the API with
great detail.

The major disadvantage of RAML is due to its lack of
openness resulting in the need for an adapter when developing
a northbound API [9].

3) API Blueprint: The final popular documentation frame-
work for describing REST-ful APIs is API Blueprint [26].
It is a documentation-orientated language making use of
Markdown as its format. Unlike Swagger and RAML, it does
not specify its own server code and focuses on C++ and C#
implementations [22].

It is by far the easiest documentation-framework to under-
stand and is very simple to write, however the main drawback
of API Blueprint is the lack of advanced constructs. Due to
this lack of advanced constructs, API Blueprint has not been
largely adopted by the development community.

IV. SUMMARY

TABLE 1 gives a summary of the popular available lan-
guages and models that can be used to describe REST-ful
APIs. The table presents the main objective of each model
as well as their drawbacks and output file formats.

V. NORTHBOUND API FOR SDWSN

When considering a northbound API for SDWSN, the same
conclusion that has been stated for the northbound API in

TABLE I
SUMMARY OF DIFFERENT REST-BASED API INTERFACE MODELS

Model Objective Output Formats | Drawback
WSDL 2.0 Provide model describing web services XML Lack of support tools
Improve HTTP binding Hard to understand/implement due to complexity
Lack of backwards compatibility
WADL Provide a machine-readable description of HTTP services XML Lack of community support
REST equivalent to WSDL Incomplete descriptions
Time-consuming manual documentation
RESTCONF Mapping YANG data to a REST-ful interface XML Still in development
JSON No existing API support
Swagger REST API development platform based on OpenAPI Specification JSON Lack’s API testing interaction
Automatically generate documentation for APIs XML
RAML Documentation and description platform XML Lack of openness
API development platform JSON
API Blueprint | Documentation framework for REST APIs Markdown Low adoption
Lack of advanced constructs

SDN also applies [10]. Due to the application specific nature
of SDWSN brought about by WSNs and because of the fact
that the main use cases for applications in the northbound
interface are the integration and analysis of traffic, a unified
and standard northbound interface API is unlikely. Therefore,
in order to facilitate the use cases of northbound interface
applications, the focus should instead be on the approach to
standardized description of the northbound interface API.

The standardization of metadata support in northbound APIs
results in the ability to integrate applications automatically
without the need to develop a new API for various imple-
mentations of SDWSNs. However, as is the case with most
of the frameworks shown above, the focus is mostly on
human-readable documentation rather than programmatically
discoverable descriptions (i.e. metadata). Therefore, a stan-
dard, metadata-based framework for REST-ful APIs must be
developed as discussed below.

A. Metadata Framework Basic Requirements

When considering the basic requirements for the required
metadata within the SDWSN domain, Sneps-Sneppe et al. [10]
have proposed a basic set of elements based off of the WSDL
specification as discussed below.

For reference, consider the Open Network Operating System
(ONOS) REST API. ONOS is a SDN management operating
system which has extensive documentation and support [27].
Their REST API also makes use to Swagger to automatically
generate their API documentation.

The typical ONOS REST API request is similar to that
shown below [28]. The request creates a new host based on
JSON input and adds it to the current inventory.

To which the response would be the HTTP 200 status code,
meaning successful operation, without any other headers or
payloads (due to the fact that it is a POST request).

1) Endpoint Specification: The endpoint refers to the URL
for the requests. URLs as well as resource paths should be
described within the metadata. In the example above, the URL
would be “/onos/vl/hosts” and the resource it specifies is
“hosts”.

2) Access Method Specification: The access methods for
REST would be HTTP commands such as GET, POST, HEAD
and PUT. In the case of the example above, this is POST.

3) Queries for Requests: Queries are parameters for re-
quests and is not shown in the example but is still important
to define and should be described within the metadata. An
example would be a GET request in order to obtain a host
with a certain ID, for example

GET /onos/vl/hosts/id=0000002
Accept: application/json

POST /onos/vl/hosts
Accept: application/json

“mac”:“46:E4:3C:A4:17:C8”,
“vlan”:“—17,
“ipAddresses”: [
“127.0.0.17
1,
“location”:{
“elementld”:
“port”: “37}}

“0f:00000000000000002”,

In this case, the query is the “0000002”, which is the ID
of the host that is being requested. The response would then
be the HTTP 200 status code and some payload pertaining to
the host’s information, in JSON format.

4) HTTP Headers: This allows additional information to be
passed with the request or response and could contain valuable
information. In the example above “Accept: application/json”
provides important information as it specifies the input format
as JSON.

5) Status Codes and Error Messages: This referes to the
status of the response, in the example above the status code
would be 200 and the error message successful operation.

6) Version: The version provides information about limita-
tions to the current implementation. In the example above /v1/
states that it is the first version of ONOS.

7) Formatting: The final useful element that should be
described is the input or output file formatting, for example,
JSON or XML (due to the fact that the ONOS API uses the
Swagger documentation framework). In the example, the input
file is JSON.

B. Potential Models

Now that the basic requirements for the metadata framework
have been identified, existing solutions can be explored in
order to determine whether they can facilitate the development
for a metadata standard in SDWSN. Three model specifi-
cations have been identified which can potentially facilitate
the framework without the need to develop an entirely new
metadata-based API, these models being WADL, the OpenAPI
specification and RESTCONF.

1) WADL: The utilization of the WADL specification for
documentation of REST-ful applications, although not widely
adopted, has been previously identified as a promising attempt
to add metadata support to REST-ful services [9], specifically
in the development of SDN northbound interface APIs. The
WADL specification itself has resulted in the development of
other projects such as REST-ful Service Description Language,
but as is the case with WADL itself, these projects have not
gained traction within the development community.

It has been shown how the WADL specification can be used
to describe a tool that can be used for REST-ful application
development [29]. This tool was named WSDawin and is
able to automatically generate WADL descriptions for REST-
ful services, which can then be used to perform tasks such
as version comparisons and client proxy generation. They
generated WADL documents for three real world REST APIs
which were then compared to the WADL schema in order
to validate the generated documents. It is important to note
that not only did this tool document the REST API using the
WADL specification, but it also provided machine-readable
documentation which can be used for the management of client
applications.

Although this tool is not entirely what is required when
considering the northbound interface API within SDWSN, it
is an example of how the WADL specification can be used
to provide a metadata framework. However, the fundamental
problem with using the WADL specification is due to the
fact that generating documentation using the specification is
a mostly manual and time consuming process [22] (hence the
appeal to develop tools such as WSDawin), as well as the
fact that the WADL specification has also been known to
inconsistently describe REST-ful services. The specification
sometimes fails to describe the link between resources as well
as duplicate descriptions. This is why the WADL specification
has not been adopted by the development community.

2) OpenAPI Specification: The OpenAPI specification [30]
(formally known as the Swagger specification) is the founda-
tion for the Swagger framework. As stated, it aims to provide
a standard for the description of REST-ful APIs and when
used it is able to provide service interaction with minimal
implementation logic. The main appeal of the OpenAPI spec-
ification, ignoring the fact that it is open source and contains
a vast amount of development tools and community support,
is due to the fact that OpenAPI can bind itself to any existing
API and therefore there is no need to develop a completely
new APL

Musyaffa et al. [30] investigate the automation of REST-ful
services by creating semantics for lightweight service descrip-
tions using the OpenAPI specification. Their work results in
an approach to describe services by extending the OpenAPI
specification, thus adding semantic descriptions which allows
for the automation of service discovery. Therefore, third-party
applications can be automatically integrated on the web service
using these descriptions.

Additionally, Haupt et al. [24] present a framework for
the structural analysis of REST APIs by using Swagger
documentation as the first validation of their framework and
then transforming the OpenAPI specification into a metamodel
for REST APIs.

This again illustrates how the OpenAPI specification can be
used to develop metadata support for REST APIs. Combined
with the fact that the OpenAPI specification is language
independent, thus allowing it to be implemented on systems
that run on multiple platforms using a variety of different
languages, the OpenAPI specification is a good consideration
for the development of a metadata specification for northbound
interface APIs in SDWSN.

3) RESTCONF: Although RESTCONEF is a relatively new
management protocol that is still under design, it is already
has a foot in the door of the SDN development community as
evident in the fact that the OpenDaylight controller includes
RESTCONEF on its northbound interface [31]. Within the SDN
domain, RESTCONF provides programmability and APIs for
controllers due to the fact that NETCONF and YANG is able
to describe the devices and resources, and REST is used to
access them.

Daradkeh er al. [10] state that RESTCONF would be a
promising platform for metadata within the SDN domain
due to the fact that the YANG defines the semantics of
datastore content configured within NETCONF as well as
other information such as operational data. This hierarchical
data can then be accessed using REST-ful operations. The only
challenge would be expanding the RESTCONF protocol to
develop a REST APL

This also presents the disadvantage of RESTCONF as an
API. Unlike the OpenAPI specification where documentation
can be generated on existing REST APIs, RESTCONF would
need to be developed to consider the API aspect. This may
result in the development of an entirely new API that is built
on RESTCONF protocols. Although there is a RESTCONF
agent included in the OpenDaylight controller within the
SDN domain, which could assist in the development of a
RESTCONF-based API, it would be better if the RESCONF
protocol could be implemented on any API as is the case with
the OpenAPI specification.

VI. DISCUSSION AND REMAINING CHALLENGES

There is much need for improvement within the northbound
communications of SDWSN. This is due to the fact that
there has been a greater focus on southbound communications
as well as the SDWSN architecture itself. The fundamental
problem within the northbound communications is the lack

TABLE II
SUMMARY OF POTENTIAL PLATFORMS FOR METADATA FRAMEWORK

Model Advantages Drawback Potential metadata framework
WADL XML based description Lack of community support No
(machine understandable) Incomplete descriptions
Time-consuming manual documentation
RESTCONF | Existing network functionality description Still in development Yes
Already within the SDN domain (OpenDaylight) | May not be able to implement on existing APIs
Built on NETCONF and YANG
OpenAPI Vast development tools Lack’s API testing interaction Yes
Good community support
Can be adopted by existing APIs
Language independent

of network programmability as a result of REST-ful API
development.

A standard northbound API to achieve network programma-
bility is unlikely due to the application specific nature of
SDWSN brought about by WSN. Therefore, in order to
elevate this application dependence, a standardized metadata-
based framework is needed which can be applied to any
existing REST-ful API. This will result in greater network
programmability which can be used to automate application
management within the northbound interface.

TABLE 1II provides a brief summary of the potential plat-
forms for a metadata framework. When considering the devel-
opment of this metadata-based framework, both the OpenAPI
specification and the RESTCONF protocol seem to be promis-
ing candidates to provide a platform for the development of
this framework. WADL, although previously though to be a
promising specification, is not promising due to the fact that its
mostly manual and time consuming documentation generation
and lack of community support.

Due to the fact that RESTCONF is still being developed,
it will have to be further developed if it is to be used
as a REST API metadata framework and therefore it may
require the development of entirely new APIs, although once
fully developed, the protocol could be adapted to consider
documentation for existing APIs.

Therefore the OpenAPI specification is identified as the
most likely candidate for a metadata framework for REST
APIs. Not only does the specification have a vast amount of
community support and development tools, but it can also
be applied to existing APIs (for example the ONOS REST
API) and because of its language independents, it can be
implemented on various existing platforms.

One of the biggest remaining issue brought about by the
development of a metadata framework is that of security.
Exposing metadata descriptions is a potential security risk to
the network as it exposes information that may be used to
compromise the network. Therefore, the metadata framework
must be developed in such a way that it takes into account
security as well. This is also one of the design requirements
for the northbound interface API.

VII. CONCLUSION

The design requirements for the northbound interface API
within the SDWSN domain have been discussed and the

issue of metadata has been identified as one of the crucial
considerations to be addressed. The lack of a metadata-based
northbound API results in the lack of network programmability
and therefore the lack of automation within the network.

Due to the application specific nature of the northbound
interface, it is unlikely that there will be a standardized
northbound API for SDWSN, however, in order facilitate
automation within the application layer, there is a need for a
standardized metadata framework within the northbound APIL
The OpenAPI specification is recommended as a platform
for this framework owing to its community support and its
documentation of existing APIs. This metadata framework
must describe the basic elements of the API at the same time
addressing the issue of security.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and de-
pendable software-defined networks,” in Proc. Second ACM SIGCOMM
Work. Hot Top. Softw. Defin. Netw. - HotSDN 13, 2013, p. 55.

[2] J.Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Comput. Networks, vol. 52, no. 12, pp. 2292-2330, 2008.

[3] M. Mudumbe and A. M. Abu-Mahfouz, “Smart water meter system
for user-centric consumption measurement,” in Proceedings of the IEEE
International Conference on Industrial Informatics, Cambridge, UK, Jul.
2015, pp. 993-998.

[4] A. Abu-Mahfouz, Y. Hamam, P. R. Page, K. Djouani, and A. Kurien,
“Real-time dynamic hydraulic model for potable water loss reduction,”
Procedia Engineering, vol. 154, no. 7, pp. 99-106, Aug. 2016.

[5] A. M. Abu-Mahfouz, T. O. Olwal, A. M. Kurien, J. L. Munda, and
K. Djouani, “Toward Developing a Distributed Autonomous Energy
Management System (DAEMS),” in Proceedings of the IEEE AFRICON
2015 Conference on Green Innovation for African Renaissancce, Addis,
Ababa, Ethiopia, 2015, pp. 14-17.

[6] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey
on software-defined wireless sensor networks: Challenges and design
requirements,” IEEE Access, vol. 5, pp. 1872-1899, Feb. 2017.

[71 M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, “Software defined
networking for improved wireless sensor network management: A
survey,” Sensors, vol. 17, no. 5:1031, pp. 1-32, 2017.

[8] K. M. Modieginyane, B. B. Letswamotse, R. Malekian, and
A. M. Abu-Mahfouz. (2017, Mar.) Software defined wireless sensor
networks application opportunities for efficient network management:
A survey. Computers and Electrical Engineering. [Online]. Available:
http://dx.doi.org/10.1016/j.compeleceng.2017.02.026

[9]1 M. Sneps-Sneppe and D. Namiot, “Metadata in SDN API for WSN,” in

2015 7th International Conference on New Technologies, Mobility and

Security (NTMS), 2015, pp. 1-5.

Y. I. Daradkeh, M. Aldhaifallah, D. Namiot, and M. Sneps-Sneppe, “On

standards for application level interfaces in sdn,” International Journal

of Advanced Computer Science and Applications, vol. 7, no. 10.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

S. W. Pritchard, G. P. Hancke, and A. M. Abu-Mahfouz, “Security
in software-defined wireless sensor networks: Threats, challenges and
potential solutions,” in IEEE International Conference of Industrial
Informatics INDIN’2017, Emden, Germany, Jul. 2017.

A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “Toward elastic
distributed SDN/NFV controller for 5G mobile cloud management
systems,” IEEE Access, vol. 3, pp. 2055-2064, 2015.

A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” in Proceedings of the
first workshop on Hot topics in software defined networks - HotSDN 12,
2012, p. 49.

S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model checking
invariant security properties in openflow,” IEEE Int. Conf. Commun., pp.
1974-1979, 2013.

K. Yap, M. Kobayashi, R. Sherwood, T. Huang, M. Chan, N. Handigol,
and N. Mckeown, “Openroads : Empowering research in mobile net-
works,” ACM SIGCOMM Comput. Commun. Rev., no. 1, pp. 125-126,
2010.

R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

C. Ferris and J. Farrell, “What are web services?” Commun. ACM,
vol. 46, no. 6, pp. 31—, Jun. 2003.

X. Feng, J. Shen, and Y. Fan, “REST: An alternative to RPC for
web services architecture,” in First International Conference on Future
Information Networks, Beijing, China, Oct. 2009, pp. 7-10.

L. Mandel. (2008, May) Describe rest web services with wsdl 2.0. IBM.
[Online]. Available: https://www.ibm.com/developerworks/library/ws-
restwsdl/

Y. Xue, C. Zhang, and Y. Ji, “RESTful web service matching based
on WADL,” in International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, Xi’an, China, 2015, pp. 364-371.
M. Jethanandani, “YANG, NETCONF, RESTCONF: What is this all
about and how is it used for multi-layer networks,” in Optical Fiber
Communications Conference and Exhibition, Los Angeles, CA, USA,
Mar. 2017, pp. 1-65.

K. Sandoval. (2015) Top specification formats for REST APIs. [Online].
Available: http://nordicapis.com/top-specification-formats-for-rest-apis/

OpenAPI Initiative, “OpenAPI-Specification,”
https://github.com/OAI/OpenAPI-Specification, 2017.

F. Haupt, F. Leymann, A. Scherer, and K. Vulkojevic-Haupt, “A frame-
work for the structural analysis of REST APIs,” in IEEE International
Conference on Software Architecture, Gothenburg, Sweden, Apr. 2017,
pp. 55-58.

W. Li and P. Svard, “REST-based SOA application in the cloud: A text
correction service case study,” in World Congress on Services, Miami,
FL, USA, Jul. 2010, pp. 84-90.

M. Bieg, “A Web-based Tool to Semi-automatically Import Data from
Generic REST APIs,” Master’s thesis, Swiss Federal Institute of Tech-
nology Zurich, 2014.

P. Berde, W. Snow, G. Parulkar, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. OConnor, and P. Radoslavov,
“ONOS,” in Proceedings of the third workshop on Hot topics in software
defined networking - HotSDN 14, 2014, pp. 3-3.

S. Lele. (2016) Generating swagger documenta-
tion for the REST API. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Wiki+Home

M. Fokaefs and E. Stroulia, “Using WADL specifications to develop and
maintain REST client applications,” in IEEE International Conference
on Web Services, New York, NY, USA, Jul. 2015, pp. 81-88.

F. A. Musyaffa, L. Halilaj, R. Siebes, F. Orlandi, and S. Auer, “Min-
imally invasive semantification of lightweight service descriptions,” in
IEEE International Conference on Web Services, San Francisco, CA,
USA, Jul. 2016, pp. 672-677.

A. G. Prieto, A. Leung, and K. Rockwell, “Automating the testing of
RESTCONF agents,” in IEEE International Symposium on Integrated
Network Management, Ottawa, ON, Canada, May 2015, pp. 984-989.

